merge(3p/absl): subtree merge of Abseil up to e19260f
... notably, this includes Abseil's own StatusOr type, which conflicted with our implementation (that was taken from TensorFlow). Change-Id: Ie7d6764b64055caaeb8dc7b6b9d066291e6b538f
This commit is contained in:
parent
cc27324d02
commit
082c006c04
854 changed files with 11260 additions and 5296 deletions
858
third_party/abseil_cpp/absl/status/statusor.h
vendored
858
third_party/abseil_cpp/absl/status/statusor.h
vendored
|
|
@ -1,333 +1,700 @@
|
|||
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
// StatusOr<T> is the union of a Status object and a T object. StatusOr models
|
||||
// the concept of an object that is either a value, or an error Status
|
||||
// explaining why such a value is not present. To this end, StatusOr<T> does not
|
||||
// allow its Status value to be StatusCode::kOk.
|
||||
// Copyright 2020 The Abseil Authors.
|
||||
//
|
||||
// The primary use-case for StatusOr<T> is as the return value of a
|
||||
// function which may fail.
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// Example client usage for a StatusOr<T>, where T is not a pointer:
|
||||
// https://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// StatusOr<float> result = DoBigCalculationThatCouldFail();
|
||||
// if (result.ok()) {
|
||||
// float answer = result.ValueOrDie();
|
||||
// printf("Big calculation yielded: %f", answer);
|
||||
// } else {
|
||||
// LOG(ERROR) << result.status();
|
||||
// }
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// Example client usage for a StatusOr<T*>:
|
||||
// -----------------------------------------------------------------------------
|
||||
// File: statusor.h
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// StatusOr<Foo*> result = FooFactory::MakeNewFoo(arg);
|
||||
// if (result.ok()) {
|
||||
// std::unique_ptr<Foo> foo(result.ValueOrDie());
|
||||
// foo->DoSomethingCool();
|
||||
// } else {
|
||||
// LOG(ERROR) << result.status();
|
||||
// }
|
||||
// An `absl::StatusOr<T>` represents a union of an `absl::Status` object
|
||||
// and an object of type `T`. The `absl::StatusOr<T>` will either contain an
|
||||
// object of type `T` (indicating a successful operation), or an error (of type
|
||||
// `absl::Status`) explaining why such a value is not present.
|
||||
//
|
||||
// Example client usage for a StatusOr<std::unique_ptr<T>>:
|
||||
// In general, check the success of an operation returning an
|
||||
// `absl::StatusOr<T>` like you would an `absl::Status` by using the `ok()`
|
||||
// member function.
|
||||
//
|
||||
// StatusOr<std::unique_ptr<Foo>> result = FooFactory::MakeNewFoo(arg);
|
||||
// if (result.ok()) {
|
||||
// std::unique_ptr<Foo> foo = std::move(result.ValueOrDie());
|
||||
// foo->DoSomethingCool();
|
||||
// } else {
|
||||
// LOG(ERROR) << result.status();
|
||||
// }
|
||||
// Example:
|
||||
//
|
||||
// Example factory implementation returning StatusOr<T*>:
|
||||
//
|
||||
// StatusOr<Foo*> FooFactory::MakeNewFoo(int arg) {
|
||||
// if (arg <= 0) {
|
||||
// return absl::InvalidArgumentError("Arg must be positive");
|
||||
// } else {
|
||||
// return new Foo(arg);
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// Note that the assignment operators require that destroying the currently
|
||||
// stored value cannot invalidate the argument; in other words, the argument
|
||||
// cannot be an alias for the current value, or anything owned by the current
|
||||
// value.
|
||||
// StatusOr<Foo> result = Calculation();
|
||||
// if (result.ok()) {
|
||||
// result->DoSomethingCool();
|
||||
// } else {
|
||||
// LOG(ERROR) << result.status();
|
||||
// }
|
||||
#ifndef ABSL_STATUS_STATUSOR_H_
|
||||
#define ABSL_STATUS_STATUSOR_H_
|
||||
|
||||
#include <exception>
|
||||
#include <initializer_list>
|
||||
#include <new>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
#include "absl/base/attributes.h"
|
||||
#include "absl/meta/type_traits.h"
|
||||
#include "absl/status/internal/statusor_internal.h"
|
||||
#include "absl/status/status.h"
|
||||
#include "absl/status/statusor_internals.h"
|
||||
#include "absl/types/variant.h"
|
||||
#include "absl/utility/utility.h"
|
||||
|
||||
namespace absl {
|
||||
ABSL_NAMESPACE_BEGIN
|
||||
|
||||
// BadStatusOrAccess
|
||||
//
|
||||
// This class defines the type of object to throw (if exceptions are enabled),
|
||||
// when accessing the value of an `absl::StatusOr<T>` object that does not
|
||||
// contain a value. This behavior is analogous to that of
|
||||
// `std::bad_optional_access` in the case of accessing an invalid
|
||||
// `std::optional` value.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// try {
|
||||
// absl::StatusOr<int> v = FetchInt();
|
||||
// DoWork(v.value()); // Accessing value() when not "OK" may throw
|
||||
// } catch (absl::BadStatusOrAccess& ex) {
|
||||
// LOG(ERROR) << ex.status();
|
||||
// }
|
||||
class BadStatusOrAccess : public std::exception {
|
||||
public:
|
||||
explicit BadStatusOrAccess(absl::Status status);
|
||||
~BadStatusOrAccess() override;
|
||||
|
||||
// BadStatusOrAccess::what()
|
||||
//
|
||||
// Returns the associated explanatory string of the `absl::StatusOr<T>`
|
||||
// object's error code. This function only returns the string literal "Bad
|
||||
// StatusOr Access" for cases when evaluating general exceptions.
|
||||
//
|
||||
// The pointer of this string is guaranteed to be valid until any non-const
|
||||
// function is invoked on the exception object.
|
||||
const char* what() const noexcept override;
|
||||
|
||||
// BadStatusOrAccess::status()
|
||||
//
|
||||
// Returns the associated `absl::Status` of the `absl::StatusOr<T>` object's
|
||||
// error.
|
||||
const absl::Status& status() const;
|
||||
|
||||
private:
|
||||
absl::Status status_;
|
||||
};
|
||||
|
||||
// Returned StatusOr objects may not be ignored.
|
||||
template <typename T>
|
||||
class ABSL_MUST_USE_RESULT StatusOr;
|
||||
|
||||
// absl::StatusOr<T>
|
||||
//
|
||||
// The `absl::StatusOr<T>` class template is a union of an `absl::Status` object
|
||||
// and an object of type `T`. The `absl::StatusOr<T>` models an object that is
|
||||
// either a usable object, or an error (of type `absl::Status`) explaining why
|
||||
// such an object is not present. An `absl::StatusOr<T>` is typically the return
|
||||
// value of a function which may fail.
|
||||
//
|
||||
// An `absl::StatusOr<T>` can never hold an "OK" status (an
|
||||
// `absl::StatusCode::kOk` value); instead, the presence of an object of type
|
||||
// `T` indicates success. Instead of checking for a `kOk` value, use the
|
||||
// `absl::StatusOr<T>::ok()` member function. (It is for this reason, and code
|
||||
// readability, that using the `ok()` function is preferred for `absl::Status`
|
||||
// as well.)
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// StatusOr<Foo> result = DoBigCalculationThatCouldFail();
|
||||
// if (result.ok()) {
|
||||
// result->DoSomethingCool();
|
||||
// } else {
|
||||
// LOG(ERROR) << result.status();
|
||||
// }
|
||||
//
|
||||
// Accessing the object held by an `absl::StatusOr<T>` should be performed via
|
||||
// `operator*` or `operator->`, after a call to `ok()` confirms that the
|
||||
// `absl::StatusOr<T>` holds an object of type `T`:
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// absl::StatusOr<int> i = GetCount();
|
||||
// if (i.ok()) {
|
||||
// updated_total += *i
|
||||
// }
|
||||
//
|
||||
// NOTE: using `absl::StatusOr<T>::value()` when no valid value is present will
|
||||
// throw an exception if exceptions are enabled or terminate the process when
|
||||
// execeptions are not enabled.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// StatusOr<Foo> result = DoBigCalculationThatCouldFail();
|
||||
// const Foo& foo = result.value(); // Crash/exception if no value present
|
||||
// foo.DoSomethingCool();
|
||||
//
|
||||
// A `absl::StatusOr<T*>` can be constructed from a null pointer like any other
|
||||
// pointer value, and the result will be that `ok()` returns `true` and
|
||||
// `value()` returns `nullptr`. Checking the value of pointer in an
|
||||
// `absl::StatusOr<T>` generally requires a bit more care, to ensure both that a
|
||||
// value is present and that value is not null:
|
||||
//
|
||||
// StatusOr<std::unique_ptr<Foo>> result = FooFactory::MakeNewFoo(arg);
|
||||
// if (!result.ok()) {
|
||||
// LOG(ERROR) << result.status();
|
||||
// } else if (*result == nullptr) {
|
||||
// LOG(ERROR) << "Unexpected null pointer";
|
||||
// } else {
|
||||
// (*result)->DoSomethingCool();
|
||||
// }
|
||||
//
|
||||
// Example factory implementation returning StatusOr<T>:
|
||||
//
|
||||
// StatusOr<Foo> FooFactory::MakeFoo(int arg) {
|
||||
// if (arg <= 0) {
|
||||
// return absl::Status(absl::StatusCode::kInvalidArgument,
|
||||
// "Arg must be positive");
|
||||
// }
|
||||
// return Foo(arg);
|
||||
// }
|
||||
template <typename T>
|
||||
class StatusOr : private internal_statusor::StatusOrData<T>,
|
||||
private internal_statusor::TraitsBase<
|
||||
std::is_copy_constructible<T>::value,
|
||||
std::is_move_constructible<T>::value> {
|
||||
private internal_statusor::CopyCtorBase<T>,
|
||||
private internal_statusor::MoveCtorBase<T>,
|
||||
private internal_statusor::CopyAssignBase<T>,
|
||||
private internal_statusor::MoveAssignBase<T> {
|
||||
template <typename U>
|
||||
friend class StatusOr;
|
||||
|
||||
typedef internal_statusor::StatusOrData<T> Base;
|
||||
|
||||
public:
|
||||
typedef T element_type; // DEPRECATED: use `value_type`.
|
||||
// StatusOr<T>::value_type
|
||||
//
|
||||
// This instance data provides a generic `value_type` member for use within
|
||||
// generic programming. This usage is analogous to that of
|
||||
// `optional::value_type` in the case of `std::optional`.
|
||||
typedef T value_type;
|
||||
|
||||
// Constructs a new StatusOr with Status::UNKNOWN status. This is marked
|
||||
// 'explicit' to try to catch cases like 'return {};', where people think
|
||||
// StatusOr<std::vector<int>> will be initialized with an empty vector,
|
||||
// instead of a Status::UNKNOWN status.
|
||||
// Constructors
|
||||
|
||||
// Constructs a new `absl::StatusOr` with an `absl::StatusCode::kUnknown`
|
||||
// status. This constructor is marked 'explicit' to prevent usages in return
|
||||
// values such as 'return {};', under the misconception that
|
||||
// `absl::StatusOr<std::vector<int>>` will be initialized with an empty
|
||||
// vector, instead of an `absl::StatusCode::kUnknown` error code.
|
||||
explicit StatusOr();
|
||||
|
||||
// StatusOr<T> will be copy constructible/assignable if T is copy
|
||||
// constructible.
|
||||
// `StatusOr<T>` is copy constructible if `T` is copy constructible.
|
||||
StatusOr(const StatusOr&) = default;
|
||||
// `StatusOr<T>` is copy assignable if `T` is copy constructible and copy
|
||||
// assignable.
|
||||
StatusOr& operator=(const StatusOr&) = default;
|
||||
|
||||
// StatusOr<T> will be move constructible/assignable if T is move
|
||||
// constructible.
|
||||
// `StatusOr<T>` is move constructible if `T` is move constructible.
|
||||
StatusOr(StatusOr&&) = default;
|
||||
// `StatusOr<T>` is moveAssignable if `T` is move constructible and move
|
||||
// assignable.
|
||||
StatusOr& operator=(StatusOr&&) = default;
|
||||
|
||||
// Conversion copy/move constructor, T must be convertible from U.
|
||||
template <typename U, typename std::enable_if<
|
||||
std::is_convertible<U, T>::value>::type* = nullptr>
|
||||
StatusOr(const StatusOr<U>& other);
|
||||
template <typename U, typename std::enable_if<
|
||||
std::is_convertible<U, T>::value>::type* = nullptr>
|
||||
StatusOr(StatusOr<U>&& other);
|
||||
// Converting Constructors
|
||||
|
||||
// Conversion copy/move assignment operator, T must be convertible from U.
|
||||
template <typename U, typename std::enable_if<
|
||||
std::is_convertible<U, T>::value>::type* = nullptr>
|
||||
StatusOr& operator=(const StatusOr<U>& other);
|
||||
template <typename U, typename std::enable_if<
|
||||
std::is_convertible<U, T>::value>::type* = nullptr>
|
||||
StatusOr& operator=(StatusOr<U>&& other);
|
||||
// Constructs a new `absl::StatusOr<T>` from an `absl::StatusOr<U>`, when `T`
|
||||
// is constructible from `U`. To avoid ambiguity, these constructors are
|
||||
// disabled if `T` is also constructible from `StatusOr<U>.`. This constructor
|
||||
// is explicit if and only if the corresponding construction of `T` from `U`
|
||||
// is explicit. (This constructor inherits its explicitness from the
|
||||
// underlying constructor.)
|
||||
template <
|
||||
typename U,
|
||||
absl::enable_if_t<
|
||||
absl::conjunction<
|
||||
absl::negation<std::is_same<T, U>>,
|
||||
std::is_constructible<T, const U&>,
|
||||
std::is_convertible<const U&, T>,
|
||||
absl::negation<
|
||||
internal_statusor::IsConstructibleOrConvertibleFromStatusOr<
|
||||
T, U>>>::value,
|
||||
int> = 0>
|
||||
StatusOr(const StatusOr<U>& other) // NOLINT
|
||||
: Base(static_cast<const typename StatusOr<U>::Base&>(other)) {}
|
||||
template <
|
||||
typename U,
|
||||
absl::enable_if_t<
|
||||
absl::conjunction<
|
||||
absl::negation<std::is_same<T, U>>,
|
||||
std::is_constructible<T, const U&>,
|
||||
absl::negation<std::is_convertible<const U&, T>>,
|
||||
absl::negation<
|
||||
internal_statusor::IsConstructibleOrConvertibleFromStatusOr<
|
||||
T, U>>>::value,
|
||||
int> = 0>
|
||||
explicit StatusOr(const StatusOr<U>& other)
|
||||
: Base(static_cast<const typename StatusOr<U>::Base&>(other)) {}
|
||||
|
||||
// Constructs a new StatusOr with the given value. After calling this
|
||||
// constructor, calls to ValueOrDie() will succeed, and calls to status() will
|
||||
// return OK.
|
||||
template <
|
||||
typename U,
|
||||
absl::enable_if_t<
|
||||
absl::conjunction<
|
||||
absl::negation<std::is_same<T, U>>, std::is_constructible<T, U&&>,
|
||||
std::is_convertible<U&&, T>,
|
||||
absl::negation<
|
||||
internal_statusor::IsConstructibleOrConvertibleFromStatusOr<
|
||||
T, U>>>::value,
|
||||
int> = 0>
|
||||
StatusOr(StatusOr<U>&& other) // NOLINT
|
||||
: Base(static_cast<typename StatusOr<U>::Base&&>(other)) {}
|
||||
template <
|
||||
typename U,
|
||||
absl::enable_if_t<
|
||||
absl::conjunction<
|
||||
absl::negation<std::is_same<T, U>>, std::is_constructible<T, U&&>,
|
||||
absl::negation<std::is_convertible<U&&, T>>,
|
||||
absl::negation<
|
||||
internal_statusor::IsConstructibleOrConvertibleFromStatusOr<
|
||||
T, U>>>::value,
|
||||
int> = 0>
|
||||
explicit StatusOr(StatusOr<U>&& other)
|
||||
: Base(static_cast<typename StatusOr<U>::Base&&>(other)) {}
|
||||
|
||||
// Converting Assignment Operators
|
||||
|
||||
// Creates an `absl::StatusOr<T>` through assignment from an
|
||||
// `absl::StatusOr<U>` when:
|
||||
//
|
||||
// NOTE: Not explicit - we want to use StatusOr<T> as a return type
|
||||
// so it is convenient and sensible to be able to do 'return T()'
|
||||
// when the return type is StatusOr<T>.
|
||||
// * Both `absl::StatusOr<T>` and `absl::StatusOr<U>` are OK by assigning
|
||||
// `U` to `T` directly.
|
||||
// * `absl::StatusOr<T>` is OK and `absl::StatusOr<U>` contains an error
|
||||
// code by destroying `absl::StatusOr<T>`'s value and assigning from
|
||||
// `absl::StatusOr<U>'
|
||||
// * `absl::StatusOr<T>` contains an error code and `absl::StatusOr<U>` is
|
||||
// OK by directly initializing `T` from `U`.
|
||||
// * Both `absl::StatusOr<T>` and `absl::StatusOr<U>` contain an error
|
||||
// code by assigning the `Status` in `absl::StatusOr<U>` to
|
||||
// `absl::StatusOr<T>`
|
||||
//
|
||||
// REQUIRES: T is copy constructible.
|
||||
StatusOr(const T& value);
|
||||
// These overloads only apply if `absl::StatusOr<T>` is constructible and
|
||||
// assignable from `absl::StatusOr<U>` and `StatusOr<T>` cannot be directly
|
||||
// assigned from `StatusOr<U>`.
|
||||
template <
|
||||
typename U,
|
||||
absl::enable_if_t<
|
||||
absl::conjunction<
|
||||
absl::negation<std::is_same<T, U>>,
|
||||
std::is_constructible<T, const U&>,
|
||||
std::is_assignable<T, const U&>,
|
||||
absl::negation<
|
||||
internal_statusor::
|
||||
IsConstructibleOrConvertibleOrAssignableFromStatusOr<
|
||||
T, U>>>::value,
|
||||
int> = 0>
|
||||
StatusOr& operator=(const StatusOr<U>& other) {
|
||||
this->Assign(other);
|
||||
return *this;
|
||||
}
|
||||
template <
|
||||
typename U,
|
||||
absl::enable_if_t<
|
||||
absl::conjunction<
|
||||
absl::negation<std::is_same<T, U>>, std::is_constructible<T, U&&>,
|
||||
std::is_assignable<T, U&&>,
|
||||
absl::negation<
|
||||
internal_statusor::
|
||||
IsConstructibleOrConvertibleOrAssignableFromStatusOr<
|
||||
T, U>>>::value,
|
||||
int> = 0>
|
||||
StatusOr& operator=(StatusOr<U>&& other) {
|
||||
this->Assign(std::move(other));
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Constructs a new StatusOr with the given non-ok status. After calling
|
||||
// this constructor, calls to ValueOrDie() will CHECK-fail.
|
||||
// Constructs a new `absl::StatusOr<T>` with a non-ok status. After calling
|
||||
// this constructor, `this->ok()` will be `false` and calls to `value()` will
|
||||
// crash, or produce an exception if exceptions are enabled.
|
||||
//
|
||||
// NOTE: Not explicit - we want to use StatusOr<T> as a return
|
||||
// value, so it is convenient and sensible to be able to do 'return
|
||||
// Status()' when the return type is StatusOr<T>.
|
||||
// The constructor also takes any type `U` that is convertible to
|
||||
// `absl::Status`. This constructor is explicit if an only if `U` is not of
|
||||
// type `absl::Status` and the conversion from `U` to `Status` is explicit.
|
||||
//
|
||||
// REQUIRES: !status.ok(). This requirement is enforced with either an
|
||||
// exception (the passed absl::Status) or a FATAL log.
|
||||
StatusOr(const Status& status);
|
||||
StatusOr& operator=(const Status& status);
|
||||
// REQUIRES: !Status(std::forward<U>(v)).ok(). This requirement is DCHECKed.
|
||||
// In optimized builds, passing absl::OkStatus() here will have the effect
|
||||
// of passing absl::StatusCode::kInternal as a fallback.
|
||||
template <
|
||||
typename U = absl::Status,
|
||||
absl::enable_if_t<
|
||||
absl::conjunction<
|
||||
std::is_convertible<U&&, absl::Status>,
|
||||
std::is_constructible<absl::Status, U&&>,
|
||||
absl::negation<std::is_same<absl::decay_t<U>, absl::StatusOr<T>>>,
|
||||
absl::negation<std::is_same<absl::decay_t<U>, T>>,
|
||||
absl::negation<std::is_same<absl::decay_t<U>, absl::in_place_t>>,
|
||||
absl::negation<internal_statusor::HasConversionOperatorToStatusOr<
|
||||
T, U&&>>>::value,
|
||||
int> = 0>
|
||||
StatusOr(U&& v) : Base(std::forward<U>(v)) {}
|
||||
|
||||
// TODO(b/62186997): Add operator=(T) overloads.
|
||||
template <
|
||||
typename U = absl::Status,
|
||||
absl::enable_if_t<
|
||||
absl::conjunction<
|
||||
absl::negation<std::is_convertible<U&&, absl::Status>>,
|
||||
std::is_constructible<absl::Status, U&&>,
|
||||
absl::negation<std::is_same<absl::decay_t<U>, absl::StatusOr<T>>>,
|
||||
absl::negation<std::is_same<absl::decay_t<U>, T>>,
|
||||
absl::negation<std::is_same<absl::decay_t<U>, absl::in_place_t>>,
|
||||
absl::negation<internal_statusor::HasConversionOperatorToStatusOr<
|
||||
T, U&&>>>::value,
|
||||
int> = 0>
|
||||
explicit StatusOr(U&& v) : Base(std::forward<U>(v)) {}
|
||||
|
||||
// Similar to the `const T&` overload.
|
||||
template <
|
||||
typename U = absl::Status,
|
||||
absl::enable_if_t<
|
||||
absl::conjunction<
|
||||
std::is_convertible<U&&, absl::Status>,
|
||||
std::is_constructible<absl::Status, U&&>,
|
||||
absl::negation<std::is_same<absl::decay_t<U>, absl::StatusOr<T>>>,
|
||||
absl::negation<std::is_same<absl::decay_t<U>, T>>,
|
||||
absl::negation<std::is_same<absl::decay_t<U>, absl::in_place_t>>,
|
||||
absl::negation<internal_statusor::HasConversionOperatorToStatusOr<
|
||||
T, U&&>>>::value,
|
||||
int> = 0>
|
||||
StatusOr& operator=(U&& v) {
|
||||
this->AssignStatus(std::forward<U>(v));
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Perfect-forwarding value assignment operator.
|
||||
|
||||
// If `*this` contains a `T` value before the call, the contained value is
|
||||
// assigned from `std::forward<U>(v)`; Otherwise, it is directly-initialized
|
||||
// from `std::forward<U>(v)`.
|
||||
// This function does not participate in overload unless:
|
||||
// 1. `std::is_constructible_v<T, U>` is true,
|
||||
// 2. `std::is_assignable_v<T&, U>` is true.
|
||||
// 3. `std::is_same_v<StatusOr<T>, std::remove_cvref_t<U>>` is false.
|
||||
// 4. Assigning `U` to `T` is not ambiguous:
|
||||
// If `U` is `StatusOr<V>` and `T` is constructible and assignable from
|
||||
// both `StatusOr<V>` and `V`, the assignment is considered bug-prone and
|
||||
// ambiguous thus will fail to compile. For example:
|
||||
// StatusOr<bool> s1 = true; // s1.ok() && *s1 == true
|
||||
// StatusOr<bool> s2 = false; // s2.ok() && *s2 == false
|
||||
// s1 = s2; // ambiguous, `s1 = *s2` or `s1 = bool(s2)`?
|
||||
template <
|
||||
typename U = T,
|
||||
typename = typename std::enable_if<absl::conjunction<
|
||||
std::is_constructible<T, U&&>, std::is_assignable<T&, U&&>,
|
||||
absl::disjunction<
|
||||
std::is_same<absl::remove_cv_t<absl::remove_reference_t<U>>, T>,
|
||||
absl::conjunction<
|
||||
absl::negation<std::is_convertible<U&&, absl::Status>>,
|
||||
absl::negation<internal_statusor::
|
||||
HasConversionOperatorToStatusOr<T, U&&>>>>,
|
||||
internal_statusor::IsForwardingAssignmentValid<T, U&&>>::value>::type>
|
||||
StatusOr& operator=(U&& v) {
|
||||
this->Assign(std::forward<U>(v));
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Constructs the inner value `T` in-place using the provided args, using the
|
||||
// `T(args...)` constructor.
|
||||
template <typename... Args>
|
||||
explicit StatusOr(absl::in_place_t, Args&&... args);
|
||||
template <typename U, typename... Args>
|
||||
explicit StatusOr(absl::in_place_t, std::initializer_list<U> ilist,
|
||||
Args&&... args);
|
||||
|
||||
// Constructs the inner value `T` in-place using the provided args, using the
|
||||
// `T(U)` (direct-initialization) constructor. This constructor is only valid
|
||||
// if `T` can be constructed from a `U`. Can accept move or copy constructors.
|
||||
//
|
||||
// REQUIRES: T is move constructible.
|
||||
StatusOr(T&& value);
|
||||
// This constructor is explicit if `U` is not convertible to `T`. To avoid
|
||||
// ambiguity, this constuctor is disabled if `U` is a `StatusOr<J>`, where `J`
|
||||
// is convertible to `T`.
|
||||
template <
|
||||
typename U = T,
|
||||
absl::enable_if_t<
|
||||
absl::conjunction<
|
||||
internal_statusor::IsDirectInitializationValid<T, U&&>,
|
||||
std::is_constructible<T, U&&>, std::is_convertible<U&&, T>,
|
||||
absl::disjunction<
|
||||
std::is_same<absl::remove_cv_t<absl::remove_reference_t<U>>,
|
||||
T>,
|
||||
absl::conjunction<
|
||||
absl::negation<std::is_convertible<U&&, absl::Status>>,
|
||||
absl::negation<
|
||||
internal_statusor::HasConversionOperatorToStatusOr<
|
||||
T, U&&>>>>>::value,
|
||||
int> = 0>
|
||||
StatusOr(U&& u) // NOLINT
|
||||
: StatusOr(absl::in_place, std::forward<U>(u)) {
|
||||
}
|
||||
|
||||
// RValue versions of the operations declared above.
|
||||
StatusOr(Status&& status);
|
||||
StatusOr& operator=(Status&& status);
|
||||
template <
|
||||
typename U = T,
|
||||
absl::enable_if_t<
|
||||
absl::conjunction<
|
||||
internal_statusor::IsDirectInitializationValid<T, U&&>,
|
||||
absl::disjunction<
|
||||
std::is_same<absl::remove_cv_t<absl::remove_reference_t<U>>,
|
||||
T>,
|
||||
absl::conjunction<
|
||||
absl::negation<std::is_constructible<absl::Status, U&&>>,
|
||||
absl::negation<
|
||||
internal_statusor::HasConversionOperatorToStatusOr<
|
||||
T, U&&>>>>,
|
||||
std::is_constructible<T, U&&>,
|
||||
absl::negation<std::is_convertible<U&&, T>>>::value,
|
||||
int> = 0>
|
||||
explicit StatusOr(U&& u) // NOLINT
|
||||
: StatusOr(absl::in_place, std::forward<U>(u)) {
|
||||
}
|
||||
|
||||
// Returns this->status().ok()
|
||||
bool ok() const { return this->status_.ok(); }
|
||||
// StatusOr<T>::ok()
|
||||
//
|
||||
// Returns whether or not this `absl::StatusOr<T>` holds a `T` value. This
|
||||
// member function is analagous to `absl::Status::ok()` and should be used
|
||||
// similarly to check the status of return values.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// StatusOr<Foo> result = DoBigCalculationThatCouldFail();
|
||||
// if (result.ok()) {
|
||||
// // Handle result
|
||||
// else {
|
||||
// // Handle error
|
||||
// }
|
||||
ABSL_MUST_USE_RESULT bool ok() const { return this->status_.ok(); }
|
||||
|
||||
// Returns a reference to our status. If this contains a T, then
|
||||
// returns OkStatus().
|
||||
// StatusOr<T>::status()
|
||||
//
|
||||
// Returns a reference to the current `absl::Status` contained within the
|
||||
// `absl::StatusOr<T>`. If `absl::StatusOr<T>` contains a `T`, then this
|
||||
// function returns `absl::OkStatus()`.
|
||||
const Status& status() const &;
|
||||
Status status() &&;
|
||||
|
||||
// Returns a reference to our current value, or CHECK-fails if !this->ok().
|
||||
// StatusOr<T>::value()
|
||||
//
|
||||
// Returns a reference to the held value if `this->ok()`. Otherwise, throws
|
||||
// `absl::BadStatusOrAccess` if exceptions are enabled, or is guaranteed to
|
||||
// terminate the process if exceptions are disabled.
|
||||
//
|
||||
// If you have already checked the status using `this->ok()`, you probably
|
||||
// want to use `operator*()` or `operator->()` to access the value instead of
|
||||
// `value`.
|
||||
//
|
||||
// Note: for value types that are cheap to copy, prefer simple code:
|
||||
//
|
||||
// T value = statusor.ValueOrDie();
|
||||
// T value = statusor.value();
|
||||
//
|
||||
// Otherwise, if the value type is expensive to copy, but can be left
|
||||
// in the StatusOr, simply assign to a reference:
|
||||
//
|
||||
// T& value = statusor.ValueOrDie(); // or `const T&`
|
||||
// T& value = statusor.value(); // or `const T&`
|
||||
//
|
||||
// Otherwise, if the value type supports an efficient move, it can be
|
||||
// used as follows:
|
||||
//
|
||||
// T value = std::move(statusor).ValueOrDie();
|
||||
// T value = std::move(statusor).value();
|
||||
//
|
||||
// The std::move on statusor instead of on the whole expression enables
|
||||
// The `std::move` on statusor instead of on the whole expression enables
|
||||
// warnings about possible uses of the statusor object after the move.
|
||||
// C++ style guide waiver for ref-qualified overloads granted in cl/143176389
|
||||
// See go/ref-qualifiers for more details on such overloads.
|
||||
const T& ValueOrDie() const &;
|
||||
T& ValueOrDie() &;
|
||||
const T&& ValueOrDie() const &&;
|
||||
T&& ValueOrDie() &&;
|
||||
const T& value() const&;
|
||||
T& value() &;
|
||||
const T&& value() const&&;
|
||||
T&& value() &&;
|
||||
|
||||
// StatusOr<T>:: operator*()
|
||||
//
|
||||
// Returns a reference to the current value.
|
||||
//
|
||||
// REQUIRES: this->ok() == true, otherwise the behavior is undefined.
|
||||
// REQUIRES: `this->ok() == true`, otherwise the behavior is undefined.
|
||||
//
|
||||
// Use this->ok() or `operator bool()` to verify that there is a current
|
||||
// value. Alternatively, see ValueOrDie() for a similar API that guarantees
|
||||
// CHECK-failing if there is no current value.
|
||||
// Use `this->ok()` to verify that there is a current value within the
|
||||
// `absl::StatusOr<T>`. Alternatively, see the `value()` member function for a
|
||||
// similar API that guarantees crashing or throwing an exception if there is
|
||||
// no current value.
|
||||
const T& operator*() const&;
|
||||
T& operator*() &;
|
||||
const T&& operator*() const&&;
|
||||
T&& operator*() &&;
|
||||
|
||||
// StatusOr<T>::operator->()
|
||||
//
|
||||
// Returns a pointer to the current value.
|
||||
//
|
||||
// REQUIRES: this->ok() == true, otherwise the behavior is undefined.
|
||||
// REQUIRES: `this->ok() == true`, otherwise the behavior is undefined.
|
||||
//
|
||||
// Use this->ok() or `operator bool()` to verify that there is a current
|
||||
// value.
|
||||
// Use `this->ok()` to verify that there is a current value.
|
||||
const T* operator->() const;
|
||||
T* operator->();
|
||||
|
||||
T ConsumeValueOrDie() { return std::move(ValueOrDie()); }
|
||||
// StatusOr<T>::value_or()
|
||||
//
|
||||
// Returns the current value if `this->ok() == true`. Otherwise constructs a
|
||||
// value using the provided `default_value`.
|
||||
//
|
||||
// Unlike `value`, this function returns by value, copying the current value
|
||||
// if necessary. If the value type supports an efficient move, it can be used
|
||||
// as follows:
|
||||
//
|
||||
// T value = std::move(statusor).value_or(def);
|
||||
//
|
||||
// Unlike with `value`, calling `std::move()` on the result of `value_or` will
|
||||
// still trigger a copy.
|
||||
template <typename U>
|
||||
T value_or(U&& default_value) const&;
|
||||
template <typename U>
|
||||
T value_or(U&& default_value) &&;
|
||||
|
||||
// StatusOr<T>::IgnoreError()
|
||||
//
|
||||
// Ignores any errors. This method does nothing except potentially suppress
|
||||
// complaints from any tools that are checking that errors are not dropped on
|
||||
// the floor.
|
||||
void IgnoreError() const;
|
||||
|
||||
// StatusOr<T>::emplace()
|
||||
//
|
||||
// Reconstructs the inner value T in-place using the provided args, using the
|
||||
// T(args...) constructor. Returns reference to the reconstructed `T`.
|
||||
template <typename... Args>
|
||||
T& emplace(Args&&... args) {
|
||||
if (ok()) {
|
||||
this->Clear();
|
||||
this->MakeValue(std::forward<Args>(args)...);
|
||||
} else {
|
||||
this->MakeValue(std::forward<Args>(args)...);
|
||||
this->status_ = absl::OkStatus();
|
||||
}
|
||||
return this->data_;
|
||||
}
|
||||
|
||||
template <
|
||||
typename U, typename... Args,
|
||||
absl::enable_if_t<
|
||||
std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value,
|
||||
int> = 0>
|
||||
T& emplace(std::initializer_list<U> ilist, Args&&... args) {
|
||||
if (ok()) {
|
||||
this->Clear();
|
||||
this->MakeValue(ilist, std::forward<Args>(args)...);
|
||||
} else {
|
||||
this->MakeValue(ilist, std::forward<Args>(args)...);
|
||||
this->status_ = absl::OkStatus();
|
||||
}
|
||||
return this->data_;
|
||||
}
|
||||
|
||||
private:
|
||||
using internal_statusor::StatusOrData<T>::Assign;
|
||||
template <typename U>
|
||||
void Assign(const absl::StatusOr<U>& other);
|
||||
template <typename U>
|
||||
void Assign(absl::StatusOr<U>&& other);
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// operator==()
|
||||
//
|
||||
// This operator checks the equality of two `absl::StatusOr<T>` objects.
|
||||
template <typename T>
|
||||
bool operator==(const StatusOr<T>& lhs, const StatusOr<T>& rhs) {
|
||||
if (lhs.ok() && rhs.ok()) return *lhs == *rhs;
|
||||
return lhs.status() == rhs.status();
|
||||
}
|
||||
|
||||
// operator!=()
|
||||
//
|
||||
// This operator checks the inequality of two `absl::StatusOr<T>` objects.
|
||||
template <typename T>
|
||||
bool operator!=(const StatusOr<T>& lhs, const StatusOr<T>& rhs) {
|
||||
return !(lhs == rhs);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Implementation details for StatusOr<T>
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
// TODO(sbenza): avoid the string here completely.
|
||||
template <typename T>
|
||||
StatusOr<T>::StatusOr() : Base(Status(absl::StatusCode::kUnknown, "")) {}
|
||||
|
||||
template <typename T>
|
||||
StatusOr<T>::StatusOr() : Base(Status(StatusCode::kUnknown, "")) {}
|
||||
|
||||
template <typename T>
|
||||
StatusOr<T>::StatusOr(const T& value) : Base(value) {}
|
||||
|
||||
template <typename T>
|
||||
StatusOr<T>::StatusOr(const Status& status) : Base(status) {}
|
||||
|
||||
template <typename T>
|
||||
StatusOr<T>& StatusOr<T>::operator=(const Status& status) {
|
||||
this->Assign(status);
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
StatusOr<T>::StatusOr(T&& value) : Base(std::move(value)) {}
|
||||
|
||||
template <typename T>
|
||||
StatusOr<T>::StatusOr(Status&& status) : Base(std::move(status)) {}
|
||||
|
||||
template <typename T>
|
||||
StatusOr<T>& StatusOr<T>::operator=(Status&& status) {
|
||||
this->Assign(std::move(status));
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
template <typename U,
|
||||
typename std::enable_if<std::is_convertible<U, T>::value>::type*>
|
||||
inline StatusOr<T>::StatusOr(const StatusOr<U>& other)
|
||||
: Base(static_cast<const typename StatusOr<U>::Base&>(other)) {}
|
||||
|
||||
template <typename T>
|
||||
template <typename U,
|
||||
typename std::enable_if<std::is_convertible<U, T>::value>::type*>
|
||||
inline StatusOr<T>& StatusOr<T>::operator=(const StatusOr<U>& other) {
|
||||
if (other.ok())
|
||||
this->Assign(other.ValueOrDie());
|
||||
else
|
||||
this->Assign(other.status());
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
template <typename U,
|
||||
typename std::enable_if<std::is_convertible<U, T>::value>::type*>
|
||||
inline StatusOr<T>::StatusOr(StatusOr<U>&& other)
|
||||
: Base(static_cast<typename StatusOr<U>::Base&&>(other)) {}
|
||||
|
||||
template <typename T>
|
||||
template <typename U,
|
||||
typename std::enable_if<std::is_convertible<U, T>::value>::type*>
|
||||
inline StatusOr<T>& StatusOr<T>::operator=(StatusOr<U>&& other) {
|
||||
template <typename U>
|
||||
inline void StatusOr<T>::Assign(const StatusOr<U>& other) {
|
||||
if (other.ok()) {
|
||||
this->Assign(std::move(other).ValueOrDie());
|
||||
this->Assign(*other);
|
||||
} else {
|
||||
this->Assign(std::move(other).status());
|
||||
this->AssignStatus(other.status());
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const Status& StatusOr<T>::status() const & {
|
||||
return this->status_;
|
||||
template <typename U>
|
||||
inline void StatusOr<T>::Assign(StatusOr<U>&& other) {
|
||||
if (other.ok()) {
|
||||
this->Assign(*std::move(other));
|
||||
} else {
|
||||
this->AssignStatus(std::move(other).status());
|
||||
}
|
||||
}
|
||||
template <typename T>
|
||||
template <typename... Args>
|
||||
StatusOr<T>::StatusOr(absl::in_place_t, Args&&... args)
|
||||
: Base(absl::in_place, std::forward<Args>(args)...) {}
|
||||
|
||||
template <typename T>
|
||||
template <typename U, typename... Args>
|
||||
StatusOr<T>::StatusOr(absl::in_place_t, std::initializer_list<U> ilist,
|
||||
Args&&... args)
|
||||
: Base(absl::in_place, ilist, std::forward<Args>(args)...) {}
|
||||
|
||||
template <typename T>
|
||||
const Status& StatusOr<T>::status() const & { return this->status_; }
|
||||
template <typename T>
|
||||
Status StatusOr<T>::status() && {
|
||||
// Note that we copy instead of moving the status here so that
|
||||
// ~StatusOrData() can call ok() without invoking UB.
|
||||
return ok() ? OkStatus() : this->status_;
|
||||
return ok() ? OkStatus() : std::move(this->status_);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const T& StatusOr<T>::ValueOrDie() const & {
|
||||
this->EnsureOk();
|
||||
const T& StatusOr<T>::value() const& {
|
||||
if (!this->ok()) internal_statusor::ThrowBadStatusOrAccess(this->status_);
|
||||
return this->data_;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T& StatusOr<T>::ValueOrDie() & {
|
||||
this->EnsureOk();
|
||||
T& StatusOr<T>::value() & {
|
||||
if (!this->ok()) internal_statusor::ThrowBadStatusOrAccess(this->status_);
|
||||
return this->data_;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const T&& StatusOr<T>::ValueOrDie() const && {
|
||||
this->EnsureOk();
|
||||
const T&& StatusOr<T>::value() const&& {
|
||||
if (!this->ok()) {
|
||||
internal_statusor::ThrowBadStatusOrAccess(std::move(this->status_));
|
||||
}
|
||||
return std::move(this->data_);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T&& StatusOr<T>::ValueOrDie() && {
|
||||
this->EnsureOk();
|
||||
T&& StatusOr<T>::value() && {
|
||||
if (!this->ok()) {
|
||||
internal_statusor::ThrowBadStatusOrAccess(std::move(this->status_));
|
||||
}
|
||||
return std::move(this->data_);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const T* StatusOr<T>::operator->() const {
|
||||
this->EnsureOk();
|
||||
return &this->data_;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T* StatusOr<T>::operator->() {
|
||||
this->EnsureOk();
|
||||
return &this->data_;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const T& StatusOr<T>::operator*() const& {
|
||||
this->EnsureOk();
|
||||
|
|
@ -352,6 +719,36 @@ T&& StatusOr<T>::operator*() && {
|
|||
return std::move(this->data_);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const T* StatusOr<T>::operator->() const {
|
||||
this->EnsureOk();
|
||||
return &this->data_;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T* StatusOr<T>::operator->() {
|
||||
this->EnsureOk();
|
||||
return &this->data_;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
template <typename U>
|
||||
T StatusOr<T>::value_or(U&& default_value) const& {
|
||||
if (ok()) {
|
||||
return this->data_;
|
||||
}
|
||||
return std::forward<U>(default_value);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
template <typename U>
|
||||
T StatusOr<T>::value_or(U&& default_value) && {
|
||||
if (ok()) {
|
||||
return std::move(this->data_);
|
||||
}
|
||||
return std::forward<U>(default_value);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void StatusOr<T>::IgnoreError() const {
|
||||
// no-op
|
||||
|
|
@ -360,35 +757,4 @@ void StatusOr<T>::IgnoreError() const {
|
|||
ABSL_NAMESPACE_END
|
||||
} // namespace absl
|
||||
|
||||
#define ASSERT_OK_AND_ASSIGN(lhs, rexpr) \
|
||||
ABSL_ASSERT_OK_AND_ASSIGN_IMPL( \
|
||||
ABSL_STATUS_MACROS_CONCAT_NAME(_status_or_value, __COUNTER__), lhs, \
|
||||
rexpr);
|
||||
|
||||
#define ABSL_ASSERT_OK_AND_ASSIGN_IMPL(statusor, lhs, rexpr) \
|
||||
auto statusor = (rexpr); \
|
||||
ASSERT_TRUE(statusor.status().ok()) << statusor.status(); \
|
||||
lhs = std::move(statusor.ValueOrDie())
|
||||
|
||||
#define ABSL_STATUS_MACROS_CONCAT_NAME(x, y) ABSL_STATUS_MACROS_CONCAT_IMPL(x, y)
|
||||
#define ABSL_STATUS_MACROS_CONCAT_IMPL(x, y) x##y
|
||||
|
||||
#define ASSIGN_OR_RETURN(lhs, rexpr) \
|
||||
ABSL_ASSIGN_OR_RETURN_IMPL( \
|
||||
ABSL_STATUS_MACROS_CONCAT_NAME(_status_or_value, __COUNTER__), lhs, rexpr)
|
||||
|
||||
#define ABSL_ASSIGN_OR_RETURN_IMPL(statusor, lhs, rexpr) \
|
||||
auto statusor = (rexpr); \
|
||||
if (ABSL_PREDICT_FALSE(!statusor.ok())) { \
|
||||
return statusor.status(); \
|
||||
} \
|
||||
lhs = std::move(statusor.ValueOrDie())
|
||||
|
||||
#define RETURN_IF_ERROR(status) \
|
||||
do { \
|
||||
if (ABSL_PREDICT_FALSE(!status.ok())) { \
|
||||
return status; \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
#endif // ABSL_STATUS_STATUSOR_H_
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue