merge(3p/absl): subtree merge of Abseil up to e19260f

... notably, this includes Abseil's own StatusOr type, which
conflicted with our implementation (that was taken from TensorFlow).

Change-Id: Ie7d6764b64055caaeb8dc7b6b9d066291e6b538f
This commit is contained in:
Vincent Ambo 2020-11-21 14:43:54 +01:00
parent cc27324d02
commit 082c006c04
854 changed files with 11260 additions and 5296 deletions

View file

@ -54,6 +54,7 @@ cc_library(
"ascii.h",
"charconv.h",
"escaping.h",
"internal/string_constant.h",
"match.h",
"numbers.h",
"str_cat.h",
@ -222,6 +223,19 @@ cc_test(
],
)
cc_test(
name = "string_constant_test",
size = "small",
srcs = ["internal/string_constant_test.cc"],
copts = ABSL_TEST_COPTS,
visibility = ["//visibility:private"],
deps = [
":strings",
"//absl/meta:type_traits",
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "string_view_benchmark",
srcs = ["string_view_benchmark.cc"],
@ -258,6 +272,8 @@ cc_library(
visibility = ["//visibility:private"],
deps = [
":strings",
"//absl/base:base_internal",
"//absl/container:compressed_tuple",
"//absl/meta:type_traits",
],
)
@ -277,7 +293,6 @@ cc_library(
":str_format",
":strings",
"//absl/base",
"//absl/base:base_internal",
"//absl/base:core_headers",
"//absl/base:endian",
"//absl/base:raw_logging_internal",
@ -720,6 +735,7 @@ cc_test(
visibility = ["//visibility:private"],
deps = [
":str_format_internal",
":strings",
"//absl/base:raw_logging_internal",
"//absl/types:optional",
"@com_google_googletest//:gtest_main",

View file

@ -21,6 +21,7 @@ absl_cc_library(
"ascii.h"
"charconv.h"
"escaping.h"
"internal/string_constant.h"
"match.h"
"numbers.h"
"str_cat.h"
@ -158,6 +159,19 @@ absl_cc_test(
gmock_main
)
absl_cc_test(
NAME
string_constant_test
SRCS
"internal/string_constant_test.cc"
COPTS
${ABSL_TEST_COPTS}
DEPS
absl::strings
absl::type_traits
gmock_main
)
absl_cc_test(
NAME
string_view_test
@ -475,6 +489,7 @@ absl_cc_test(
COPTS
${ABSL_TEST_COPTS}
DEPS
absl::strings
absl::str_format_internal
absl::raw_logging_internal
absl::int128
@ -547,6 +562,7 @@ absl_cc_library(
DEPS
absl::base
absl::base_internal
absl::compressed_tuple
absl::core_headers
absl::endian
absl::fixed_array

View file

@ -50,58 +50,10 @@ using ::absl::cord_internal::CordRepConcat;
using ::absl::cord_internal::CordRepExternal;
using ::absl::cord_internal::CordRepSubstring;
// Various representations that we allow
enum CordRepKind {
CONCAT = 0,
EXTERNAL = 1,
SUBSTRING = 2,
// We have different tags for different sized flat arrays,
// starting with FLAT
FLAT = 3,
};
namespace {
// Type used with std::allocator for allocating and deallocating
// `CordRepExternal`. std::allocator is used because it opaquely handles the
// different new / delete overloads available on a given platform.
struct alignas(absl::cord_internal::ExternalRepAlignment()) ExternalAllocType {
unsigned char value[absl::cord_internal::ExternalRepAlignment()];
};
// Returns the number of objects to pass in to std::allocator<ExternalAllocType>
// allocate() and deallocate() to create enough room for `CordRepExternal` with
// `releaser_size` bytes on the end.
constexpr size_t GetExternalAllocNumObjects(size_t releaser_size) {
// Be sure to round up since `releaser_size` could be smaller than
// `sizeof(ExternalAllocType)`.
return (sizeof(CordRepExternal) + releaser_size + sizeof(ExternalAllocType) -
1) /
sizeof(ExternalAllocType);
}
// Allocates enough memory for `CordRepExternal` and a releaser with size
// `releaser_size` bytes.
void* AllocateExternal(size_t releaser_size) {
return std::allocator<ExternalAllocType>().allocate(
GetExternalAllocNumObjects(releaser_size));
}
// Deallocates the memory for a `CordRepExternal` assuming it was allocated with
// a releaser of given size and alignment.
void DeallocateExternal(CordRepExternal* p, size_t releaser_size) {
std::allocator<ExternalAllocType>().deallocate(
reinterpret_cast<ExternalAllocType*>(p),
GetExternalAllocNumObjects(releaser_size));
}
// Returns a pointer to the type erased releaser for the given CordRepExternal.
void* GetExternalReleaser(CordRepExternal* rep) {
return rep + 1;
}
} // namespace
using ::absl::cord_internal::CONCAT;
using ::absl::cord_internal::EXTERNAL;
using ::absl::cord_internal::FLAT;
using ::absl::cord_internal::SUBSTRING;
namespace cord_internal {
@ -289,6 +241,7 @@ static void UnrefInternal(CordRep* rep) {
absl::InlinedVector<CordRep*, kInlinedVectorSize> pending;
while (true) {
assert(!rep->refcount.IsImmortal());
if (rep->tag == CONCAT) {
CordRepConcat* rep_concat = rep->concat();
CordRep* right = rep_concat->right;
@ -304,11 +257,8 @@ static void UnrefInternal(CordRep* rep) {
}
} else if (rep->tag == EXTERNAL) {
CordRepExternal* rep_external = rep->external();
absl::string_view data(rep_external->base, rep->length);
void* releaser = GetExternalReleaser(rep_external);
size_t releaser_size = rep_external->releaser_invoker(releaser, data);
rep_external->~CordRepExternal();
DeallocateExternal(rep_external, releaser_size);
assert(rep_external->releaser_invoker != nullptr);
rep_external->releaser_invoker(rep_external);
rep = nullptr;
} else if (rep->tag == SUBSTRING) {
CordRepSubstring* rep_substring = rep->substring();
@ -458,18 +408,12 @@ static CordRep* NewTree(const char* data,
namespace cord_internal {
ExternalRepReleaserPair NewExternalWithUninitializedReleaser(
absl::string_view data, ExternalReleaserInvoker invoker,
size_t releaser_size) {
void InitializeCordRepExternal(absl::string_view data, CordRepExternal* rep) {
assert(!data.empty());
void* raw_rep = AllocateExternal(releaser_size);
auto* rep = new (raw_rep) CordRepExternal();
rep->length = data.size();
rep->tag = EXTERNAL;
rep->base = data.data();
rep->releaser_invoker = invoker;
return {VerifyTree(rep), GetExternalReleaser(rep)};
VerifyTree(rep);
}
} // namespace cord_internal
@ -493,57 +437,55 @@ static CordRep* NewSubstring(CordRep* child, size_t offset, size_t length) {
// --------------------------------------------------------------------
// Cord::InlineRep functions
// This will trigger LNK2005 in MSVC.
#ifndef COMPILER_MSVC
const unsigned char Cord::InlineRep::kMaxInline;
#endif // COMPILER_MSVC
constexpr unsigned char Cord::InlineRep::kMaxInline;
inline void Cord::InlineRep::set_data(const char* data, size_t n,
bool nullify_tail) {
static_assert(kMaxInline == 15, "set_data is hard-coded for a length of 15");
cord_internal::SmallMemmove(data_, data, n, nullify_tail);
data_[kMaxInline] = static_cast<char>(n);
cord_internal::SmallMemmove(data_.as_chars, data, n, nullify_tail);
set_tagged_size(static_cast<char>(n));
}
inline char* Cord::InlineRep::set_data(size_t n) {
assert(n <= kMaxInline);
memset(data_, 0, sizeof(data_));
data_[kMaxInline] = static_cast<char>(n);
return data_;
ResetToEmpty();
set_tagged_size(static_cast<char>(n));
return data_.as_chars;
}
inline CordRep* Cord::InlineRep::force_tree(size_t extra_hint) {
size_t len = data_[kMaxInline];
CordRep* result;
size_t len = tagged_size();
if (len > kMaxInline) {
memcpy(&result, data_, sizeof(result));
} else {
result = NewFlat(len + extra_hint);
result->length = len;
memcpy(result->data, data_, len);
set_tree(result);
return data_.as_tree.rep;
}
CordRep* result = NewFlat(len + extra_hint);
result->length = len;
static_assert(kMinFlatLength >= sizeof(data_.as_chars), "");
memcpy(result->data, data_.as_chars, sizeof(data_.as_chars));
set_tree(result);
return result;
}
inline void Cord::InlineRep::reduce_size(size_t n) {
size_t tag = data_[kMaxInline];
size_t tag = tagged_size();
assert(tag <= kMaxInline);
assert(tag >= n);
tag -= n;
memset(data_ + tag, 0, n);
data_[kMaxInline] = static_cast<char>(tag);
memset(data_.as_chars + tag, 0, n);
set_tagged_size(static_cast<char>(tag));
}
inline void Cord::InlineRep::remove_prefix(size_t n) {
cord_internal::SmallMemmove(data_, data_ + n, data_[kMaxInline] - n);
cord_internal::SmallMemmove(data_.as_chars, data_.as_chars + n,
tagged_size() - n);
reduce_size(n);
}
void Cord::InlineRep::AppendTree(CordRep* tree) {
if (tree == nullptr) return;
size_t len = data_[kMaxInline];
size_t len = tagged_size();
if (len == 0) {
set_tree(tree);
} else {
@ -552,8 +494,8 @@ void Cord::InlineRep::AppendTree(CordRep* tree) {
}
void Cord::InlineRep::PrependTree(CordRep* tree) {
if (tree == nullptr) return;
size_t len = data_[kMaxInline];
assert(tree != nullptr);
size_t len = tagged_size();
if (len == 0) {
set_tree(tree);
} else {
@ -609,11 +551,11 @@ void Cord::InlineRep::GetAppendRegion(char** region, size_t* size,
}
// Try to fit in the inline buffer if possible.
size_t inline_length = data_[kMaxInline];
size_t inline_length = tagged_size();
if (inline_length < kMaxInline && max_length <= kMaxInline - inline_length) {
*region = data_ + inline_length;
*region = data_.as_chars + inline_length;
*size = max_length;
data_[kMaxInline] = static_cast<char>(inline_length + max_length);
set_tagged_size(static_cast<char>(inline_length + max_length));
return;
}
@ -637,11 +579,11 @@ void Cord::InlineRep::GetAppendRegion(char** region, size_t* size) {
const size_t max_length = std::numeric_limits<size_t>::max();
// Try to fit in the inline buffer if possible.
size_t inline_length = data_[kMaxInline];
size_t inline_length = tagged_size();
if (inline_length < kMaxInline) {
*region = data_ + inline_length;
*region = data_.as_chars + inline_length;
*size = kMaxInline - inline_length;
data_[kMaxInline] = kMaxInline;
set_tagged_size(kMaxInline);
return;
}
@ -676,7 +618,7 @@ static bool RepMemoryUsageLeaf(const CordRep* rep, size_t* total_mem_usage) {
void Cord::InlineRep::AssignSlow(const Cord::InlineRep& src) {
ClearSlow();
memcpy(data_, src.data_, sizeof(data_));
data_ = src.data_;
if (is_tree()) {
Ref(tree());
}
@ -686,7 +628,7 @@ void Cord::InlineRep::ClearSlow() {
if (is_tree()) {
Unref(tree());
}
memset(data_, 0, sizeof(data_));
ResetToEmpty();
}
// --------------------------------------------------------------------
@ -724,12 +666,12 @@ Cord::Cord(T&& src) {
std::string data;
};
const absl::string_view original_data = src;
CordRepExternal* rep =
static_cast<CordRepExternal*>(absl::cord_internal::NewExternalRep(
original_data, StringReleaser{std::move(src)}));
auto* rep = static_cast<
::absl::cord_internal::CordRepExternalImpl<StringReleaser>*>(
absl::cord_internal::NewExternalRep(
original_data, StringReleaser{std::forward<T>(src)}));
// Moving src may have invalidated its data pointer, so adjust it.
rep->base =
static_cast<StringReleaser*>(GetExternalReleaser(rep))->data.data();
rep->base = rep->template get<0>().data.data();
contents_.set_tree(rep);
}
}
@ -778,7 +720,7 @@ Cord& Cord::operator=(T&& src) {
if (src.size() <= kMaxBytesToCopy) {
*this = absl::string_view(src);
} else {
*this = Cord(std::move(src));
*this = Cord(std::forward<T>(src));
}
return *this;
}
@ -790,11 +732,11 @@ template Cord& Cord::operator=(std::string&& src);
void Cord::InlineRep::AppendArray(const char* src_data, size_t src_size) {
if (src_size == 0) return; // memcpy(_, nullptr, 0) is undefined.
// Try to fit in the inline buffer if possible.
size_t inline_length = data_[kMaxInline];
size_t inline_length = tagged_size();
if (inline_length < kMaxInline && src_size <= kMaxInline - inline_length) {
// Append new data to embedded array
data_[kMaxInline] = static_cast<char>(inline_length + src_size);
memcpy(data_ + inline_length, src_data, src_size);
set_tagged_size(static_cast<char>(inline_length + src_size));
memcpy(data_.as_chars + inline_length, src_data, src_size);
return;
}
@ -817,7 +759,7 @@ void Cord::InlineRep::AppendArray(const char* src_data, size_t src_size) {
const size_t size2 = inline_length + src_size / 10;
root = NewFlat(std::max<size_t>(size1, size2));
appended = std::min(src_size, TagToLength(root->tag) - inline_length);
memcpy(root->data, data_, inline_length);
memcpy(root->data, data_.as_chars, inline_length);
memcpy(root->data + inline_length, src_data, appended);
root->length = inline_length + appended;
set_tree(root);
@ -901,7 +843,7 @@ void Cord::Append(T&& src) {
if (src.size() <= kMaxBytesToCopy) {
Append(absl::string_view(src));
} else {
Append(Cord(std::move(src)));
Append(Cord(std::forward<T>(src)));
}
}
@ -941,7 +883,7 @@ inline void Cord::Prepend(T&& src) {
if (src.size() <= kMaxBytesToCopy) {
Prepend(absl::string_view(src));
} else {
Prepend(Cord(std::move(src)));
Prepend(Cord(std::forward<T>(src)));
}
}
@ -1126,7 +1068,7 @@ Cord Cord::Subcord(size_t pos, size_t new_size) const {
} else if (new_size <= InlineRep::kMaxInline) {
Cord::ChunkIterator it = chunk_begin();
it.AdvanceBytes(pos);
char* dest = sub_cord.contents_.data_;
char* dest = sub_cord.contents_.data_.as_chars;
size_t remaining_size = new_size;
while (remaining_size > it->size()) {
cord_internal::SmallMemmove(dest, it->data(), it->size());
@ -1135,7 +1077,7 @@ Cord Cord::Subcord(size_t pos, size_t new_size) const {
++it;
}
cord_internal::SmallMemmove(dest, it->data(), remaining_size);
sub_cord.contents_.data_[InlineRep::kMaxInline] = new_size;
sub_cord.contents_.set_tagged_size(new_size);
} else {
sub_cord.contents_.set_tree(NewSubRange(tree, pos, new_size));
}
@ -1324,9 +1266,9 @@ bool ComputeCompareResult<bool>(int memcmp_res) {
// Helper routine. Locates the first flat chunk of the Cord without
// initializing the iterator.
inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const {
size_t n = data_[kMaxInline];
size_t n = tagged_size();
if (n <= kMaxInline) {
return absl::string_view(data_, n);
return absl::string_view(data_.as_chars, n);
}
CordRep* node = tree();

View file

@ -71,7 +71,6 @@
#include <type_traits>
#include "absl/base/internal/endian.h"
#include "absl/base/internal/invoke.h"
#include "absl/base/internal/per_thread_tls.h"
#include "absl/base/macros.h"
#include "absl/base/port.h"
@ -80,6 +79,7 @@
#include "absl/meta/type_traits.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/resize_uninitialized.h"
#include "absl/strings/internal/string_constant.h"
#include "absl/strings/string_view.h"
#include "absl/types/optional.h"
@ -126,9 +126,9 @@ class Cord {
absl::enable_if_t<std::is_same<T, std::string>::value, int>;
public:
// Cord::Cord() Constructors
// Cord::Cord() Constructors.
// Creates an empty Cord
// Creates an empty Cord.
constexpr Cord() noexcept;
// Creates a Cord from an existing Cord. Cord is copyable and efficiently
@ -154,7 +154,7 @@ class Cord {
// Cord::~Cord()
//
// Destructs the Cord
// Destructs the Cord.
~Cord() {
if (contents_.is_tree()) DestroyCordSlow();
}
@ -173,10 +173,6 @@ class Cord {
//
// * be move constructible
// * support `void operator()(absl::string_view) const` or `void operator()`
// * not have alignment requirement greater than what is guaranteed by
// `::operator new`. This alignment is dictated by
// `alignof(std::max_align_t)` (pre-C++17 code) or
// `__STDCPP_DEFAULT_NEW_ALIGNMENT__` (C++17 code).
//
// Example:
//
@ -592,7 +588,7 @@ class Cord {
// Cord::operator[]
//
// Get the "i"th character of the Cord and returns it, provided that
// Gets the "i"th character of the Cord and returns it, provided that
// 0 <= i < Cord.size().
//
// NOTE: This routine is reasonably efficient. It is roughly
@ -604,8 +600,8 @@ class Cord {
// Cord::TryFlat()
//
// If this cord's representation is a single flat array, return a
// string_view referencing that array. Otherwise return nullopt.
// If this cord's representation is a single flat array, returns a
// string_view referencing that array. Otherwise returns nullopt.
absl::optional<absl::string_view> TryFlat() const;
// Cord::Flatten()
@ -615,7 +611,7 @@ class Cord {
// If the cord was already flat, the contents are not modified.
absl::string_view Flatten();
// Support absl::Cord as a sink object for absl::Format().
// Supports absl::Cord as a sink object for absl::Format().
friend void AbslFormatFlush(absl::Cord* cord, absl::string_view part) {
cord->Append(part);
}
@ -629,12 +625,20 @@ class Cord {
return c.HashFragmented(std::move(hash_state));
}
// Create a Cord with the contents of StringConstant<T>::value.
// No allocations will be done and no data will be copied.
// This is an INTERNAL API and subject to change or removal. This API can only
// be used by spelling absl::strings_internal::MakeStringConstant, which is
// also an internal API.
template <typename T>
explicit constexpr Cord(strings_internal::StringConstant<T>);
private:
friend class CordTestPeer;
friend bool operator==(const Cord& lhs, const Cord& rhs);
friend bool operator==(const Cord& lhs, absl::string_view rhs);
// Call the provided function once for each cord chunk, in order. Unlike
// Calls the provided function once for each cord chunk, in order. Unlike
// Chunks(), this API will not allocate memory.
void ForEachChunk(absl::FunctionRef<void(absl::string_view)>) const;
@ -649,19 +653,19 @@ class Cord {
// InlineRep holds either a tree pointer, or an array of kMaxInline bytes.
class InlineRep {
public:
static constexpr unsigned char kMaxInline = 15;
static constexpr unsigned char kMaxInline = cord_internal::kMaxInline;
static_assert(kMaxInline >= sizeof(absl::cord_internal::CordRep*), "");
// Tag byte & kMaxInline means we are storing a pointer.
static constexpr unsigned char kTreeFlag = 1 << 4;
// Tag byte & kProfiledFlag means we are profiling the Cord.
static constexpr unsigned char kProfiledFlag = 1 << 5;
static constexpr unsigned char kTreeFlag = cord_internal::kTreeFlag;
static constexpr unsigned char kProfiledFlag = cord_internal::kProfiledFlag;
constexpr InlineRep() : data_{} {}
constexpr InlineRep() : data_() {}
InlineRep(const InlineRep& src);
InlineRep(InlineRep&& src);
InlineRep& operator=(const InlineRep& src);
InlineRep& operator=(InlineRep&& src) noexcept;
explicit constexpr InlineRep(cord_internal::InlineData data);
void Swap(InlineRep* rhs);
bool empty() const;
size_t size() const;
@ -678,7 +682,7 @@ class Cord {
void replace_tree(absl::cord_internal::CordRep* rep);
// Returns non-null iff was holding a pointer
absl::cord_internal::CordRep* clear();
// Convert to pointer if necessary
// Converts to pointer if necessary.
absl::cord_internal::CordRep* force_tree(size_t extra_hint);
void reduce_size(size_t n); // REQUIRES: holding data
void remove_prefix(size_t n); // REQUIRES: holding data
@ -689,16 +693,16 @@ class Cord {
void GetAppendRegion(char** region, size_t* size, size_t max_length);
void GetAppendRegion(char** region, size_t* size);
bool IsSame(const InlineRep& other) const {
return memcmp(data_, other.data_, sizeof(data_)) == 0;
return memcmp(&data_, &other.data_, sizeof(data_)) == 0;
}
int BitwiseCompare(const InlineRep& other) const {
uint64_t x, y;
// Use memcpy to avoid anti-aliasing issues.
memcpy(&x, data_, sizeof(x));
memcpy(&y, other.data_, sizeof(y));
// Use memcpy to avoid aliasing issues.
memcpy(&x, &data_, sizeof(x));
memcpy(&y, &other.data_, sizeof(y));
if (x == y) {
memcpy(&x, data_ + 8, sizeof(x));
memcpy(&y, other.data_ + 8, sizeof(y));
memcpy(&x, reinterpret_cast<const char*>(&data_) + 8, sizeof(x));
memcpy(&y, reinterpret_cast<const char*>(&other.data_) + 8, sizeof(y));
if (x == y) return 0;
}
return absl::big_endian::FromHost64(x) < absl::big_endian::FromHost64(y)
@ -711,16 +715,16 @@ class Cord {
// to 15 bytes does not cause a memory allocation.
absl::strings_internal::STLStringResizeUninitialized(dst,
sizeof(data_) - 1);
memcpy(&(*dst)[0], data_, sizeof(data_) - 1);
memcpy(&(*dst)[0], &data_, sizeof(data_) - 1);
// erase is faster than resize because the logic for memory allocation is
// not needed.
dst->erase(data_[kMaxInline]);
dst->erase(tagged_size());
}
// Copies the inline contents into `dst`. Assumes the cord is not empty.
void CopyToArray(char* dst) const;
bool is_tree() const { return data_[kMaxInline] > kMaxInline; }
bool is_tree() const { return tagged_size() > kMaxInline; }
private:
friend class Cord;
@ -729,21 +733,29 @@ class Cord {
// Unrefs the tree, stops profiling, and zeroes the contents
void ClearSlow();
// If the data has length <= kMaxInline, we store it in data_[0..len-1],
// and store the length in data_[kMaxInline]. Else we store it in a tree
// and store a pointer to that tree in data_[0..sizeof(CordRep*)-1].
alignas(absl::cord_internal::CordRep*) char data_[kMaxInline + 1];
void ResetToEmpty() { data_ = {}; }
// This uses reinterpret_cast instead of the union to avoid accessing the
// inactive union element. The tagged size is not a common prefix.
void set_tagged_size(char new_tag) {
reinterpret_cast<char*>(&data_)[kMaxInline] = new_tag;
}
char tagged_size() const {
return reinterpret_cast<const char*>(&data_)[kMaxInline];
}
cord_internal::InlineData data_;
};
InlineRep contents_;
// Helper for MemoryUsage()
// Helper for MemoryUsage().
static size_t MemoryUsageAux(const absl::cord_internal::CordRep* rep);
// Helper for GetFlat() and TryFlat()
// Helper for GetFlat() and TryFlat().
static bool GetFlatAux(absl::cord_internal::CordRep* rep,
absl::string_view* fragment);
// Helper for ForEachChunk()
// Helper for ForEachChunk().
static void ForEachChunkAux(
absl::cord_internal::CordRep* rep,
absl::FunctionRef<void(absl::string_view)> callback);
@ -772,11 +784,11 @@ class Cord {
absl::cord_internal::CordRep* TakeRep() const&;
absl::cord_internal::CordRep* TakeRep() &&;
// Helper for Append()
// Helper for Append().
template <typename C>
void AppendImpl(C&& src);
// Helper for AbslHashValue()
// Helper for AbslHashValue().
template <typename H>
H HashFragmented(H hash_state) const {
typename H::AbslInternalPiecewiseCombiner combiner;
@ -842,47 +854,15 @@ inline void SmallMemmove(char* dst, const char* src, size_t n,
}
}
struct ExternalRepReleaserPair {
CordRep* rep;
void* releaser_address;
};
// Allocates a new external `CordRep` and returns a pointer to it and a pointer
// to `releaser_size` bytes where the desired releaser can be constructed.
// Does non-template-specific `CordRepExternal` initialization.
// Expects `data` to be non-empty.
ExternalRepReleaserPair NewExternalWithUninitializedReleaser(
absl::string_view data, ExternalReleaserInvoker invoker,
size_t releaser_size);
struct Rank1 {};
struct Rank0 : Rank1 {};
template <typename Releaser, typename = ::absl::base_internal::InvokeT<
Releaser, absl::string_view>>
void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view data) {
::absl::base_internal::Invoke(std::forward<Releaser>(releaser), data);
}
template <typename Releaser,
typename = ::absl::base_internal::InvokeT<Releaser>>
void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view) {
::absl::base_internal::Invoke(std::forward<Releaser>(releaser));
}
void InitializeCordRepExternal(absl::string_view data, CordRepExternal* rep);
// Creates a new `CordRep` that owns `data` and `releaser` and returns a pointer
// to it, or `nullptr` if `data` was empty.
template <typename Releaser>
// NOLINTNEXTLINE - suppress clang-tidy raw pointer return.
CordRep* NewExternalRep(absl::string_view data, Releaser&& releaser) {
static_assert(
#if defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__)
alignof(Releaser) <= __STDCPP_DEFAULT_NEW_ALIGNMENT__,
#else
alignof(Releaser) <= alignof(max_align_t),
#endif
"Releasers with alignment requirement greater than what is returned by "
"default `::operator new()` are not supported.");
using ReleaserType = absl::decay_t<Releaser>;
if (data.empty()) {
// Never create empty external nodes.
@ -891,18 +871,10 @@ CordRep* NewExternalRep(absl::string_view data, Releaser&& releaser) {
return nullptr;
}
auto releaser_invoker = [](void* type_erased_releaser, absl::string_view d) {
auto* my_releaser = static_cast<ReleaserType*>(type_erased_releaser);
InvokeReleaser(Rank0{}, std::move(*my_releaser), d);
my_releaser->~ReleaserType();
return sizeof(Releaser);
};
ExternalRepReleaserPair external = NewExternalWithUninitializedReleaser(
data, releaser_invoker, sizeof(releaser));
::new (external.releaser_address)
ReleaserType(std::forward<Releaser>(releaser));
return external.rep;
CordRepExternal* rep = new CordRepExternalImpl<ReleaserType>(
std::forward<Releaser>(releaser), 0);
InitializeCordRepExternal(data, rep);
return rep;
}
// Overload for function reference types that dispatches using a function
@ -923,13 +895,16 @@ Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser) {
return cord;
}
constexpr Cord::InlineRep::InlineRep(cord_internal::InlineData data)
: data_(data) {}
inline Cord::InlineRep::InlineRep(const Cord::InlineRep& src) {
cord_internal::SmallMemmove(data_, src.data_, sizeof(data_));
data_ = src.data_;
}
inline Cord::InlineRep::InlineRep(Cord::InlineRep&& src) {
memcpy(data_, src.data_, sizeof(data_));
memset(src.data_, 0, sizeof(data_));
data_ = src.data_;
src.ResetToEmpty();
}
inline Cord::InlineRep& Cord::InlineRep::operator=(const Cord::InlineRep& src) {
@ -937,7 +912,7 @@ inline Cord::InlineRep& Cord::InlineRep::operator=(const Cord::InlineRep& src) {
return *this;
}
if (!is_tree() && !src.is_tree()) {
cord_internal::SmallMemmove(data_, src.data_, sizeof(data_));
data_ = src.data_;
return *this;
}
AssignSlow(src);
@ -949,8 +924,8 @@ inline Cord::InlineRep& Cord::InlineRep::operator=(
if (is_tree()) {
ClearSlow();
}
memcpy(data_, src.data_, sizeof(data_));
memset(src.data_, 0, sizeof(data_));
data_ = src.data_;
src.ResetToEmpty();
return *this;
}
@ -959,43 +934,39 @@ inline void Cord::InlineRep::Swap(Cord::InlineRep* rhs) {
return;
}
Cord::InlineRep tmp;
cord_internal::SmallMemmove(tmp.data_, data_, sizeof(data_));
cord_internal::SmallMemmove(data_, rhs->data_, sizeof(data_));
cord_internal::SmallMemmove(rhs->data_, tmp.data_, sizeof(data_));
std::swap(data_, rhs->data_);
}
inline const char* Cord::InlineRep::data() const {
return is_tree() ? nullptr : data_;
return is_tree() ? nullptr : data_.as_chars;
}
inline absl::cord_internal::CordRep* Cord::InlineRep::tree() const {
if (is_tree()) {
absl::cord_internal::CordRep* rep;
memcpy(&rep, data_, sizeof(rep));
return rep;
return data_.as_tree.rep;
} else {
return nullptr;
}
}
inline bool Cord::InlineRep::empty() const { return data_[kMaxInline] == 0; }
inline bool Cord::InlineRep::empty() const { return tagged_size() == 0; }
inline size_t Cord::InlineRep::size() const {
const char tag = data_[kMaxInline];
const char tag = tagged_size();
if (tag <= kMaxInline) return tag;
return static_cast<size_t>(tree()->length);
}
inline void Cord::InlineRep::set_tree(absl::cord_internal::CordRep* rep) {
if (rep == nullptr) {
memset(data_, 0, sizeof(data_));
ResetToEmpty();
} else {
bool was_tree = is_tree();
memcpy(data_, &rep, sizeof(rep));
memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1);
data_.as_tree = {rep, {}, tagged_size()};
if (!was_tree) {
data_[kMaxInline] = kTreeFlag;
// If we were not a tree already, set the tag.
// Otherwise, leave it alone because it might have the profile bit on.
set_tagged_size(kTreeFlag);
}
}
}
@ -1006,29 +977,36 @@ inline void Cord::InlineRep::replace_tree(absl::cord_internal::CordRep* rep) {
set_tree(rep);
return;
}
memcpy(data_, &rep, sizeof(rep));
memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1);
data_.as_tree = {rep, {}, tagged_size()};
}
inline absl::cord_internal::CordRep* Cord::InlineRep::clear() {
const char tag = data_[kMaxInline];
absl::cord_internal::CordRep* result = nullptr;
if (tag > kMaxInline) {
memcpy(&result, data_, sizeof(result));
}
memset(data_, 0, sizeof(data_)); // Clear the cord
absl::cord_internal::CordRep* result = tree();
ResetToEmpty();
return result;
}
inline void Cord::InlineRep::CopyToArray(char* dst) const {
assert(!is_tree());
size_t n = data_[kMaxInline];
size_t n = tagged_size();
assert(n != 0);
cord_internal::SmallMemmove(dst, data_, n);
cord_internal::SmallMemmove(dst, data_.as_chars, n);
}
constexpr inline Cord::Cord() noexcept {}
template <typename T>
constexpr Cord::Cord(strings_internal::StringConstant<T>)
: contents_(strings_internal::StringConstant<T>::value.size() <=
cord_internal::kMaxInline
? cord_internal::InlineData(
strings_internal::StringConstant<T>::value)
: cord_internal::InlineData(cord_internal::AsTree{
&cord_internal::ConstInitExternalStorage<
strings_internal::StringConstant<T>>::value,
{},
cord_internal::kTreeFlag})) {}
inline Cord& Cord::operator=(const Cord& x) {
contents_ = x.contents_;
return *this;

View file

@ -1,3 +1,17 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/cord.h"
#include <algorithm>
@ -167,6 +181,8 @@ class CordTestPeer {
const Cord& c, absl::FunctionRef<void(absl::string_view)> callback) {
c.ForEachChunk(callback);
}
static bool IsTree(const Cord& c) { return c.contents_.is_tree(); }
};
ABSL_NAMESPACE_END
@ -1613,3 +1629,83 @@ TEST(CordDeathTest, Hardening) {
EXPECT_DEATH_IF_SUPPORTED(static_cast<void>(cord.chunk_end()->empty()), "");
EXPECT_DEATH_IF_SUPPORTED(++cord.chunk_end(), "");
}
class AfterExitCordTester {
public:
bool Set(absl::Cord* cord, absl::string_view expected) {
cord_ = cord;
expected_ = expected;
return true;
}
~AfterExitCordTester() {
EXPECT_EQ(*cord_, expected_);
}
private:
absl::Cord* cord_;
absl::string_view expected_;
};
template <typename Str>
void TestConstinitConstructor(Str) {
const auto expected = Str::value;
// Defined before `cord` to be destroyed after it.
static AfterExitCordTester exit_tester; // NOLINT
ABSL_CONST_INIT static absl::Cord cord(Str{}); // NOLINT
static bool init_exit_tester = exit_tester.Set(&cord, expected);
(void)init_exit_tester;
EXPECT_EQ(cord, expected);
// Copy the object and test the copy, and the original.
{
absl::Cord copy = cord;
EXPECT_EQ(copy, expected);
}
// The original still works
EXPECT_EQ(cord, expected);
// Try making adding more structure to the tree.
{
absl::Cord copy = cord;
std::string expected_copy(expected);
for (int i = 0; i < 10; ++i) {
copy.Append(cord);
absl::StrAppend(&expected_copy, expected);
EXPECT_EQ(copy, expected_copy);
}
}
// Make sure we are using the right branch during constant evaluation.
EXPECT_EQ(absl::CordTestPeer::IsTree(cord), cord.size() >= 16);
for (int i = 0; i < 10; ++i) {
// Make a few more Cords from the same global rep.
// This tests what happens when the refcount for it gets below 1.
EXPECT_EQ(expected, absl::Cord(Str{}));
}
}
constexpr int SimpleStrlen(const char* p) {
return *p ? 1 + SimpleStrlen(p + 1) : 0;
}
struct ShortView {
constexpr absl::string_view operator()() const {
return absl::string_view("SSO string", SimpleStrlen("SSO string"));
}
};
struct LongView {
constexpr absl::string_view operator()() const {
return absl::string_view("String that does not fit SSO.",
SimpleStrlen("String that does not fit SSO."));
}
};
TEST(Cord, ConstinitConstructor) {
TestConstinitConstructor(
absl::strings_internal::MakeStringConstant(ShortView{}));
TestConstinitConstructor(
absl::strings_internal::MakeStringConstant(LongView{}));
}

View file

@ -137,7 +137,7 @@ bool CUnescapeInternal(absl::string_view source, bool leave_nulls_escaped,
// Copy the escape sequence for the null character
const ptrdiff_t octal_size = p + 1 - octal_start;
*d++ = '\\';
memcpy(d, octal_start, octal_size);
memmove(d, octal_start, octal_size);
d += octal_size;
break;
}
@ -170,7 +170,7 @@ bool CUnescapeInternal(absl::string_view source, bool leave_nulls_escaped,
// Copy the escape sequence for the null character
const ptrdiff_t hex_size = p + 1 - hex_start;
*d++ = '\\';
memcpy(d, hex_start, hex_size);
memmove(d, hex_start, hex_size);
d += hex_size;
break;
}
@ -203,7 +203,7 @@ bool CUnescapeInternal(absl::string_view source, bool leave_nulls_escaped,
if ((rune == 0) && leave_nulls_escaped) {
// Copy the escape sequence for the null character
*d++ = '\\';
memcpy(d, hex_start, 5); // u0000
memmove(d, hex_start, 5); // u0000
d += 5;
break;
}
@ -251,7 +251,7 @@ bool CUnescapeInternal(absl::string_view source, bool leave_nulls_escaped,
if ((rune == 0) && leave_nulls_escaped) {
// Copy the escape sequence for the null character
*d++ = '\\';
memcpy(d, hex_start, 9); // U00000000
memmove(d, hex_start, 9); // U00000000
d += 9;
break;
}

View file

@ -69,6 +69,61 @@ TEST(BigUnsigned, ShiftLeft) {
// And we should have fully rotated all bits off by now:
EXPECT_EQ(a, BigUnsigned<84>(0u));
}
{
// Bit shifting large and small numbers by large and small offsets.
// Intended to exercise bounds-checking corner on ShiftLeft() (directly
// and under asan).
// 2**(32*84)-1
const BigUnsigned<84> all_bits_one(
"1474444211396924248063325089479706787923460402125687709454567433186613"
"6228083464060749874845919674257665016359189106695900028098437021384227"
"3285029708032466536084583113729486015826557532750465299832071590813090"
"2011853039837649252477307070509704043541368002938784757296893793903797"
"8180292336310543540677175225040919704702800559606097685920595947397024"
"8303316808753252115729411497720357971050627997031988036134171378490368"
"6008000778741115399296162550786288457245180872759047016734959330367829"
"5235612397427686310674725251378116268607113017720538636924549612987647"
"5767411074510311386444547332882472126067840027882117834454260409440463"
"9345147252664893456053258463203120637089916304618696601333953616715125"
"2115882482473279040772264257431663818610405673876655957323083702713344"
"4201105427930770976052393421467136557055");
const BigUnsigned<84> zero(0u);
const BigUnsigned<84> one(1u);
// in bounds shifts
for (int i = 1; i < 84*32; ++i) {
// shifting all_bits_one to the left should result in a smaller number,
// since the high bits rotate off and the low bits are replaced with
// zeroes.
BigUnsigned<84> big_shifted = all_bits_one;
big_shifted.ShiftLeft(i);
EXPECT_GT(all_bits_one, big_shifted);
// Shifting 1 to the left should instead result in a larger number.
BigUnsigned<84> small_shifted = one;
small_shifted.ShiftLeft(i);
EXPECT_LT(one, small_shifted);
}
// Shifting by zero or a negative number has no effect
for (int no_op_shift : {0, -1, -84 * 32, std::numeric_limits<int>::min()}) {
BigUnsigned<84> big_shifted = all_bits_one;
big_shifted.ShiftLeft(no_op_shift);
EXPECT_EQ(all_bits_one, big_shifted);
BigUnsigned<84> small_shifted = one;
big_shifted.ShiftLeft(no_op_shift);
EXPECT_EQ(one, small_shifted);
}
// Shifting by an amount greater than the number of bits should result in
// zero.
for (int out_of_bounds_shift :
{84 * 32, 84 * 32 + 1, std::numeric_limits<int>::max()}) {
BigUnsigned<84> big_shifted = all_bits_one;
big_shifted.ShiftLeft(out_of_bounds_shift);
EXPECT_EQ(zero, big_shifted);
BigUnsigned<84> small_shifted = one;
small_shifted.ShiftLeft(out_of_bounds_shift);
EXPECT_EQ(zero, small_shifted);
}
}
}
TEST(BigUnsigned, MultiplyByUint32) {

View file

@ -246,8 +246,8 @@ constexpr int DigitMagnitude<16>() {
// ConsumeDigits does not protect against overflow on *out; max_digits must
// be chosen with respect to type T to avoid the possibility of overflow.
template <int base, typename T>
std::size_t ConsumeDigits(const char* begin, const char* end, int max_digits,
T* out, bool* dropped_nonzero_digit) {
int ConsumeDigits(const char* begin, const char* end, int max_digits, T* out,
bool* dropped_nonzero_digit) {
if (base == 10) {
assert(max_digits <= std::numeric_limits<T>::digits10);
} else if (base == 16) {
@ -282,7 +282,7 @@ std::size_t ConsumeDigits(const char* begin, const char* end, int max_digits,
*dropped_nonzero_digit = true;
}
*out = accumulator;
return begin - original_begin;
return static_cast<int>(begin - original_begin);
}
// Returns true if `v` is one of the chars allowed inside parentheses following
@ -372,7 +372,7 @@ strings_internal::ParsedFloat ParseFloat(const char* begin, const char* end,
int exponent_adjustment = 0;
bool mantissa_is_inexact = false;
std::size_t pre_decimal_digits = ConsumeDigits<base>(
int pre_decimal_digits = ConsumeDigits<base>(
begin, end, MantissaDigitsMax<base>(), &mantissa, &mantissa_is_inexact);
begin += pre_decimal_digits;
int digits_left;
@ -398,14 +398,14 @@ strings_internal::ParsedFloat ParseFloat(const char* begin, const char* end,
while (begin < end && *begin == '0') {
++begin;
}
std::size_t zeros_skipped = begin - begin_zeros;
int zeros_skipped = static_cast<int>(begin - begin_zeros);
if (zeros_skipped >= DigitLimit<base>()) {
// refuse to parse pathological inputs
return result;
}
exponent_adjustment -= static_cast<int>(zeros_skipped);
}
std::size_t post_decimal_digits = ConsumeDigits<base>(
int post_decimal_digits = ConsumeDigits<base>(
begin, end, digits_left, &mantissa, &mantissa_is_inexact);
begin += post_decimal_digits;

View file

@ -21,6 +21,8 @@
#include <cstdint>
#include <type_traits>
#include "absl/base/internal/invoke.h"
#include "absl/container/internal/compressed_tuple.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/string_view.h"
@ -31,14 +33,17 @@ namespace cord_internal {
// Wraps std::atomic for reference counting.
class Refcount {
public:
Refcount() : count_{1} {}
~Refcount() {}
constexpr Refcount() : count_{kRefIncrement} {}
struct Immortal {};
explicit constexpr Refcount(Immortal) : count_(kImmortalTag) {}
// Increments the reference count by 1. Imposes no memory ordering.
inline void Increment() { count_.fetch_add(1, std::memory_order_relaxed); }
// Increments the reference count. Imposes no memory ordering.
inline void Increment() {
count_.fetch_add(kRefIncrement, std::memory_order_relaxed);
}
// Asserts that the current refcount is greater than 0. If the refcount is
// greater than 1, decrements the reference count by 1.
// greater than 1, decrements the reference count.
//
// Returns false if there are no references outstanding; true otherwise.
// Inserts barriers to ensure that state written before this method returns
@ -46,19 +51,24 @@ class Refcount {
// false.
inline bool Decrement() {
int32_t refcount = count_.load(std::memory_order_acquire);
assert(refcount > 0);
return refcount != 1 && count_.fetch_sub(1, std::memory_order_acq_rel) != 1;
assert(refcount > 0 || refcount & kImmortalTag);
return refcount != kRefIncrement &&
count_.fetch_sub(kRefIncrement, std::memory_order_acq_rel) !=
kRefIncrement;
}
// Same as Decrement but expect that refcount is greater than 1.
inline bool DecrementExpectHighRefcount() {
int32_t refcount = count_.fetch_sub(1, std::memory_order_acq_rel);
assert(refcount > 0);
return refcount != 1;
int32_t refcount =
count_.fetch_sub(kRefIncrement, std::memory_order_acq_rel);
assert(refcount > 0 || refcount & kImmortalTag);
return refcount != kRefIncrement;
}
// Returns the current reference count using acquire semantics.
inline int32_t Get() const { return count_.load(std::memory_order_acquire); }
inline int32_t Get() const {
return count_.load(std::memory_order_acquire) >> kImmortalShift;
}
// Returns whether the atomic integer is 1.
// If the reference count is used in the conventional way, a
@ -68,9 +78,27 @@ class Refcount {
// performs the memory barrier needed for the owning thread
// to act on the object, knowing that it has exclusive access to the
// object.
inline bool IsOne() { return count_.load(std::memory_order_acquire) == 1; }
inline bool IsOne() {
return count_.load(std::memory_order_acquire) == kRefIncrement;
}
bool IsImmortal() const {
return (count_.load(std::memory_order_relaxed) & kImmortalTag) != 0;
}
private:
// We reserve the bottom bit to tag a reference count as immortal.
// By making it `1` we ensure that we never reach `0` when adding/subtracting
// `2`, thus it never looks as if it should be destroyed.
// These are used for the StringConstant constructor where we do not increase
// the refcount at construction time (due to constinit requirements) but we
// will still decrease it at destruction time to avoid branching on Unref.
enum {
kImmortalShift = 1,
kRefIncrement = 1 << kImmortalShift,
kImmortalTag = kRefIncrement - 1
};
std::atomic<int32_t> count_;
};
@ -83,7 +111,22 @@ struct CordRepConcat;
struct CordRepSubstring;
struct CordRepExternal;
// Various representations that we allow
enum CordRepKind {
CONCAT = 0,
EXTERNAL = 1,
SUBSTRING = 2,
// We have different tags for different sized flat arrays,
// starting with FLAT
FLAT = 3,
};
struct CordRep {
CordRep() = default;
constexpr CordRep(Refcount::Immortal immortal, size_t l)
: length(l), refcount(immortal), tag(EXTERNAL), data{} {}
// The following three fields have to be less than 32 bytes since
// that is the smallest supported flat node size.
size_t length;
@ -114,35 +157,112 @@ struct CordRepSubstring : public CordRep {
CordRep* child;
};
// TODO(strel): replace the following logic (and related functions in cord.cc)
// with container_internal::Layout.
// Alignment requirement for CordRepExternal so that the type erased releaser
// will be stored at a suitably aligned address.
constexpr size_t ExternalRepAlignment() {
#if defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__)
return __STDCPP_DEFAULT_NEW_ALIGNMENT__;
#else
return alignof(max_align_t);
#endif
}
// Type for function pointer that will invoke and destroy the type-erased
// releaser function object. Accepts a pointer to the releaser and the
// `string_view` that were passed in to `NewExternalRep` below. The return value
// is the size of the `Releaser` type.
using ExternalReleaserInvoker = size_t (*)(void*, absl::string_view);
// Type for function pointer that will invoke the releaser function and also
// delete the `CordRepExternalImpl` corresponding to the passed in
// `CordRepExternal`.
using ExternalReleaserInvoker = void (*)(CordRepExternal*);
// External CordReps are allocated together with a type erased releaser. The
// releaser is stored in the memory directly following the CordRepExternal.
struct alignas(ExternalRepAlignment()) CordRepExternal : public CordRep {
struct CordRepExternal : public CordRep {
CordRepExternal() = default;
explicit constexpr CordRepExternal(absl::string_view str)
: CordRep(Refcount::Immortal{}, str.size()),
base(str.data()),
releaser_invoker(nullptr) {}
const char* base;
// Pointer to function that knows how to call and destroy the releaser.
ExternalReleaserInvoker releaser_invoker;
};
// TODO(strel): look into removing, it doesn't seem like anything relies on this
static_assert(sizeof(CordRepConcat) == sizeof(CordRepSubstring), "");
struct Rank1 {};
struct Rank0 : Rank1 {};
template <typename Releaser, typename = ::absl::base_internal::invoke_result_t<
Releaser, absl::string_view>>
void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view data) {
::absl::base_internal::invoke(std::forward<Releaser>(releaser), data);
}
template <typename Releaser,
typename = ::absl::base_internal::invoke_result_t<Releaser>>
void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view) {
::absl::base_internal::invoke(std::forward<Releaser>(releaser));
}
// We use CompressedTuple so that we can benefit from EBCO.
template <typename Releaser>
struct CordRepExternalImpl
: public CordRepExternal,
public ::absl::container_internal::CompressedTuple<Releaser> {
// The extra int arg is so that we can avoid interfering with copy/move
// constructors while still benefitting from perfect forwarding.
template <typename T>
CordRepExternalImpl(T&& releaser, int)
: CordRepExternalImpl::CompressedTuple(std::forward<T>(releaser)) {
this->releaser_invoker = &Release;
}
~CordRepExternalImpl() {
InvokeReleaser(Rank0{}, std::move(this->template get<0>()),
absl::string_view(base, length));
}
static void Release(CordRepExternal* rep) {
delete static_cast<CordRepExternalImpl*>(rep);
}
};
template <typename Str>
struct ConstInitExternalStorage {
ABSL_CONST_INIT static CordRepExternal value;
};
template <typename Str>
CordRepExternal ConstInitExternalStorage<Str>::value(Str::value);
enum {
kMaxInline = 15,
// Tag byte & kMaxInline means we are storing a pointer.
kTreeFlag = 1 << 4,
// Tag byte & kProfiledFlag means we are profiling the Cord.
kProfiledFlag = 1 << 5
};
// If the data has length <= kMaxInline, we store it in `as_chars`, and
// store the size in `tagged_size`.
// Else we store it in a tree and store a pointer to that tree in
// `as_tree.rep` and store a tag in `tagged_size`.
struct AsTree {
absl::cord_internal::CordRep* rep;
char padding[kMaxInline + 1 - sizeof(absl::cord_internal::CordRep*) - 1];
char tagged_size;
};
constexpr char GetOrNull(absl::string_view data, size_t pos) {
return pos < data.size() ? data[pos] : '\0';
}
union InlineData {
constexpr InlineData() : as_chars{} {}
explicit constexpr InlineData(AsTree tree) : as_tree(tree) {}
explicit constexpr InlineData(absl::string_view chars)
: as_chars{GetOrNull(chars, 0), GetOrNull(chars, 1),
GetOrNull(chars, 2), GetOrNull(chars, 3),
GetOrNull(chars, 4), GetOrNull(chars, 5),
GetOrNull(chars, 6), GetOrNull(chars, 7),
GetOrNull(chars, 8), GetOrNull(chars, 9),
GetOrNull(chars, 10), GetOrNull(chars, 11),
GetOrNull(chars, 12), GetOrNull(chars, 13),
GetOrNull(chars, 14), static_cast<char>(chars.size())} {}
AsTree as_tree;
char as_chars[kMaxInline + 1];
};
static_assert(sizeof(InlineData) == kMaxInline + 1, "");
static_assert(sizeof(AsTree) == sizeof(InlineData), "");
static_assert(offsetof(AsTree, tagged_size) == kMaxInline, "");
} // namespace cord_internal
ABSL_NAMESPACE_END

View file

@ -1,3 +1,17 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// POSIX spec:
// http://pubs.opengroup.org/onlinepubs/009695399/functions/fprintf.html

View file

@ -1,3 +1,17 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_ARG_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_ARG_H_
@ -25,10 +39,12 @@ class Cord;
class FormatCountCapture;
class FormatSink;
namespace str_format_internal {
template <absl::FormatConversionCharSet C>
struct FormatConvertResult;
class FormatConversionSpec;
namespace str_format_internal {
template <typename T, typename = void>
struct HasUserDefinedConvert : std::false_type {};
@ -39,6 +55,22 @@ struct HasUserDefinedConvert<T, void_t<decltype(AbslFormatConvert(
std::declval<FormatSink*>()))>>
: std::true_type {};
void AbslFormatConvert(); // Stops the lexical name lookup
template <typename T>
auto FormatConvertImpl(const T& v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink)
-> decltype(AbslFormatConvert(v,
std::declval<const FormatConversionSpec&>(),
std::declval<FormatSink*>())) {
using FormatConversionSpecT =
absl::enable_if_t<sizeof(const T& (*)()) != 0, FormatConversionSpec>;
using FormatSinkT =
absl::enable_if_t<sizeof(const T& (*)()) != 0, FormatSink>;
auto fcs = conv.Wrap<FormatConversionSpecT>();
auto fs = sink->Wrap<FormatSinkT>();
return AbslFormatConvert(v, fcs, &fs);
}
template <typename T>
class StreamedWrapper;
@ -46,6 +78,13 @@ class StreamedWrapper;
// then convert it, appending to `sink` and return `true`.
// Otherwise fail and return `false`.
// AbslFormatConvert(v, conv, sink) is intended to be found by ADL on 'v'
// as an extension mechanism. These FormatConvertImpl functions are the default
// implementations.
// The ADL search is augmented via the 'Sink*' parameter, which also
// serves as a disambiguator to reject possible unintended 'AbslFormatConvert'
// functions in the namespaces associated with 'v'.
// Raw pointers.
struct VoidPtr {
VoidPtr() = default;
@ -61,6 +100,11 @@ struct ArgConvertResult {
bool value;
};
template <FormatConversionCharSet C>
constexpr FormatConversionCharSet ExtractCharSet(FormatConvertResult<C>) {
return C;
}
template <FormatConversionCharSet C>
constexpr FormatConversionCharSet ExtractCharSet(ArgConvertResult<C>) {
return C;

View file

@ -6,6 +6,12 @@
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/str_format/arg.h"
#include <ostream>
@ -23,8 +29,17 @@ class FormatArgImplTest : public ::testing::Test {
enum Color { kRed, kGreen, kBlue };
static const char *hi() { return "hi"; }
struct X {};
X x_;
};
inline FormatConvertResult<FormatConversionCharSet{}> AbslFormatConvert(
const FormatArgImplTest::X &, const FormatConversionSpec &, FormatSink *) {
return {false};
}
TEST_F(FormatArgImplTest, ToInt) {
int out = 0;
EXPECT_TRUE(FormatArgImplFriend::ToInt(FormatArgImpl(1), &out));
@ -59,6 +74,7 @@ TEST_F(FormatArgImplTest, ToInt) {
FormatArgImpl(static_cast<int *>(nullptr)), &out));
EXPECT_FALSE(FormatArgImplFriend::ToInt(FormatArgImpl(hi()), &out));
EXPECT_FALSE(FormatArgImplFriend::ToInt(FormatArgImpl("hi"), &out));
EXPECT_FALSE(FormatArgImplFriend::ToInt(FormatArgImpl(x_), &out));
EXPECT_TRUE(FormatArgImplFriend::ToInt(FormatArgImpl(kBlue), &out));
EXPECT_EQ(2, out);
}

View file

@ -1,3 +1,17 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/str_format/bind.h"
#include <cerrno>
@ -221,7 +235,7 @@ int FprintF(std::FILE* output, const UntypedFormatSpecImpl format,
errno = sink.error();
return -1;
}
if (sink.count() > std::numeric_limits<int>::max()) {
if (sink.count() > static_cast<size_t>(std::numeric_limits<int>::max())) {
errno = EFBIG;
return -1;
}

View file

@ -1,3 +1,17 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_BIND_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_BIND_H_
@ -119,10 +133,11 @@ class FormatSpecTemplate
#endif // ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
template <FormatConversionCharSet... C,
typename = typename std::enable_if<
AllOf(sizeof...(C) == sizeof...(Args), Contains(Args,
C)...)>::type>
template <
FormatConversionCharSet... C,
typename = typename std::enable_if<sizeof...(C) == sizeof...(Args)>::type,
typename = typename std::enable_if<AllOf(Contains(Args,
C)...)>::type>
FormatSpecTemplate(const ExtendedParsedFormat<C...>& pc) // NOLINT
: Base(&pc) {}
};

View file

@ -1,3 +1,17 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/str_format/bind.h"
#include <string.h>

View file

@ -1,3 +1,17 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_CHECKER_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_CHECKER_H_

View file

@ -1,3 +1,17 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include "gmock/gmock.h"

View file

@ -1,3 +1,17 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <errno.h>
#include <stdarg.h>
#include <stdio.h>
@ -12,6 +26,7 @@
#include "gtest/gtest.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/strings/internal/str_format/bind.h"
#include "absl/strings/match.h"
#include "absl/types/optional.h"
namespace absl {
@ -19,6 +34,13 @@ ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
namespace {
struct NativePrintfTraits {
bool hex_float_has_glibc_rounding;
bool hex_float_prefers_denormal_repr;
bool hex_float_uses_minimal_precision_when_not_specified;
bool hex_float_optimizes_leading_digit_bit_count;
};
template <typename T, size_t N>
size_t ArraySize(T (&)[N]) {
return N;
@ -118,6 +140,63 @@ std::string StrPrint(const char *format, ...) {
return result;
}
NativePrintfTraits VerifyNativeImplementationImpl() {
NativePrintfTraits result;
// >>> hex_float_has_glibc_rounding. To have glibc's rounding behavior we need
// to meet three requirements:
//
// - The threshold for rounding up is 8 (for e.g. MSVC uses 9).
// - If the digits lower than than the 8 are non-zero then we round up.
// - If the digits lower than the 8 are all zero then we round toward even.
//
// The numbers below represent all the cases covering {below,at,above} the
// threshold (8) with both {zero,non-zero} lower bits and both {even,odd}
// preceding digits.
const double d0079 = 65657.0; // 0x1.0079p+16
const double d0179 = 65913.0; // 0x1.0179p+16
const double d0080 = 65664.0; // 0x1.0080p+16
const double d0180 = 65920.0; // 0x1.0180p+16
const double d0081 = 65665.0; // 0x1.0081p+16
const double d0181 = 65921.0; // 0x1.0181p+16
result.hex_float_has_glibc_rounding =
StartsWith(StrPrint("%.2a", d0079), "0x1.00") &&
StartsWith(StrPrint("%.2a", d0179), "0x1.01") &&
StartsWith(StrPrint("%.2a", d0080), "0x1.00") &&
StartsWith(StrPrint("%.2a", d0180), "0x1.02") &&
StartsWith(StrPrint("%.2a", d0081), "0x1.01") &&
StartsWith(StrPrint("%.2a", d0181), "0x1.02");
// >>> hex_float_prefers_denormal_repr. Formatting `denormal` on glibc yields
// "0x0.0000000000001p-1022", whereas on std libs that don't use denormal
// representation it would either be 0x1p-1074 or 0x1.0000000000000-1074.
const double denormal = std::numeric_limits<double>::denorm_min();
result.hex_float_prefers_denormal_repr =
StartsWith(StrPrint("%a", denormal), "0x0.0000000000001");
// >>> hex_float_uses_minimal_precision_when_not_specified. Some (non-glibc)
// libs will format the following as "0x1.0079000000000p+16".
result.hex_float_uses_minimal_precision_when_not_specified =
(StrPrint("%a", d0079) == "0x1.0079p+16");
// >>> hex_float_optimizes_leading_digit_bit_count. The number 1.5, when
// formatted by glibc should yield "0x1.8p+0" for `double` and "0xcp-3" for
// `long double`, i.e., number of bits in the leading digit is adapted to the
// number of bits in the mantissa.
const double d_15 = 1.5;
const long double ld_15 = 1.5;
result.hex_float_optimizes_leading_digit_bit_count =
StartsWith(StrPrint("%a", d_15), "0x1.8") &&
StartsWith(StrPrint("%La", ld_15), "0xc");
return result;
}
const NativePrintfTraits &VerifyNativeImplementation() {
static NativePrintfTraits native_traits = VerifyNativeImplementationImpl();
return native_traits;
}
class FormatConvertTest : public ::testing::Test { };
template <typename T>
@ -474,6 +553,68 @@ TEST_F(FormatConvertTest, Uint128) {
}
}
template <typename Floating>
void TestWithMultipleFormatsHelper(const std::vector<Floating> &floats) {
const NativePrintfTraits &native_traits = VerifyNativeImplementation();
// Reserve the space to ensure we don't allocate memory in the output itself.
std::string str_format_result;
str_format_result.reserve(1 << 20);
std::string string_printf_result;
string_printf_result.reserve(1 << 20);
const char *const kFormats[] = {
"%", "%.3", "%8.5", "%500", "%.5000", "%.60", "%.30", "%03",
"%+", "% ", "%-10", "%#15.3", "%#.0", "%.0", "%1$*2$", "%1$.*2$"};
for (const char *fmt : kFormats) {
for (char f : {'f', 'F', //
'g', 'G', //
'a', 'A', //
'e', 'E'}) {
std::string fmt_str = std::string(fmt) + f;
if (fmt == absl::string_view("%.5000") && f != 'f' && f != 'F' &&
f != 'a' && f != 'A') {
// This particular test takes way too long with snprintf.
// Disable for the case we are not implementing natively.
continue;
}
if ((f == 'a' || f == 'A') &&
!native_traits.hex_float_has_glibc_rounding) {
continue;
}
for (Floating d : floats) {
if (!native_traits.hex_float_prefers_denormal_repr &&
(f == 'a' || f == 'A') && std::fpclassify(d) == FP_SUBNORMAL) {
continue;
}
int i = -10;
FormatArgImpl args[2] = {FormatArgImpl(d), FormatArgImpl(i)};
UntypedFormatSpecImpl format(fmt_str);
string_printf_result.clear();
StrAppend(&string_printf_result, fmt_str.c_str(), d, i);
str_format_result.clear();
{
AppendPack(&str_format_result, format, absl::MakeSpan(args));
}
if (string_printf_result != str_format_result) {
// We use ASSERT_EQ here because failures are usually correlated and a
// bug would print way too many failed expectations causing the test
// to time out.
ASSERT_EQ(string_printf_result, str_format_result)
<< fmt_str << " " << StrPrint("%.18g", d) << " "
<< StrPrint("%a", d) << " " << StrPrint("%.50f", d);
}
}
}
}
}
TEST_F(FormatConvertTest, Float) {
#ifdef _MSC_VER
// MSVC has a different rounding policy than us so we can't test our
@ -481,9 +622,62 @@ TEST_F(FormatConvertTest, Float) {
return;
#endif // _MSC_VER
const char *const kFormats[] = {
"%", "%.3", "%8.5", "%500", "%.5000", "%.60", "%.30", "%03",
"%+", "% ", "%-10", "%#15.3", "%#.0", "%.0", "%1$*2$", "%1$.*2$"};
std::vector<float> floats = {0.0f,
-0.0f,
.9999999f,
9999999.f,
std::numeric_limits<float>::max(),
-std::numeric_limits<float>::max(),
std::numeric_limits<float>::min(),
-std::numeric_limits<float>::min(),
std::numeric_limits<float>::lowest(),
-std::numeric_limits<float>::lowest(),
std::numeric_limits<float>::epsilon(),
std::numeric_limits<float>::epsilon() + 1.0f,
std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity()};
// Some regression tests.
floats.push_back(0.999999989f);
if (std::numeric_limits<float>::has_denorm != std::denorm_absent) {
floats.push_back(std::numeric_limits<float>::denorm_min());
floats.push_back(-std::numeric_limits<float>::denorm_min());
}
for (float base :
{1.f, 12.f, 123.f, 1234.f, 12345.f, 123456.f, 1234567.f, 12345678.f,
123456789.f, 1234567890.f, 12345678901.f, 12345678.f, 12345678.f}) {
for (int exp = -123; exp <= 123; ++exp) {
for (int sign : {1, -1}) {
floats.push_back(sign * std::ldexp(base, exp));
}
}
}
for (int exp = -300; exp <= 300; ++exp) {
const float all_ones_mantissa = 0xffffff;
floats.push_back(std::ldexp(all_ones_mantissa, exp));
}
// Remove duplicates to speed up the logic below.
std::sort(floats.begin(), floats.end());
floats.erase(std::unique(floats.begin(), floats.end()), floats.end());
#ifndef __APPLE__
// Apple formats NaN differently (+nan) vs. (nan)
floats.push_back(std::nan(""));
#endif
TestWithMultipleFormatsHelper(floats);
}
TEST_F(FormatConvertTest, Double) {
#ifdef _MSC_VER
// MSVC has a different rounding policy than us so we can't test our
// implementation against the native one there.
return;
#endif // _MSC_VER
std::vector<double> doubles = {0.0,
-0.0,
@ -554,52 +748,10 @@ TEST_F(FormatConvertTest, Float) {
doubles.push_back(std::nan(""));
#endif
// Reserve the space to ensure we don't allocate memory in the output itself.
std::string str_format_result;
str_format_result.reserve(1 << 20);
std::string string_printf_result;
string_printf_result.reserve(1 << 20);
for (const char *fmt : kFormats) {
for (char f : {'f', 'F', //
'g', 'G', //
'a', 'A', //
'e', 'E'}) {
std::string fmt_str = std::string(fmt) + f;
if (fmt == absl::string_view("%.5000") && f != 'f' && f != 'F') {
// This particular test takes way too long with snprintf.
// Disable for the case we are not implementing natively.
continue;
}
for (double d : doubles) {
int i = -10;
FormatArgImpl args[2] = {FormatArgImpl(d), FormatArgImpl(i)};
UntypedFormatSpecImpl format(fmt_str);
string_printf_result.clear();
StrAppend(&string_printf_result, fmt_str.c_str(), d, i);
str_format_result.clear();
{
AppendPack(&str_format_result, format, absl::MakeSpan(args));
}
if (string_printf_result != str_format_result) {
// We use ASSERT_EQ here because failures are usually correlated and a
// bug would print way too many failed expectations causing the test
// to time out.
ASSERT_EQ(string_printf_result, str_format_result)
<< fmt_str << " " << StrPrint("%.18g", d) << " "
<< StrPrint("%a", d) << " " << StrPrint("%.1080f", d);
}
}
}
}
TestWithMultipleFormatsHelper(doubles);
}
TEST_F(FormatConvertTest, FloatRound) {
TEST_F(FormatConvertTest, DoubleRound) {
std::string s;
const auto format = [&](const char *fmt, double d) -> std::string & {
s.clear();
@ -704,6 +856,193 @@ TEST_F(FormatConvertTest, FloatRound) {
"1837869002408041296803276054561138153076171875");
}
TEST_F(FormatConvertTest, DoubleRoundA) {
const NativePrintfTraits &native_traits = VerifyNativeImplementation();
std::string s;
const auto format = [&](const char *fmt, double d) -> std::string & {
s.clear();
FormatArgImpl args[1] = {FormatArgImpl(d)};
AppendPack(&s, UntypedFormatSpecImpl(fmt), absl::MakeSpan(args));
if (native_traits.hex_float_has_glibc_rounding) {
EXPECT_EQ(StrPrint(fmt, d), s);
}
return s;
};
// 0x1.00018000p+100
const double on_boundary_odd = 1267679614447900152596896153600.0;
EXPECT_EQ(format("%.0a", on_boundary_odd), "0x1p+100");
EXPECT_EQ(format("%.1a", on_boundary_odd), "0x1.0p+100");
EXPECT_EQ(format("%.2a", on_boundary_odd), "0x1.00p+100");
EXPECT_EQ(format("%.3a", on_boundary_odd), "0x1.000p+100");
EXPECT_EQ(format("%.4a", on_boundary_odd), "0x1.0002p+100"); // round
EXPECT_EQ(format("%.5a", on_boundary_odd), "0x1.00018p+100");
EXPECT_EQ(format("%.6a", on_boundary_odd), "0x1.000180p+100");
// 0x1.00028000p-2
const double on_boundary_even = 0.250009536743164062500;
EXPECT_EQ(format("%.0a", on_boundary_even), "0x1p-2");
EXPECT_EQ(format("%.1a", on_boundary_even), "0x1.0p-2");
EXPECT_EQ(format("%.2a", on_boundary_even), "0x1.00p-2");
EXPECT_EQ(format("%.3a", on_boundary_even), "0x1.000p-2");
EXPECT_EQ(format("%.4a", on_boundary_even), "0x1.0002p-2"); // no round
EXPECT_EQ(format("%.5a", on_boundary_even), "0x1.00028p-2");
EXPECT_EQ(format("%.6a", on_boundary_even), "0x1.000280p-2");
// 0x1.00018001p+1
const double slightly_over = 2.00004577683284878730773925781250;
EXPECT_EQ(format("%.0a", slightly_over), "0x1p+1");
EXPECT_EQ(format("%.1a", slightly_over), "0x1.0p+1");
EXPECT_EQ(format("%.2a", slightly_over), "0x1.00p+1");
EXPECT_EQ(format("%.3a", slightly_over), "0x1.000p+1");
EXPECT_EQ(format("%.4a", slightly_over), "0x1.0002p+1");
EXPECT_EQ(format("%.5a", slightly_over), "0x1.00018p+1");
EXPECT_EQ(format("%.6a", slightly_over), "0x1.000180p+1");
// 0x1.00017fffp+0
const double slightly_under = 1.000022887950763106346130371093750;
EXPECT_EQ(format("%.0a", slightly_under), "0x1p+0");
EXPECT_EQ(format("%.1a", slightly_under), "0x1.0p+0");
EXPECT_EQ(format("%.2a", slightly_under), "0x1.00p+0");
EXPECT_EQ(format("%.3a", slightly_under), "0x1.000p+0");
EXPECT_EQ(format("%.4a", slightly_under), "0x1.0001p+0");
EXPECT_EQ(format("%.5a", slightly_under), "0x1.00018p+0");
EXPECT_EQ(format("%.6a", slightly_under), "0x1.000180p+0");
EXPECT_EQ(format("%.7a", slightly_under), "0x1.0001800p+0");
// 0x1.1b3829ac28058p+3
const double hex_value = 8.85060580848964661981881363317370414733886718750;
EXPECT_EQ(format("%.0a", hex_value), "0x1p+3");
EXPECT_EQ(format("%.1a", hex_value), "0x1.2p+3");
EXPECT_EQ(format("%.2a", hex_value), "0x1.1bp+3");
EXPECT_EQ(format("%.3a", hex_value), "0x1.1b4p+3");
EXPECT_EQ(format("%.4a", hex_value), "0x1.1b38p+3");
EXPECT_EQ(format("%.5a", hex_value), "0x1.1b383p+3");
EXPECT_EQ(format("%.6a", hex_value), "0x1.1b382ap+3");
EXPECT_EQ(format("%.7a", hex_value), "0x1.1b3829bp+3");
EXPECT_EQ(format("%.8a", hex_value), "0x1.1b3829acp+3");
EXPECT_EQ(format("%.9a", hex_value), "0x1.1b3829ac3p+3");
EXPECT_EQ(format("%.10a", hex_value), "0x1.1b3829ac28p+3");
EXPECT_EQ(format("%.11a", hex_value), "0x1.1b3829ac280p+3");
EXPECT_EQ(format("%.12a", hex_value), "0x1.1b3829ac2806p+3");
EXPECT_EQ(format("%.13a", hex_value), "0x1.1b3829ac28058p+3");
EXPECT_EQ(format("%.14a", hex_value), "0x1.1b3829ac280580p+3");
EXPECT_EQ(format("%.15a", hex_value), "0x1.1b3829ac2805800p+3");
EXPECT_EQ(format("%.16a", hex_value), "0x1.1b3829ac28058000p+3");
EXPECT_EQ(format("%.17a", hex_value), "0x1.1b3829ac280580000p+3");
EXPECT_EQ(format("%.18a", hex_value), "0x1.1b3829ac2805800000p+3");
EXPECT_EQ(format("%.19a", hex_value), "0x1.1b3829ac28058000000p+3");
EXPECT_EQ(format("%.20a", hex_value), "0x1.1b3829ac280580000000p+3");
EXPECT_EQ(format("%.21a", hex_value), "0x1.1b3829ac2805800000000p+3");
// 0x1.0818283848586p+3
const double hex_value2 = 8.2529488658208371987257123691961169242858886718750;
EXPECT_EQ(format("%.0a", hex_value2), "0x1p+3");
EXPECT_EQ(format("%.1a", hex_value2), "0x1.1p+3");
EXPECT_EQ(format("%.2a", hex_value2), "0x1.08p+3");
EXPECT_EQ(format("%.3a", hex_value2), "0x1.082p+3");
EXPECT_EQ(format("%.4a", hex_value2), "0x1.0818p+3");
EXPECT_EQ(format("%.5a", hex_value2), "0x1.08183p+3");
EXPECT_EQ(format("%.6a", hex_value2), "0x1.081828p+3");
EXPECT_EQ(format("%.7a", hex_value2), "0x1.0818284p+3");
EXPECT_EQ(format("%.8a", hex_value2), "0x1.08182838p+3");
EXPECT_EQ(format("%.9a", hex_value2), "0x1.081828385p+3");
EXPECT_EQ(format("%.10a", hex_value2), "0x1.0818283848p+3");
EXPECT_EQ(format("%.11a", hex_value2), "0x1.08182838486p+3");
EXPECT_EQ(format("%.12a", hex_value2), "0x1.081828384858p+3");
EXPECT_EQ(format("%.13a", hex_value2), "0x1.0818283848586p+3");
EXPECT_EQ(format("%.14a", hex_value2), "0x1.08182838485860p+3");
EXPECT_EQ(format("%.15a", hex_value2), "0x1.081828384858600p+3");
EXPECT_EQ(format("%.16a", hex_value2), "0x1.0818283848586000p+3");
EXPECT_EQ(format("%.17a", hex_value2), "0x1.08182838485860000p+3");
EXPECT_EQ(format("%.18a", hex_value2), "0x1.081828384858600000p+3");
EXPECT_EQ(format("%.19a", hex_value2), "0x1.0818283848586000000p+3");
EXPECT_EQ(format("%.20a", hex_value2), "0x1.08182838485860000000p+3");
EXPECT_EQ(format("%.21a", hex_value2), "0x1.081828384858600000000p+3");
}
TEST_F(FormatConvertTest, LongDoubleRoundA) {
if (std::numeric_limits<long double>::digits % 4 != 0) {
// This test doesn't really make sense to run on platforms where a long
// double has a different mantissa size (mod 4) than Prod, since then the
// leading digit will be formatted differently.
return;
}
const NativePrintfTraits &native_traits = VerifyNativeImplementation();
std::string s;
const auto format = [&](const char *fmt, long double d) -> std::string & {
s.clear();
FormatArgImpl args[1] = {FormatArgImpl(d)};
AppendPack(&s, UntypedFormatSpecImpl(fmt), absl::MakeSpan(args));
if (native_traits.hex_float_has_glibc_rounding &&
native_traits.hex_float_optimizes_leading_digit_bit_count) {
EXPECT_EQ(StrPrint(fmt, d), s);
}
return s;
};
// 0x8.8p+4
const long double on_boundary_even = 136.0;
EXPECT_EQ(format("%.0La", on_boundary_even), "0x8p+4");
EXPECT_EQ(format("%.1La", on_boundary_even), "0x8.8p+4");
EXPECT_EQ(format("%.2La", on_boundary_even), "0x8.80p+4");
EXPECT_EQ(format("%.3La", on_boundary_even), "0x8.800p+4");
EXPECT_EQ(format("%.4La", on_boundary_even), "0x8.8000p+4");
EXPECT_EQ(format("%.5La", on_boundary_even), "0x8.80000p+4");
EXPECT_EQ(format("%.6La", on_boundary_even), "0x8.800000p+4");
// 0x9.8p+4
const long double on_boundary_odd = 152.0;
EXPECT_EQ(format("%.0La", on_boundary_odd), "0xap+4");
EXPECT_EQ(format("%.1La", on_boundary_odd), "0x9.8p+4");
EXPECT_EQ(format("%.2La", on_boundary_odd), "0x9.80p+4");
EXPECT_EQ(format("%.3La", on_boundary_odd), "0x9.800p+4");
EXPECT_EQ(format("%.4La", on_boundary_odd), "0x9.8000p+4");
EXPECT_EQ(format("%.5La", on_boundary_odd), "0x9.80000p+4");
EXPECT_EQ(format("%.6La", on_boundary_odd), "0x9.800000p+4");
// 0x8.80001p+24
const long double slightly_over = 142606352.0;
EXPECT_EQ(format("%.0La", slightly_over), "0x9p+24");
EXPECT_EQ(format("%.1La", slightly_over), "0x8.8p+24");
EXPECT_EQ(format("%.2La", slightly_over), "0x8.80p+24");
EXPECT_EQ(format("%.3La", slightly_over), "0x8.800p+24");
EXPECT_EQ(format("%.4La", slightly_over), "0x8.8000p+24");
EXPECT_EQ(format("%.5La", slightly_over), "0x8.80001p+24");
EXPECT_EQ(format("%.6La", slightly_over), "0x8.800010p+24");
// 0x8.7ffffp+24
const long double slightly_under = 142606320.0;
EXPECT_EQ(format("%.0La", slightly_under), "0x8p+24");
EXPECT_EQ(format("%.1La", slightly_under), "0x8.8p+24");
EXPECT_EQ(format("%.2La", slightly_under), "0x8.80p+24");
EXPECT_EQ(format("%.3La", slightly_under), "0x8.800p+24");
EXPECT_EQ(format("%.4La", slightly_under), "0x8.8000p+24");
EXPECT_EQ(format("%.5La", slightly_under), "0x8.7ffffp+24");
EXPECT_EQ(format("%.6La", slightly_under), "0x8.7ffff0p+24");
EXPECT_EQ(format("%.7La", slightly_under), "0x8.7ffff00p+24");
// 0xc.0828384858688000p+128
const long double eights = 4094231060438608800781871108094404067328.0;
EXPECT_EQ(format("%.0La", eights), "0xcp+128");
EXPECT_EQ(format("%.1La", eights), "0xc.1p+128");
EXPECT_EQ(format("%.2La", eights), "0xc.08p+128");
EXPECT_EQ(format("%.3La", eights), "0xc.083p+128");
EXPECT_EQ(format("%.4La", eights), "0xc.0828p+128");
EXPECT_EQ(format("%.5La", eights), "0xc.08284p+128");
EXPECT_EQ(format("%.6La", eights), "0xc.082838p+128");
EXPECT_EQ(format("%.7La", eights), "0xc.0828385p+128");
EXPECT_EQ(format("%.8La", eights), "0xc.08283848p+128");
EXPECT_EQ(format("%.9La", eights), "0xc.082838486p+128");
EXPECT_EQ(format("%.10La", eights), "0xc.0828384858p+128");
EXPECT_EQ(format("%.11La", eights), "0xc.08283848587p+128");
EXPECT_EQ(format("%.12La", eights), "0xc.082838485868p+128");
EXPECT_EQ(format("%.13La", eights), "0xc.0828384858688p+128");
EXPECT_EQ(format("%.14La", eights), "0xc.08283848586880p+128");
EXPECT_EQ(format("%.15La", eights), "0xc.082838485868800p+128");
EXPECT_EQ(format("%.16La", eights), "0xc.0828384858688000p+128");
}
// We don't actually store the results. This is just to exercise the rest of the
// machinery.
struct NullSink {
@ -735,6 +1074,7 @@ TEST_F(FormatConvertTest, LongDouble) {
// implementation against the native one there.
return;
#endif // _MSC_VER
const NativePrintfTraits &native_traits = VerifyNativeImplementation();
const char *const kFormats[] = {"%", "%.3", "%8.5", "%9", "%.5000",
"%.60", "%+", "% ", "%-10"};
@ -777,12 +1117,20 @@ TEST_F(FormatConvertTest, LongDouble) {
'e', 'E'}) {
std::string fmt_str = std::string(fmt) + 'L' + f;
if (fmt == absl::string_view("%.5000") && f != 'f' && f != 'F') {
if (fmt == absl::string_view("%.5000") && f != 'f' && f != 'F' &&
f != 'a' && f != 'A') {
// This particular test takes way too long with snprintf.
// Disable for the case we are not implementing natively.
continue;
}
if (f == 'a' || f == 'A') {
if (!native_traits.hex_float_has_glibc_rounding ||
!native_traits.hex_float_optimizes_leading_digit_bit_count) {
continue;
}
}
for (auto d : doubles) {
FormatArgImpl arg(d);
UntypedFormatSpecImpl format(fmt_str);
@ -797,7 +1145,8 @@ TEST_F(FormatConvertTest, LongDouble) {
}
}
TEST_F(FormatConvertTest, IntAsFloat) {
TEST_F(FormatConvertTest, IntAsDouble) {
const NativePrintfTraits &native_traits = VerifyNativeImplementation();
const int kMin = std::numeric_limits<int>::min();
const int kMax = std::numeric_limits<int>::max();
const int ia[] = {
@ -813,14 +1162,17 @@ TEST_F(FormatConvertTest, IntAsFloat) {
const char *fmt;
};
const double dx = static_cast<double>(fx);
const Expectation kExpect[] = {
{ __LINE__, StrPrint("%f", dx), "%f" },
{ __LINE__, StrPrint("%12f", dx), "%12f" },
{ __LINE__, StrPrint("%.12f", dx), "%.12f" },
{ __LINE__, StrPrint("%12a", dx), "%12a" },
{ __LINE__, StrPrint("%.12a", dx), "%.12a" },
std::vector<Expectation> expect = {
{__LINE__, StrPrint("%f", dx), "%f"},
{__LINE__, StrPrint("%12f", dx), "%12f"},
{__LINE__, StrPrint("%.12f", dx), "%.12f"},
{__LINE__, StrPrint("%.12a", dx), "%.12a"},
};
for (const Expectation &e : kExpect) {
if (native_traits.hex_float_uses_minimal_precision_when_not_specified) {
Expectation ex = {__LINE__, StrPrint("%12a", dx), "%12a"};
expect.push_back(ex);
}
for (const Expectation &e : expect) {
SCOPED_TRACE(e.line);
SCOPED_TRACE(e.fmt);
UntypedFormatSpecImpl format(e.fmt);
@ -865,6 +1217,25 @@ TEST_F(FormatConvertTest, ExpectedFailures) {
EXPECT_TRUE(FormatFails("%*d", ""));
}
// Sanity check to make sure that we are testing what we think we're testing on
// e.g. the x86_64+glibc platform.
TEST_F(FormatConvertTest, GlibcHasCorrectTraits) {
#if !defined(__GLIBC__) || !defined(__x86_64__)
return;
#endif
const NativePrintfTraits &native_traits = VerifyNativeImplementation();
// If one of the following tests break then it is either because the above PP
// macro guards failed to exclude a new platform (likely) or because something
// has changed in the implemention of glibc sprintf float formatting behavior.
// If the latter, then the code that computes these flags needs to be
// revisited and/or possibly the StrFormat implementation.
EXPECT_TRUE(native_traits.hex_float_has_glibc_rounding);
EXPECT_TRUE(native_traits.hex_float_prefers_denormal_repr);
EXPECT_TRUE(
native_traits.hex_float_uses_minimal_precision_when_not_specified);
EXPECT_TRUE(native_traits.hex_float_optimizes_leading_digit_bit_count);
}
} // namespace
} // namespace str_format_internal
ABSL_NAMESPACE_END

View file

@ -33,6 +33,29 @@ std::string Flags::ToString() const {
return s;
}
#define ABSL_INTERNAL_X_VAL(id) \
constexpr absl::FormatConversionChar FormatConversionCharInternal::id;
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(ABSL_INTERNAL_X_VAL, )
#undef ABSL_INTERNAL_X_VAL
// NOLINTNEXTLINE(readability-redundant-declaration)
constexpr absl::FormatConversionChar FormatConversionCharInternal::kNone;
#define ABSL_INTERNAL_CHAR_SET_CASE(c) \
constexpr FormatConversionCharSet FormatConversionCharSetInternal::c;
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(ABSL_INTERNAL_CHAR_SET_CASE, )
#undef ABSL_INTERNAL_CHAR_SET_CASE
// NOLINTNEXTLINE(readability-redundant-declaration)
constexpr FormatConversionCharSet FormatConversionCharSetInternal::kStar;
// NOLINTNEXTLINE(readability-redundant-declaration)
constexpr FormatConversionCharSet FormatConversionCharSetInternal::kIntegral;
// NOLINTNEXTLINE(readability-redundant-declaration)
constexpr FormatConversionCharSet FormatConversionCharSetInternal::kFloating;
// NOLINTNEXTLINE(readability-redundant-declaration)
constexpr FormatConversionCharSet FormatConversionCharSetInternal::kNumeric;
// NOLINTNEXTLINE(readability-redundant-declaration)
constexpr FormatConversionCharSet FormatConversionCharSetInternal::kPointer;
bool FormatSinkImpl::PutPaddedString(string_view value, int width,
int precision, bool left) {
size_t space_remaining = 0;

View file

@ -31,11 +31,11 @@
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
enum class FormatConversionChar : uint8_t;
enum class FormatConversionCharSet : uint64_t;
namespace str_format_internal {
class FormatRawSinkImpl {
public:
// Implicitly convert from any type that provides the hook function as
@ -361,14 +361,12 @@ struct FormatConversionCharSetInternal {
static constexpr FormatConversionCharSet kStar =
FormatConversionCharToConvValue('*');
// Some predefined values (TODO(matthewbr), delete any that are unused).
static constexpr FormatConversionCharSet kIntegral =
FormatConversionCharSetUnion(d, i, u, o, x, X);
static constexpr FormatConversionCharSet kFloating =
FormatConversionCharSetUnion(a, e, f, g, A, E, F, G);
static constexpr FormatConversionCharSet kNumeric =
FormatConversionCharSetUnion(kIntegral, kFloating);
static constexpr FormatConversionCharSet kString = s;
static constexpr FormatConversionCharSet kPointer = p;
};

View file

@ -80,4 +80,19 @@ TEST(FormatExtensionTest, SinkAppendChars) {
EXPECT_EQ(actual, expected);
}
}
TEST(FormatExtensionTest, VerifyEnumEquality) {
#define X_VAL(id) \
EXPECT_EQ(absl::FormatConversionChar::id, \
absl::str_format_internal::FormatConversionCharInternal::id);
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(X_VAL, );
#undef X_VAL
#define X_VAL(id) \
EXPECT_EQ(absl::FormatConversionCharSet::id, \
absl::str_format_internal::FormatConversionCharSetInternal::id);
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(X_VAL, );
#undef X_VAL
}
} // namespace

View file

@ -1,3 +1,17 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/str_format/float_conversion.h"
#include <string.h>
@ -15,6 +29,7 @@
#include "absl/functional/function_ref.h"
#include "absl/meta/type_traits.h"
#include "absl/numeric/int128.h"
#include "absl/strings/numbers.h"
#include "absl/types/optional.h"
#include "absl/types/span.h"
@ -119,7 +134,7 @@ class BinaryToDecimal {
assert(exp > 0);
assert(exp <= std::numeric_limits<long double>::max_exponent);
static_assert(
StackArray::kMaxCapacity >=
static_cast<int>(StackArray::kMaxCapacity) >=
ChunksNeeded(std::numeric_limits<long double>::max_exponent),
"");
@ -204,7 +219,7 @@ class BinaryToDecimal {
}
private:
static constexpr size_t kDigitsPerChunk = 9;
static constexpr int kDigitsPerChunk = 9;
int decimal_start_;
int decimal_end_;
@ -441,8 +456,10 @@ struct Padding {
};
Padding ExtraWidthToPadding(size_t total_size, const FormatState &state) {
if (state.conv.width() < 0 || state.conv.width() <= total_size)
if (state.conv.width() < 0 ||
static_cast<size_t>(state.conv.width()) <= total_size) {
return {0, 0, 0};
}
int missing_chars = state.conv.width() - total_size;
if (state.conv.has_left_flag()) {
return {0, 0, missing_chars};
@ -453,26 +470,31 @@ Padding ExtraWidthToPadding(size_t total_size, const FormatState &state) {
}
}
void FinalPrint(absl::string_view data, int trailing_zeros,
const FormatState &state) {
void FinalPrint(const FormatState &state, absl::string_view data,
int padding_offset, int trailing_zeros,
absl::string_view data_postfix) {
if (state.conv.width() < 0) {
// No width specified. Fast-path.
if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
state.sink->Append(data);
state.sink->Append(trailing_zeros, '0');
state.sink->Append(data_postfix);
return;
}
auto padding =
ExtraWidthToPadding((state.sign_char != '\0' ? 1 : 0) + data.size() +
static_cast<size_t>(trailing_zeros),
state);
auto padding = ExtraWidthToPadding((state.sign_char != '\0' ? 1 : 0) +
data.size() + data_postfix.size() +
static_cast<size_t>(trailing_zeros),
state);
state.sink->Append(padding.left_spaces, ' ');
if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
// Padding in general needs to be inserted somewhere in the middle of `data`.
state.sink->Append(data.substr(0, padding_offset));
state.sink->Append(padding.zeros, '0');
state.sink->Append(data);
state.sink->Append(data.substr(padding_offset));
state.sink->Append(trailing_zeros, '0');
state.sink->Append(data_postfix);
state.sink->Append(padding.right_spaces, ' ');
}
@ -525,10 +547,11 @@ void FormatFFast(Int v, int exp, const FormatState &state) {
// In `alt` mode (flag #) we keep the `.` even if there are no fractional
// digits. In non-alt mode, we strip it.
if (!state.ShouldPrintDot()) --size;
FinalPrint(absl::string_view(integral_digits_start, size),
FinalPrint(state, absl::string_view(integral_digits_start, size),
/*padding_offset=*/0,
static_cast<int>(state.precision - (fractional_digits_end -
fractional_digits_start)),
state);
/*data_postfix=*/"");
}
// Slow %f formatter for when the shifted value does not fit in a uint128, and
@ -655,6 +678,255 @@ void FormatF(Int mantissa, int exp, const FormatState &state) {
return FormatFFast(mantissa, exp, state);
}
// Grab the group of four bits (nibble) from `n`. E.g., nibble 1 corresponds to
// bits 4-7.
template <typename Int>
uint8_t GetNibble(Int n, int nibble_index) {
constexpr Int mask_low_nibble = Int{0xf};
int shift = nibble_index * 4;
n &= mask_low_nibble << shift;
return static_cast<uint8_t>((n >> shift) & 0xf);
}
// Add one to the given nibble, applying carry to higher nibbles. Returns true
// if overflow, false otherwise.
template <typename Int>
bool IncrementNibble(int nibble_index, Int *n) {
constexpr int kShift = sizeof(Int) * 8 - 1;
constexpr int kNumNibbles = sizeof(Int) * 8 / 4;
Int before = *n >> kShift;
// Here we essentially want to take the number 1 and move it into the requsted
// nibble, then add it to *n to effectively increment the nibble. However,
// ASan will complain if we try to shift the 1 beyond the limits of the Int,
// i.e., if the nibble_index is out of range. So therefore we check for this
// and if we are out of range we just add 0 which leaves *n unchanged, which
// seems like the reasonable thing to do in that case.
*n += ((nibble_index >= kNumNibbles) ? 0 : (Int{1} << (nibble_index * 4)));
Int after = *n >> kShift;
return (before && !after) || (nibble_index >= kNumNibbles);
}
// Return a mask with 1's in the given nibble and all lower nibbles.
template <typename Int>
Int MaskUpToNibbleInclusive(int nibble_index) {
constexpr int kNumNibbles = sizeof(Int) * 8 / 4;
static const Int ones = ~Int{0};
return ones >> std::max(0, 4 * (kNumNibbles - nibble_index - 1));
}
// Return a mask with 1's below the given nibble.
template <typename Int>
Int MaskUpToNibbleExclusive(int nibble_index) {
return nibble_index <= 0 ? 0 : MaskUpToNibbleInclusive<Int>(nibble_index - 1);
}
template <typename Int>
Int MoveToNibble(uint8_t nibble, int nibble_index) {
return Int{nibble} << (4 * nibble_index);
}
// Given mantissa size, find optimal # of mantissa bits to put in initial digit.
//
// In the hex representation we keep a single hex digit to the left of the dot.
// However, the question as to how many bits of the mantissa should be put into
// that hex digit in theory is arbitrary, but in practice it is optimal to
// choose based on the size of the mantissa. E.g., for a `double`, there are 53
// mantissa bits, so that means that we should put 1 bit to the left of the dot,
// thereby leaving 52 bits to the right, which is evenly divisible by four and
// thus all fractional digits represent actual precision. For a `long double`,
// on the other hand, there are 64 bits of mantissa, thus we can use all four
// bits for the initial hex digit and still have a number left over (60) that is
// a multiple of four. Once again, the goal is to have all fractional digits
// represent real precision.
template <typename Float>
constexpr int HexFloatLeadingDigitSizeInBits() {
return std::numeric_limits<Float>::digits % 4 > 0
? std::numeric_limits<Float>::digits % 4
: 4;
}
// This function captures the rounding behavior of glibc for hex float
// representations. E.g. when rounding 0x1.ab800000 to a precision of .2
// ("%.2a") glibc will round up because it rounds toward the even number (since
// 0xb is an odd number, it will round up to 0xc). However, when rounding at a
// point that is not followed by 800000..., it disregards the parity and rounds
// up if > 8 and rounds down if < 8.
template <typename Int>
bool HexFloatNeedsRoundUp(Int mantissa, int final_nibble_displayed,
uint8_t leading) {
// If the last nibble (hex digit) to be displayed is the lowest on in the
// mantissa then that means that we don't have any further nibbles to inform
// rounding, so don't round.
if (final_nibble_displayed <= 0) {
return false;
}
int rounding_nibble_idx = final_nibble_displayed - 1;
constexpr int kTotalNibbles = sizeof(Int) * 8 / 4;
assert(final_nibble_displayed <= kTotalNibbles);
Int mantissa_up_to_rounding_nibble_inclusive =
mantissa & MaskUpToNibbleInclusive<Int>(rounding_nibble_idx);
Int eight = MoveToNibble<Int>(8, rounding_nibble_idx);
if (mantissa_up_to_rounding_nibble_inclusive != eight) {
return mantissa_up_to_rounding_nibble_inclusive > eight;
}
// Nibble in question == 8.
uint8_t round_if_odd = (final_nibble_displayed == kTotalNibbles)
? leading
: GetNibble(mantissa, final_nibble_displayed);
return round_if_odd % 2 == 1;
}
// Stores values associated with a Float type needed by the FormatA
// implementation in order to avoid templatizing that function by the Float
// type.
struct HexFloatTypeParams {
template <typename Float>
explicit HexFloatTypeParams(Float)
: min_exponent(std::numeric_limits<Float>::min_exponent - 1),
leading_digit_size_bits(HexFloatLeadingDigitSizeInBits<Float>()) {
assert(leading_digit_size_bits >= 1 && leading_digit_size_bits <= 4);
}
int min_exponent;
int leading_digit_size_bits;
};
// Hex Float Rounding. First check if we need to round; if so, then we do that
// by manipulating (incrementing) the mantissa, that way we can later print the
// mantissa digits by iterating through them in the same way regardless of
// whether a rounding happened.
template <typename Int>
void FormatARound(bool precision_specified, const FormatState &state,
uint8_t *leading, Int *mantissa, int *exp) {
constexpr int kTotalNibbles = sizeof(Int) * 8 / 4;
// Index of the last nibble that we could display given precision.
int final_nibble_displayed =
precision_specified ? std::max(0, (kTotalNibbles - state.precision)) : 0;
if (HexFloatNeedsRoundUp(*mantissa, final_nibble_displayed, *leading)) {
// Need to round up.
bool overflow = IncrementNibble(final_nibble_displayed, mantissa);
*leading += (overflow ? 1 : 0);
if (ABSL_PREDICT_FALSE(*leading > 15)) {
// We have overflowed the leading digit. This would mean that we would
// need two hex digits to the left of the dot, which is not allowed. So
// adjust the mantissa and exponent so that the result is always 1.0eXXX.
*leading = 1;
*mantissa = 0;
*exp += 4;
}
}
// Now that we have handled a possible round-up we can go ahead and zero out
// all the nibbles of the mantissa that we won't need.
if (precision_specified) {
*mantissa &= ~MaskUpToNibbleExclusive<Int>(final_nibble_displayed);
}
}
template <typename Int>
void FormatANormalize(const HexFloatTypeParams float_traits, uint8_t *leading,
Int *mantissa, int *exp) {
constexpr int kIntBits = sizeof(Int) * 8;
static const Int kHighIntBit = Int{1} << (kIntBits - 1);
const int kLeadDigitBitsCount = float_traits.leading_digit_size_bits;
// Normalize mantissa so that highest bit set is in MSB position, unless we
// get interrupted by the exponent threshold.
while (*mantissa && !(*mantissa & kHighIntBit)) {
if (ABSL_PREDICT_FALSE(*exp - 1 < float_traits.min_exponent)) {
*mantissa >>= (float_traits.min_exponent - *exp);
*exp = float_traits.min_exponent;
return;
}
*mantissa <<= 1;
--*exp;
}
// Extract bits for leading digit then shift them away leaving the
// fractional part.
*leading =
static_cast<uint8_t>(*mantissa >> (kIntBits - kLeadDigitBitsCount));
*exp -= (*mantissa != 0) ? kLeadDigitBitsCount : *exp;
*mantissa <<= kLeadDigitBitsCount;
}
template <typename Int>
void FormatA(const HexFloatTypeParams float_traits, Int mantissa, int exp,
bool uppercase, const FormatState &state) {
// Int properties.
constexpr int kIntBits = sizeof(Int) * 8;
constexpr int kTotalNibbles = sizeof(Int) * 8 / 4;
// Did the user specify a precision explicitly?
const bool precision_specified = state.conv.precision() >= 0;
// ========== Normalize/Denormalize ==========
exp += kIntBits; // make all digits fractional digits.
// This holds the (up to four) bits of leading digit, i.e., the '1' in the
// number 0x1.e6fp+2. It's always > 0 unless number is zero or denormal.
uint8_t leading = 0;
FormatANormalize(float_traits, &leading, &mantissa, &exp);
// =============== Rounding ==================
// Check if we need to round; if so, then we do that by manipulating
// (incrementing) the mantissa before beginning to print characters.
FormatARound(precision_specified, state, &leading, &mantissa, &exp);
// ============= Format Result ===============
// This buffer holds the "0x1.ab1de3" portion of "0x1.ab1de3pe+2". Compute the
// size with long double which is the largest of the floats.
constexpr size_t kBufSizeForHexFloatRepr =
2 // 0x
+ std::numeric_limits<long double>::digits / 4 // number of hex digits
+ 1 // round up
+ 1; // "." (dot)
char digits_buffer[kBufSizeForHexFloatRepr];
char *digits_iter = digits_buffer;
const char *const digits =
static_cast<const char *>("0123456789ABCDEF0123456789abcdef") +
(uppercase ? 0 : 16);
// =============== Hex Prefix ================
*digits_iter++ = '0';
*digits_iter++ = uppercase ? 'X' : 'x';
// ========== Non-Fractional Digit ===========
*digits_iter++ = digits[leading];
// ================== Dot ====================
// There are three reasons we might need a dot. Keep in mind that, at this
// point, the mantissa holds only the fractional part.
if ((precision_specified && state.precision > 0) ||
(!precision_specified && mantissa > 0) || state.conv.has_alt_flag()) {
*digits_iter++ = '.';
}
// ============ Fractional Digits ============
int digits_emitted = 0;
while (mantissa > 0) {
*digits_iter++ = digits[GetNibble(mantissa, kTotalNibbles - 1)];
mantissa <<= 4;
++digits_emitted;
}
int trailing_zeros =
precision_specified ? state.precision - digits_emitted : 0;
assert(trailing_zeros >= 0);
auto digits_result = string_view(digits_buffer, digits_iter - digits_buffer);
// =============== Exponent ==================
constexpr size_t kBufSizeForExpDecRepr =
numbers_internal::kFastToBufferSize // requred for FastIntToBuffer
+ 1 // 'p' or 'P'
+ 1; // '+' or '-'
char exp_buffer[kBufSizeForExpDecRepr];
exp_buffer[0] = uppercase ? 'P' : 'p';
exp_buffer[1] = exp >= 0 ? '+' : '-';
numbers_internal::FastIntToBuffer(exp < 0 ? -exp : exp, exp_buffer + 2);
// ============ Assemble Result ==============
FinalPrint(state, //
digits_result, // 0xN.NNN...
2, // offset in `data` to start padding if needed.
trailing_zeros, // num remaining mantissa padding zeros
exp_buffer); // exponent
}
char *CopyStringTo(absl::string_view v, char *out) {
std::memcpy(out, v.data(), v.size());
return out + v.size();
@ -1103,7 +1375,10 @@ bool FloatToSink(const Float v, const FormatConversionSpecImpl &conv,
}
} else if (c == FormatConversionCharInternal::a ||
c == FormatConversionCharInternal::A) {
return FallbackToSnprintf(v, conv, sink);
bool uppercase = (c == FormatConversionCharInternal::A);
FormatA(HexFloatTypeParams(Float{}), decomposed.mantissa,
decomposed.exponent, uppercase, {sign_char, precision, conv, sink});
return true;
} else {
return false;
}
@ -1131,7 +1406,7 @@ bool ConvertFloatImpl(long double v, const FormatConversionSpecImpl &conv,
bool ConvertFloatImpl(float v, const FormatConversionSpecImpl &conv,
FormatSinkImpl *sink) {
return FloatToSink(v, conv, sink);
return FloatToSink(static_cast<double>(v), conv, sink);
}
bool ConvertFloatImpl(double v, const FormatConversionSpecImpl &conv,

View file

@ -1,3 +1,17 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_FLOAT_CONVERSION_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_FLOAT_CONVERSION_H_

View file

@ -1,3 +1,17 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/str_format/parser.h"
#include <assert.h>

View file

@ -1,3 +1,17 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_PARSER_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_PARSER_H_

View file

@ -1,3 +1,17 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/str_format/parser.h"
#include <string.h>

View file

@ -51,9 +51,9 @@ ABSL_NAMESPACE_BEGIN
namespace strings_internal {
// This class is implicitly constructible from everything that absl::string_view
// is implicitly constructible from. If it's constructed from a temporary
// string, the data is moved into a data member so its lifetime matches that of
// the ConvertibleToStringView instance.
// is implicitly constructible from, except for rvalue strings. This means it
// can be used as a function parameter in places where passing a temporary
// string might cause memory lifetime issues.
class ConvertibleToStringView {
public:
ConvertibleToStringView(const char* s) // NOLINT(runtime/explicit)
@ -65,41 +65,12 @@ class ConvertibleToStringView {
: value_(s) {}
// Matches rvalue strings and moves their data to a member.
ConvertibleToStringView(std::string&& s) // NOLINT(runtime/explicit)
: copy_(std::move(s)), value_(copy_) {}
ConvertibleToStringView(const ConvertibleToStringView& other)
: copy_(other.copy_),
value_(other.IsSelfReferential() ? copy_ : other.value_) {}
ConvertibleToStringView(ConvertibleToStringView&& other) {
StealMembers(std::move(other));
}
ConvertibleToStringView& operator=(ConvertibleToStringView other) {
StealMembers(std::move(other));
return *this;
}
ConvertibleToStringView(std::string&& s) = delete;
ConvertibleToStringView(const std::string&& s) = delete;
absl::string_view value() const { return value_; }
private:
// Returns true if ctsp's value refers to its internal copy_ member.
bool IsSelfReferential() const { return value_.data() == copy_.data(); }
void StealMembers(ConvertibleToStringView&& other) {
if (other.IsSelfReferential()) {
copy_ = std::move(other.copy_);
value_ = copy_;
other.value_ = other.copy_;
} else {
value_ = other.value_;
}
}
// Holds the data moved from temporary std::string arguments. Declared first
// so that 'value' can refer to 'copy_'.
std::string copy_;
absl::string_view value_;
};
@ -273,7 +244,11 @@ struct SplitterIsConvertibleTo
// the split strings: only strings for which the predicate returns true will be
// kept. A Predicate object is any unary functor that takes an absl::string_view
// and returns bool.
template <typename Delimiter, typename Predicate>
//
// The StringType parameter can be either string_view or string, depending on
// whether the Splitter refers to a string stored elsewhere, or if the string
// resides inside the Splitter itself.
template <typename Delimiter, typename Predicate, typename StringType>
class Splitter {
public:
using DelimiterType = Delimiter;
@ -281,12 +256,12 @@ class Splitter {
using const_iterator = strings_internal::SplitIterator<Splitter>;
using value_type = typename std::iterator_traits<const_iterator>::value_type;
Splitter(ConvertibleToStringView input_text, Delimiter d, Predicate p)
Splitter(StringType input_text, Delimiter d, Predicate p)
: text_(std::move(input_text)),
delimiter_(std::move(d)),
predicate_(std::move(p)) {}
absl::string_view text() const { return text_.value(); }
absl::string_view text() const { return text_; }
const Delimiter& delimiter() const { return delimiter_; }
const Predicate& predicate() const { return predicate_; }
@ -336,7 +311,7 @@ class Splitter {
Container operator()(const Splitter& splitter) const {
Container c;
auto it = std::inserter(c, c.end());
for (const auto sp : splitter) {
for (const auto& sp : splitter) {
*it++ = ValueType(sp);
}
return c;
@ -401,7 +376,7 @@ class Splitter {
Container m;
typename Container::iterator it;
bool insert = true;
for (const auto sp : splitter) {
for (const auto& sp : splitter) {
if (insert) {
it = Inserter<Container>::Insert(&m, First(sp), Second());
} else {
@ -443,7 +418,7 @@ class Splitter {
};
};
ConvertibleToStringView text_;
StringType text_;
Delimiter delimiter_;
Predicate predicate_;
};

View file

@ -0,0 +1,70 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_STRINGS_INTERNAL_STRING_CONSTANT_H_
#define ABSL_STRINGS_INTERNAL_STRING_CONSTANT_H_
#include "absl/meta/type_traits.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
// StringConstant<T> represents a compile time string constant.
// It can be accessed via its `absl::string_view value` static member.
// It is guaranteed that the `string_view` returned has constant `.data()`,
// constant `.size()` and constant `value[i]` for all `0 <= i < .size()`
//
// The `T` is an opaque type. It is guaranteed that different string constants
// will have different values of `T`. This allows users to associate the string
// constant with other static state at compile time.
//
// Instances should be made using the `MakeStringConstant()` factory function
// below.
template <typename T>
struct StringConstant {
private:
// Returns true if `view` points to constant data.
// Otherwise, it can't be constant evaluated.
static constexpr bool ValidateConstant(absl::string_view view) {
return view.empty() || 2 * view[0] != 1;
}
public:
static constexpr absl::string_view value = T{}();
constexpr absl::string_view operator()() const { return value; }
static_assert(ValidateConstant(value),
"The input string_view must point to constant data.");
};
template <typename T>
constexpr absl::string_view StringConstant<T>::value; // NOLINT
// Factory function for `StringConstant` instances.
// It supports callables that have a constexpr default constructor and a
// constexpr operator().
// It must return an `absl::string_view` or `const char*` pointing to constant
// data. This is validated at compile time.
template <typename T>
constexpr StringConstant<T> MakeStringConstant(T) {
return {};
}
} // namespace strings_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_STRINGS_INTERNAL_STRING_CONSTANT_H_

View file

@ -0,0 +1,60 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/string_constant.h"
#include "absl/meta/type_traits.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace {
using absl::strings_internal::MakeStringConstant;
struct Callable {
constexpr absl::string_view operator()() const {
return absl::string_view("Callable", 8);
}
};
TEST(StringConstant, Traits) {
constexpr auto str = MakeStringConstant(Callable{});
using T = decltype(str);
EXPECT_TRUE(std::is_empty<T>::value);
EXPECT_TRUE(std::is_trivial<T>::value);
EXPECT_TRUE(absl::is_trivially_default_constructible<T>::value);
EXPECT_TRUE(absl::is_trivially_copy_constructible<T>::value);
EXPECT_TRUE(absl::is_trivially_move_constructible<T>::value);
EXPECT_TRUE(absl::is_trivially_destructible<T>::value);
}
TEST(StringConstant, MakeFromCallable) {
constexpr auto str = MakeStringConstant(Callable{});
using T = decltype(str);
EXPECT_EQ(Callable{}(), T::value);
EXPECT_EQ(Callable{}(), str());
}
TEST(StringConstant, MakeFromStringConstant) {
// We want to make sure the StringConstant itself is a valid input to the
// factory function.
constexpr auto str = MakeStringConstant(Callable{});
constexpr auto str2 = MakeStringConstant(str);
using T = decltype(str2);
EXPECT_EQ(Callable{}(), T::value);
EXPECT_EQ(Callable{}(), str2());
}
} // namespace

View file

@ -736,9 +736,18 @@ struct LookupTables {
X / 35, X / 36, \
}
// This kVmaxOverBase is generated with
// for (int base = 2; base < 37; ++base) {
// absl::uint128 max = std::numeric_limits<absl::uint128>::max();
// auto result = max / base;
// std::cout << " MakeUint128(" << absl::Uint128High64(result) << "u, "
// << absl::Uint128Low64(result) << "u),\n";
// }
// See https://godbolt.org/z/aneYsb
//
// uint128& operator/=(uint128) is not constexpr, so hardcode the resulting
// array to avoid a static initializer.
template <>
template<>
const uint128 LookupTables<uint128>::kVmaxOverBase[] = {
0,
0,
@ -779,6 +788,111 @@ const uint128 LookupTables<uint128>::kVmaxOverBase[] = {
MakeUint128(512409557603043100u, 8198552921648689607u),
};
// This kVmaxOverBase generated with
// for (int base = 2; base < 37; ++base) {
// absl::int128 max = std::numeric_limits<absl::int128>::max();
// auto result = max / base;
// std::cout << "\tMakeInt128(" << absl::Int128High64(result) << ", "
// << absl::Int128Low64(result) << "u),\n";
// }
// See https://godbolt.org/z/7djYWz
//
// int128& operator/=(int128) is not constexpr, so hardcode the resulting array
// to avoid a static initializer.
template<>
const int128 LookupTables<int128>::kVmaxOverBase[] = {
0,
0,
MakeInt128(4611686018427387903, 18446744073709551615u),
MakeInt128(3074457345618258602, 12297829382473034410u),
MakeInt128(2305843009213693951, 18446744073709551615u),
MakeInt128(1844674407370955161, 11068046444225730969u),
MakeInt128(1537228672809129301, 6148914691236517205u),
MakeInt128(1317624576693539401, 2635249153387078802u),
MakeInt128(1152921504606846975, 18446744073709551615u),
MakeInt128(1024819115206086200, 16397105843297379214u),
MakeInt128(922337203685477580, 14757395258967641292u),
MakeInt128(838488366986797800, 13415813871788764811u),
MakeInt128(768614336404564650, 12297829382473034410u),
MakeInt128(709490156681136600, 11351842506898185609u),
MakeInt128(658812288346769700, 10540996613548315209u),
MakeInt128(614891469123651720, 9838263505978427528u),
MakeInt128(576460752303423487, 18446744073709551615u),
MakeInt128(542551296285575047, 9765923333140350855u),
MakeInt128(512409557603043100, 8198552921648689607u),
MakeInt128(485440633518672410, 17475862806672206794u),
MakeInt128(461168601842738790, 7378697629483820646u),
MakeInt128(439208192231179800, 7027331075698876806u),
MakeInt128(419244183493398900, 6707906935894382405u),
MakeInt128(401016175515425035, 2406097053092550210u),
MakeInt128(384307168202282325, 6148914691236517205u),
MakeInt128(368934881474191032, 5902958103587056517u),
MakeInt128(354745078340568300, 5675921253449092804u),
MakeInt128(341606371735362066, 17763531330238827482u),
MakeInt128(329406144173384850, 5270498306774157604u),
MakeInt128(318047311615681924, 7633135478776366185u),
MakeInt128(307445734561825860, 4919131752989213764u),
MakeInt128(297528130221121800, 4760450083537948804u),
MakeInt128(288230376151711743, 18446744073709551615u),
MakeInt128(279496122328932600, 4471937957262921603u),
MakeInt128(271275648142787523, 14106333703424951235u),
MakeInt128(263524915338707880, 4216398645419326083u),
MakeInt128(256204778801521550, 4099276460824344803u),
};
// This kVminOverBase generated with
// for (int base = 2; base < 37; ++base) {
// absl::int128 min = std::numeric_limits<absl::int128>::min();
// auto result = min / base;
// std::cout << "\tMakeInt128(" << absl::Int128High64(result) << ", "
// << absl::Int128Low64(result) << "u),\n";
// }
//
// See https://godbolt.org/z/7djYWz
//
// int128& operator/=(int128) is not constexpr, so hardcode the resulting array
// to avoid a static initializer.
template<>
const int128 LookupTables<int128>::kVminOverBase[] = {
0,
0,
MakeInt128(-4611686018427387904, 0u),
MakeInt128(-3074457345618258603, 6148914691236517206u),
MakeInt128(-2305843009213693952, 0u),
MakeInt128(-1844674407370955162, 7378697629483820647u),
MakeInt128(-1537228672809129302, 12297829382473034411u),
MakeInt128(-1317624576693539402, 15811494920322472814u),
MakeInt128(-1152921504606846976, 0u),
MakeInt128(-1024819115206086201, 2049638230412172402u),
MakeInt128(-922337203685477581, 3689348814741910324u),
MakeInt128(-838488366986797801, 5030930201920786805u),
MakeInt128(-768614336404564651, 6148914691236517206u),
MakeInt128(-709490156681136601, 7094901566811366007u),
MakeInt128(-658812288346769701, 7905747460161236407u),
MakeInt128(-614891469123651721, 8608480567731124088u),
MakeInt128(-576460752303423488, 0u),
MakeInt128(-542551296285575048, 8680820740569200761u),
MakeInt128(-512409557603043101, 10248191152060862009u),
MakeInt128(-485440633518672411, 970881267037344822u),
MakeInt128(-461168601842738791, 11068046444225730970u),
MakeInt128(-439208192231179801, 11419412998010674810u),
MakeInt128(-419244183493398901, 11738837137815169211u),
MakeInt128(-401016175515425036, 16040647020617001406u),
MakeInt128(-384307168202282326, 12297829382473034411u),
MakeInt128(-368934881474191033, 12543785970122495099u),
MakeInt128(-354745078340568301, 12770822820260458812u),
MakeInt128(-341606371735362067, 683212743470724134u),
MakeInt128(-329406144173384851, 13176245766935394012u),
MakeInt128(-318047311615681925, 10813608594933185431u),
MakeInt128(-307445734561825861, 13527612320720337852u),
MakeInt128(-297528130221121801, 13686293990171602812u),
MakeInt128(-288230376151711744, 0u),
MakeInt128(-279496122328932601, 13974806116446630013u),
MakeInt128(-271275648142787524, 4340410370284600381u),
MakeInt128(-263524915338707881, 14230345428290225533u),
MakeInt128(-256204778801521551, 14347467612885206813u),
};
template <typename IntType>
const IntType LookupTables<IntType>::kVmaxOverBase[] =
X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max());
@ -948,6 +1062,10 @@ bool safe_strto64_base(absl::string_view text, int64_t* value, int base) {
return safe_int_internal<int64_t>(text, value, base);
}
bool safe_strto128_base(absl::string_view text, int128* value, int base) {
return safe_int_internal<absl::int128>(text, value, base);
}
bool safe_strtou32_base(absl::string_view text, uint32_t* value, int base) {
return safe_uint_internal<uint32_t>(text, value, base);
}

View file

@ -127,6 +127,8 @@ inline void PutTwoDigits(size_t i, char* buf) {
// safe_strto?() functions for implementing SimpleAtoi()
bool safe_strto32_base(absl::string_view text, int32_t* value, int base);
bool safe_strto64_base(absl::string_view text, int64_t* value, int base);
bool safe_strto128_base(absl::string_view text, absl::int128* value,
int base);
bool safe_strtou32_base(absl::string_view text, uint32_t* value, int base);
bool safe_strtou64_base(absl::string_view text, uint64_t* value, int base);
bool safe_strtou128_base(absl::string_view text, absl::uint128* value,
@ -255,6 +257,11 @@ ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view str, int_type* out) {
return numbers_internal::safe_strtoi_base(str, out, 10);
}
ABSL_MUST_USE_RESULT inline bool SimpleAtoi(absl::string_view str,
absl::int128* out) {
return numbers_internal::safe_strto128_base(str, out, 10);
}
ABSL_MUST_USE_RESULT inline bool SimpleAtoi(absl::string_view str,
absl::uint128* out) {
return numbers_internal::safe_strtou128_base(str, out, 10);

View file

@ -251,7 +251,7 @@ TEST(Numbers, TestFastPrints) {
template <typename int_type, typename in_val_type>
void VerifySimpleAtoiGood(in_val_type in_value, int_type exp_value) {
std::string s;
// uint128 can be streamed but not StrCat'd
// (u)int128 can be streamed but not StrCat'd.
absl::strings_internal::OStringStream(&s) << in_value;
int_type x = static_cast<int_type>(~exp_value);
EXPECT_TRUE(SimpleAtoi(s, &x))
@ -264,7 +264,9 @@ void VerifySimpleAtoiGood(in_val_type in_value, int_type exp_value) {
template <typename int_type, typename in_val_type>
void VerifySimpleAtoiBad(in_val_type in_value) {
std::string s = absl::StrCat(in_value);
std::string s;
// (u)int128 can be streamed but not StrCat'd.
absl::strings_internal::OStringStream(&s) << in_value;
int_type x;
EXPECT_FALSE(SimpleAtoi(s, &x));
EXPECT_FALSE(SimpleAtoi(s.c_str(), &x));
@ -347,6 +349,31 @@ TEST(NumbersTest, Atoi) {
std::numeric_limits<absl::uint128>::max(),
std::numeric_limits<absl::uint128>::max());
// SimpleAtoi(absl::string_view, absl::int128)
VerifySimpleAtoiGood<absl::int128>(0, 0);
VerifySimpleAtoiGood<absl::int128>(42, 42);
VerifySimpleAtoiGood<absl::int128>(-42, -42);
VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::min(),
std::numeric_limits<int32_t>::min());
VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::max());
VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint32_t>::max(),
std::numeric_limits<uint32_t>::max());
VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::min(),
std::numeric_limits<int64_t>::min());
VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::max(),
std::numeric_limits<int64_t>::max());
VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint64_t>::max(),
std::numeric_limits<uint64_t>::max());
VerifySimpleAtoiGood<absl::int128>(
std::numeric_limits<absl::int128>::min(),
std::numeric_limits<absl::int128>::min());
VerifySimpleAtoiGood<absl::int128>(
std::numeric_limits<absl::int128>::max(),
std::numeric_limits<absl::int128>::max());
VerifySimpleAtoiBad<absl::int128>(std::numeric_limits<absl::uint128>::max());
// Some other types
VerifySimpleAtoiGood<int>(-42, -42);
VerifySimpleAtoiGood<int32_t>(-42, -42);
@ -359,6 +386,12 @@ TEST(NumbersTest, Atoi) {
VerifySimpleAtoiGood<std::string::size_type>(42, 42);
}
TEST(NumbersTest, Atod) {
double d;
EXPECT_TRUE(absl::SimpleAtod("nan", &d));
EXPECT_TRUE(std::isnan(d));
}
TEST(NumbersTest, Atoenum) {
enum E01 {
E01_zero = 0,
@ -719,6 +752,51 @@ TEST(stringtest, safe_strtou128_random) {
EXPECT_FALSE(parse_func(s, &parsed_value, base));
}
}
TEST(stringtest, safe_strto128_random) {
// random number generators don't work for int128, and
// int128 can be streamed but not StrCat'd, so this code must be custom
// implemented for int128, but is generally the same as what's above.
// test_random_integer_parse_base<absl::int128>(
// &absl::numbers_internal::safe_strto128_base);
using RandomEngine = std::minstd_rand0;
using IntType = absl::int128;
constexpr auto parse_func = &absl::numbers_internal::safe_strto128_base;
std::random_device rd;
RandomEngine rng(rd());
std::uniform_int_distribution<int64_t> random_int64(
std::numeric_limits<int64_t>::min());
std::uniform_int_distribution<uint64_t> random_uint64(
std::numeric_limits<uint64_t>::min());
std::uniform_int_distribution<int> random_base(2, 35);
for (size_t i = 0; i < kNumRandomTests; ++i) {
int64_t high = random_int64(rng);
uint64_t low = random_uint64(rng);
IntType value = absl::MakeInt128(high, low);
int base = random_base(rng);
std::string str_value;
EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));
IntType parsed_value;
// Test successful parse
EXPECT_TRUE(parse_func(str_value, &parsed_value, base));
EXPECT_EQ(parsed_value, value);
// Test overflow
std::string s;
absl::strings_internal::OStringStream(&s)
<< std::numeric_limits<IntType>::max() << value;
EXPECT_FALSE(parse_func(s, &parsed_value, base));
// Test underflow
s.clear();
absl::strings_internal::OStringStream(&s)
<< std::numeric_limits<IntType>::min() << value;
EXPECT_FALSE(parse_func(s, &parsed_value, base));
}
}
TEST(stringtest, safe_strtou32_base) {
for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) {

View file

@ -141,12 +141,12 @@ namespace strings_internal {
std::string CatPieces(std::initializer_list<absl::string_view> pieces) {
std::string result;
size_t total_size = 0;
for (const absl::string_view piece : pieces) total_size += piece.size();
for (const absl::string_view& piece : pieces) total_size += piece.size();
strings_internal::STLStringResizeUninitialized(&result, total_size);
char* const begin = &result[0];
char* out = begin;
for (const absl::string_view piece : pieces) {
for (const absl::string_view& piece : pieces) {
const size_t this_size = piece.size();
if (this_size != 0) {
memcpy(out, piece.data(), this_size);
@ -170,7 +170,7 @@ void AppendPieces(std::string* dest,
std::initializer_list<absl::string_view> pieces) {
size_t old_size = dest->size();
size_t total_size = old_size;
for (const absl::string_view piece : pieces) {
for (const absl::string_view& piece : pieces) {
ASSERT_NO_OVERLAP(*dest, piece);
total_size += piece.size();
}
@ -178,7 +178,7 @@ void AppendPieces(std::string* dest,
char* const begin = &(*dest)[0];
char* out = begin + old_size;
for (const absl::string_view piece : pieces) {
for (const absl::string_view& piece : pieces) {
const size_t this_size = piece.size();
if (this_size != 0) {
memcpy(out, piece.data(), this_size);

View file

@ -137,4 +137,51 @@ void BM_DoubleToString_By_SixDigits(benchmark::State& state) {
}
BENCHMARK(BM_DoubleToString_By_SixDigits);
template <typename... Chunks>
void BM_StrAppendImpl(benchmark::State& state, size_t total_bytes,
Chunks... chunks) {
for (auto s : state) {
std::string result;
while (result.size() < total_bytes) {
absl::StrAppend(&result, chunks...);
benchmark::DoNotOptimize(result);
}
}
}
void BM_StrAppend(benchmark::State& state) {
const int total_bytes = state.range(0);
const int chunks_at_a_time = state.range(1);
const absl::string_view kChunk = "0123456789";
switch (chunks_at_a_time) {
case 1:
return BM_StrAppendImpl(state, total_bytes, kChunk);
case 2:
return BM_StrAppendImpl(state, total_bytes, kChunk, kChunk);
case 4:
return BM_StrAppendImpl(state, total_bytes, kChunk, kChunk, kChunk,
kChunk);
case 8:
return BM_StrAppendImpl(state, total_bytes, kChunk, kChunk, kChunk,
kChunk, kChunk, kChunk, kChunk, kChunk);
default:
std::abort();
}
}
template <typename B>
void StrAppendConfig(B* benchmark) {
for (int bytes : {10, 100, 1000, 10000}) {
for (int chunks : {1, 2, 4, 8}) {
// Only add the ones that divide properly. Otherwise we are over counting.
if (bytes % (10 * chunks) == 0) {
benchmark->Args({bytes, chunks});
}
}
}
}
BENCHMARK(BM_StrAppend)->Apply(StrAppendConfig);
} // namespace

View file

@ -63,6 +63,9 @@
// loosely typed. `FormatUntyped()` is not a template and does not perform
// any compile-time checking of the format string; instead, it returns a
// boolean from a runtime check.
//
// In addition, the `str_format` library provides extension points for
// augmenting formatting to new types. See "StrFormat Extensions" below.
#ifndef ABSL_STRINGS_STR_FORMAT_H_
#define ABSL_STRINGS_STR_FORMAT_H_
@ -278,9 +281,36 @@ using FormatSpec = str_format_internal::FormatSpecTemplate<
// } else {
// ... error case ...
// }
#if defined(__cpp_nontype_template_parameter_auto)
// If C++17 is available, an 'extended' format is also allowed that can specify
// multiple conversion characters per format argument, using a combination of
// `absl::FormatConversionCharSet` enum values (logically a set union)
// via the `|` operator. (Single character-based arguments are still accepted,
// but cannot be combined). Some common conversions also have predefined enum
// values, such as `absl::FormatConversionCharSet::kIntegral`.
//
// Example:
// // Extended format supports multiple conversion characters per argument,
// // specified via a combination of `FormatConversionCharSet` enums.
// using MyFormat = absl::ParsedFormat<absl::FormatConversionCharSet::d |
// absl::FormatConversionCharSet::x>;
// MyFormat GetFormat(bool use_hex) {
// if (use_hex) return MyFormat("foo %x bar");
// return MyFormat("foo %d bar");
// }
// // `format` can be used with any value that supports 'd' and 'x',
// // like `int`.
// auto format = GetFormat(use_hex);
// value = StringF(format, i);
template <auto... Conv>
using ParsedFormat = absl::str_format_internal::ExtendedParsedFormat<
absl::str_format_internal::ToFormatConversionCharSet(Conv)...>;
#else
template <char... Conv>
using ParsedFormat = str_format_internal::ExtendedParsedFormat<
absl::str_format_internal::ToFormatConversionCharSet(Conv)...>;
#endif // defined(__cpp_nontype_template_parameter_auto)
// StrFormat()
//
@ -537,6 +567,246 @@ ABSL_MUST_USE_RESULT inline bool FormatUntyped(
str_format_internal::UntypedFormatSpecImpl::Extract(format), args);
}
//------------------------------------------------------------------------------
// StrFormat Extensions
//------------------------------------------------------------------------------
//
// AbslFormatConvert()
//
// The StrFormat library provides a customization API for formatting
// user-defined types using absl::StrFormat(). The API relies on detecting an
// overload in the user-defined type's namespace of a free (non-member)
// `AbslFormatConvert()` function, usually as a friend definition with the
// following signature:
//
// absl::FormatConvertResult<...> AbslFormatConvert(
// const X& value,
// const absl::FormatConversionSpec& spec,
// absl::FormatSink *sink);
//
// An `AbslFormatConvert()` overload for a type should only be declared in the
// same file and namespace as said type.
//
// The abstractions within this definition include:
//
// * An `absl::FormatConversionSpec` to specify the fields to pull from a
// user-defined type's format string
// * An `absl::FormatSink` to hold the converted string data during the
// conversion process.
// * An `absl::FormatConvertResult` to hold the status of the returned
// formatting operation
//
// The return type encodes all the conversion characters that your
// AbslFormatConvert() routine accepts. The return value should be {true}.
// A return value of {false} will result in `StrFormat()` returning
// an empty string. This result will be propagated to the result of
// `FormatUntyped`.
//
// Example:
//
// struct Point {
// // To add formatting support to `Point`, we simply need to add a free
// // (non-member) function `AbslFormatConvert()`. This method interprets
// // `spec` to print in the request format. The allowed conversion characters
// // can be restricted via the type of the result, in this example
// // string and integral formatting are allowed (but not, for instance
// // floating point characters like "%f"). You can add such a free function
// // using a friend declaration within the body of the class:
// friend absl::FormatConvertResult<absl::FormatConversionCharSet::kString |
// absl::FormatConversionCharSet::kIntegral>
// AbslFormatConvert(const Point& p, const absl::FormatConversionSpec& spec,
// absl::FormatSink* s) {
// if (spec.conversion_char() == absl::FormatConversionChar::s) {
// s->Append(absl::StrCat("x=", p.x, " y=", p.y));
// } else {
// s->Append(absl::StrCat(p.x, ",", p.y));
// }
// return {true};
// }
//
// int x;
// int y;
// };
// clang-format off
// FormatConversionChar
//
// Specifies the formatting character provided in the format string
// passed to `StrFormat()`.
enum class FormatConversionChar : uint8_t {
c, s, // text
d, i, o, u, x, X, // int
f, F, e, E, g, G, a, A, // float
n, p // misc
};
// clang-format on
// FormatConversionSpec
//
// Specifies modifications to the conversion of the format string, through use
// of one or more format flags in the source format string.
class FormatConversionSpec {
public:
// FormatConversionSpec::is_basic()
//
// Indicates that width and precision are not specified, and no additional
// flags are set for this conversion character in the format string.
bool is_basic() const { return impl_.is_basic(); }
// FormatConversionSpec::has_left_flag()
//
// Indicates whether the result should be left justified for this conversion
// character in the format string. This flag is set through use of a '-'
// character in the format string. E.g. "%-s"
bool has_left_flag() const { return impl_.has_left_flag(); }
// FormatConversionSpec::has_show_pos_flag()
//
// Indicates whether a sign column is prepended to the result for this
// conversion character in the format string, even if the result is positive.
// This flag is set through use of a '+' character in the format string.
// E.g. "%+d"
bool has_show_pos_flag() const { return impl_.has_show_pos_flag(); }
// FormatConversionSpec::has_sign_col_flag()
//
// Indicates whether a mandatory sign column is added to the result for this
// conversion character. This flag is set through use of a space character
// (' ') in the format string. E.g. "% i"
bool has_sign_col_flag() const { return impl_.has_sign_col_flag(); }
// FormatConversionSpec::has_alt_flag()
//
// Indicates whether an "alternate" format is applied to the result for this
// conversion character. Alternative forms depend on the type of conversion
// character, and unallowed alternatives are undefined. This flag is set
// through use of a '#' character in the format string. E.g. "%#h"
bool has_alt_flag() const { return impl_.has_alt_flag(); }
// FormatConversionSpec::has_zero_flag()
//
// Indicates whether zeroes should be prepended to the result for this
// conversion character instead of spaces. This flag is set through use of the
// '0' character in the format string. E.g. "%0f"
bool has_zero_flag() const { return impl_.has_zero_flag(); }
// FormatConversionSpec::conversion_char()
//
// Returns the underlying conversion character.
FormatConversionChar conversion_char() const {
return impl_.conversion_char();
}
// FormatConversionSpec::width()
//
// Returns the specified width (indicated through use of a non-zero integer
// value or '*' character) of the conversion character. If width is
// unspecified, it returns a negative value.
int width() const { return impl_.width(); }
// FormatConversionSpec::precision()
//
// Returns the specified precision (through use of the '.' character followed
// by a non-zero integer value or '*' character) of the conversion character.
// If precision is unspecified, it returns a negative value.
int precision() const { return impl_.precision(); }
private:
explicit FormatConversionSpec(
str_format_internal::FormatConversionSpecImpl impl)
: impl_(impl) {}
friend str_format_internal::FormatConversionSpecImpl;
absl::str_format_internal::FormatConversionSpecImpl impl_;
};
// Type safe OR operator for FormatConversionCharSet to allow accepting multiple
// conversion chars in custom format converters.
constexpr FormatConversionCharSet operator|(FormatConversionCharSet a,
FormatConversionCharSet b) {
return static_cast<FormatConversionCharSet>(static_cast<uint64_t>(a) |
static_cast<uint64_t>(b));
}
// FormatConversionCharSet
//
// Specifies the _accepted_ conversion types as a template parameter to
// FormatConvertResult for custom implementations of `AbslFormatConvert`.
// Note the helper predefined alias definitions (kIntegral, etc.) below.
enum class FormatConversionCharSet : uint64_t {
// text
c = str_format_internal::FormatConversionCharToConvInt('c'),
s = str_format_internal::FormatConversionCharToConvInt('s'),
// integer
d = str_format_internal::FormatConversionCharToConvInt('d'),
i = str_format_internal::FormatConversionCharToConvInt('i'),
o = str_format_internal::FormatConversionCharToConvInt('o'),
u = str_format_internal::FormatConversionCharToConvInt('u'),
x = str_format_internal::FormatConversionCharToConvInt('x'),
X = str_format_internal::FormatConversionCharToConvInt('X'),
// Float
f = str_format_internal::FormatConversionCharToConvInt('f'),
F = str_format_internal::FormatConversionCharToConvInt('F'),
e = str_format_internal::FormatConversionCharToConvInt('e'),
E = str_format_internal::FormatConversionCharToConvInt('E'),
g = str_format_internal::FormatConversionCharToConvInt('g'),
G = str_format_internal::FormatConversionCharToConvInt('G'),
a = str_format_internal::FormatConversionCharToConvInt('a'),
A = str_format_internal::FormatConversionCharToConvInt('A'),
// misc
n = str_format_internal::FormatConversionCharToConvInt('n'),
p = str_format_internal::FormatConversionCharToConvInt('p'),
// Used for width/precision '*' specification.
kStar = static_cast<uint64_t>(
absl::str_format_internal::FormatConversionCharSetInternal::kStar),
// Some predefined values:
kIntegral = d | i | u | o | x | X,
kFloating = a | e | f | g | A | E | F | G,
kNumeric = kIntegral | kFloating,
kString = s,
kPointer = p,
};
// FormatSink
//
// An abstraction to which conversions write their string data.
//
class FormatSink {
public:
// Appends `count` copies of `ch`.
void Append(size_t count, char ch) { sink_->Append(count, ch); }
void Append(string_view v) { sink_->Append(v); }
// Appends the first `precision` bytes of `v`. If this is less than
// `width`, spaces will be appended first (if `left` is false), or
// after (if `left` is true) to ensure the total amount appended is
// at least `width`.
bool PutPaddedString(string_view v, int width, int precision, bool left) {
return sink_->PutPaddedString(v, width, precision, left);
}
private:
friend str_format_internal::FormatSinkImpl;
explicit FormatSink(str_format_internal::FormatSinkImpl* s) : sink_(s) {}
str_format_internal::FormatSinkImpl* sink_;
};
// FormatConvertResult
//
// Indicates whether a call to AbslFormatConvert() was successful.
// This return type informs the StrFormat extension framework (through
// ADL but using the return type) of what conversion characters are supported.
// It is strongly discouraged to return {false}, as this will result in an
// empty string in StrFormat.
template <FormatConversionCharSet C>
struct FormatConvertResult {
bool value;
};
ABSL_NAMESPACE_END
} // namespace absl

View file

@ -1,3 +1,16 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/str_format.h"
@ -16,7 +29,6 @@ namespace absl {
ABSL_NAMESPACE_BEGIN
namespace {
using str_format_internal::FormatArgImpl;
using str_format_internal::FormatConversionCharSetInternal;
using FormatEntryPointTest = ::testing::Test;
@ -537,46 +549,90 @@ TEST_F(ParsedFormatTest, SimpleUncheckedIncorrect) {
EXPECT_FALSE((ParsedFormat<'s', 'd', 'g'>::New(format)));
}
using absl::str_format_internal::FormatConversionCharSet;
#if defined(__cpp_nontype_template_parameter_auto)
template <auto T>
std::true_type IsValidParsedFormatArgTest(ParsedFormat<T>*);
template <auto T>
std::false_type IsValidParsedFormatArgTest(...);
template <auto T>
using IsValidParsedFormatArg = decltype(IsValidParsedFormatArgTest<T>(nullptr));
TEST_F(ParsedFormatTest, OnlyValidTypesAllowed) {
ASSERT_TRUE(IsValidParsedFormatArg<'c'>::value);
ASSERT_TRUE(IsValidParsedFormatArg<FormatConversionCharSet::d>::value);
ASSERT_TRUE(IsValidParsedFormatArg<absl::FormatConversionCharSet::d |
absl::FormatConversionCharSet::x>::value);
ASSERT_TRUE(
IsValidParsedFormatArg<absl::FormatConversionCharSet::kIntegral>::value);
// This is an easy mistake to make, however, this will reduce to an integer
// which has no meaning, so we need to ensure it doesn't compile.
ASSERT_FALSE(IsValidParsedFormatArg<'x' | 'd'>::value);
// For now, we disallow construction based on ConversionChar (rather than
// CharSet)
ASSERT_FALSE(IsValidParsedFormatArg<absl::FormatConversionChar::d>::value);
}
TEST_F(ParsedFormatTest, ExtendedTyping) {
EXPECT_FALSE(ParsedFormat<FormatConversionCharSet::d>::New(""));
ASSERT_TRUE(ParsedFormat<absl::FormatConversionCharSet::d>::New("%d"));
auto v1 = ParsedFormat<'d', absl::FormatConversionCharSet::s>::New("%d%s");
ASSERT_TRUE(v1);
auto v2 = ParsedFormat<absl::FormatConversionCharSet::d, 's'>::New("%d%s");
ASSERT_TRUE(v2);
auto v3 = ParsedFormat<absl::FormatConversionCharSet::d |
absl::FormatConversionCharSet::s,
's'>::New("%d%s");
ASSERT_TRUE(v3);
auto v4 = ParsedFormat<absl::FormatConversionCharSet::d |
absl::FormatConversionCharSet::s,
's'>::New("%s%s");
ASSERT_TRUE(v4);
}
#endif
TEST_F(ParsedFormatTest, UncheckedCorrect) {
auto f =
ExtendedParsedFormat<FormatConversionCharSetInternal::d>::New("ABC%dDEF");
ExtendedParsedFormat<absl::FormatConversionCharSet::d>::New("ABC%dDEF");
ASSERT_TRUE(f);
EXPECT_EQ("[ABC]{d:1$d}[DEF]", SummarizeParsedFormat(*f));
std::string format = "%sFFF%dZZZ%f";
auto f2 = ExtendedParsedFormat<
FormatConversionCharSetInternal::kString,
FormatConversionCharSetInternal::d,
FormatConversionCharSetInternal::kFloating>::New(format);
absl::FormatConversionCharSet::kString, absl::FormatConversionCharSet::d,
absl::FormatConversionCharSet::kFloating>::New(format);
ASSERT_TRUE(f2);
EXPECT_EQ("{s:1$s}[FFF]{d:2$d}[ZZZ]{f:3$f}", SummarizeParsedFormat(*f2));
f2 = ExtendedParsedFormat<
FormatConversionCharSetInternal::kString,
FormatConversionCharSetInternal::d,
FormatConversionCharSetInternal::kFloating>::New("%s %d %f");
absl::FormatConversionCharSet::kString, absl::FormatConversionCharSet::d,
absl::FormatConversionCharSet::kFloating>::New("%s %d %f");
ASSERT_TRUE(f2);
EXPECT_EQ("{s:1$s}[ ]{d:2$d}[ ]{f:3$f}", SummarizeParsedFormat(*f2));
auto star =
ExtendedParsedFormat<FormatConversionCharSetInternal::kStar,
FormatConversionCharSetInternal::d>::New("%*d");
ExtendedParsedFormat<absl::FormatConversionCharSet::kStar,
absl::FormatConversionCharSet::d>::New("%*d");
ASSERT_TRUE(star);
EXPECT_EQ("{*d:2$1$*d}", SummarizeParsedFormat(*star));
auto dollar = ExtendedParsedFormat<
FormatConversionCharSetInternal::d,
FormatConversionCharSetInternal::s>::New("%2$s %1$d");
auto dollar =
ExtendedParsedFormat<absl::FormatConversionCharSet::d,
absl::FormatConversionCharSet::s>::New("%2$s %1$d");
ASSERT_TRUE(dollar);
EXPECT_EQ("{2$s:2$s}[ ]{1$d:1$d}", SummarizeParsedFormat(*dollar));
// with reuse
dollar = ExtendedParsedFormat<
FormatConversionCharSetInternal::d,
FormatConversionCharSetInternal::s>::New("%2$s %1$d %1$d");
absl::FormatConversionCharSet::d,
absl::FormatConversionCharSet::s>::New("%2$s %1$d %1$d");
ASSERT_TRUE(dollar);
EXPECT_EQ("{2$s:2$s}[ ]{1$d:1$d}[ ]{1$d:1$d}",
SummarizeParsedFormat(*dollar));
@ -584,62 +640,61 @@ TEST_F(ParsedFormatTest, UncheckedCorrect) {
TEST_F(ParsedFormatTest, UncheckedIgnoredArgs) {
EXPECT_FALSE(
(ExtendedParsedFormat<FormatConversionCharSetInternal::d,
FormatConversionCharSetInternal::s>::New("ABC")));
(ExtendedParsedFormat<absl::FormatConversionCharSet::d,
absl::FormatConversionCharSet::s>::New("ABC")));
EXPECT_FALSE(
(ExtendedParsedFormat<FormatConversionCharSetInternal::d,
FormatConversionCharSetInternal::s>::New("%dABC")));
EXPECT_FALSE((ExtendedParsedFormat<
FormatConversionCharSetInternal::d,
FormatConversionCharSetInternal::s>::New("ABC%2$s")));
(ExtendedParsedFormat<absl::FormatConversionCharSet::d,
absl::FormatConversionCharSet::s>::New("%dABC")));
EXPECT_FALSE(
(ExtendedParsedFormat<absl::FormatConversionCharSet::d,
absl::FormatConversionCharSet::s>::New("ABC%2$s")));
auto f = ExtendedParsedFormat<
FormatConversionCharSetInternal::d,
FormatConversionCharSetInternal::s>::NewAllowIgnored("ABC");
absl::FormatConversionCharSet::d,
absl::FormatConversionCharSet::s>::NewAllowIgnored("ABC");
ASSERT_TRUE(f);
EXPECT_EQ("[ABC]", SummarizeParsedFormat(*f));
f = ExtendedParsedFormat<
FormatConversionCharSetInternal::d,
FormatConversionCharSetInternal::s>::NewAllowIgnored("%dABC");
absl::FormatConversionCharSet::d,
absl::FormatConversionCharSet::s>::NewAllowIgnored("%dABC");
ASSERT_TRUE(f);
EXPECT_EQ("{d:1$d}[ABC]", SummarizeParsedFormat(*f));
f = ExtendedParsedFormat<
FormatConversionCharSetInternal::d,
FormatConversionCharSetInternal::s>::NewAllowIgnored("ABC%2$s");
absl::FormatConversionCharSet::d,
absl::FormatConversionCharSet::s>::NewAllowIgnored("ABC%2$s");
ASSERT_TRUE(f);
EXPECT_EQ("[ABC]{2$s:2$s}", SummarizeParsedFormat(*f));
}
TEST_F(ParsedFormatTest, UncheckedMultipleTypes) {
auto dx = ExtendedParsedFormat<
FormatConversionCharSetInternal::d |
FormatConversionCharSetInternal::x>::New("%1$d %1$x");
auto dx =
ExtendedParsedFormat<absl::FormatConversionCharSet::d |
absl::FormatConversionCharSet::x>::New("%1$d %1$x");
EXPECT_TRUE(dx);
EXPECT_EQ("{1$d:1$d}[ ]{1$x:1$x}", SummarizeParsedFormat(*dx));
dx = ExtendedParsedFormat<FormatConversionCharSetInternal::d |
FormatConversionCharSetInternal::x>::New("%1$d");
dx = ExtendedParsedFormat<absl::FormatConversionCharSet::d |
absl::FormatConversionCharSet::x>::New("%1$d");
EXPECT_TRUE(dx);
EXPECT_EQ("{1$d:1$d}", SummarizeParsedFormat(*dx));
}
TEST_F(ParsedFormatTest, UncheckedIncorrect) {
EXPECT_FALSE(
ExtendedParsedFormat<FormatConversionCharSetInternal::d>::New(""));
EXPECT_FALSE(ExtendedParsedFormat<absl::FormatConversionCharSet::d>::New(""));
EXPECT_FALSE(ExtendedParsedFormat<FormatConversionCharSetInternal::d>::New(
EXPECT_FALSE(ExtendedParsedFormat<absl::FormatConversionCharSet::d>::New(
"ABC%dDEF%d"));
std::string format = "%sFFF%dZZZ%f";
EXPECT_FALSE(
(ExtendedParsedFormat<FormatConversionCharSetInternal::s,
FormatConversionCharSetInternal::d,
FormatConversionCharSetInternal::g>::New(format)));
(ExtendedParsedFormat<absl::FormatConversionCharSet::s,
absl::FormatConversionCharSet::d,
absl::FormatConversionCharSet::g>::New(format)));
}
TEST_F(ParsedFormatTest, RegressionMixPositional) {
EXPECT_FALSE((ExtendedParsedFormat<
FormatConversionCharSetInternal::d,
FormatConversionCharSetInternal::o>::New("%1$d %o")));
EXPECT_FALSE(
(ExtendedParsedFormat<absl::FormatConversionCharSet::d,
absl::FormatConversionCharSet::o>::New("%1$d %o")));
}
using FormatWrapperTest = ::testing::Test;
@ -664,6 +719,38 @@ TEST_F(FormatWrapperTest, ParsedFormat) {
ABSL_NAMESPACE_END
} // namespace absl
using FormatExtensionTest = ::testing::Test;
struct Point {
friend absl::FormatConvertResult<absl::FormatConversionCharSet::kString |
absl::FormatConversionCharSet::kIntegral>
AbslFormatConvert(const Point& p, const absl::FormatConversionSpec& spec,
absl::FormatSink* s) {
if (spec.conversion_char() == absl::FormatConversionChar::s) {
s->Append(absl::StrCat("x=", p.x, " y=", p.y));
} else {
s->Append(absl::StrCat(p.x, ",", p.y));
}
return {true};
}
int x = 10;
int y = 20;
};
TEST_F(FormatExtensionTest, AbslFormatConvertExample) {
Point p;
EXPECT_EQ(absl::StrFormat("a %s z", p), "a x=10 y=20 z");
EXPECT_EQ(absl::StrFormat("a %d z", p), "a 10,20 z");
// Typed formatting will fail to compile an invalid format.
// StrFormat("%f", p); // Does not compile.
std::string actual;
absl::UntypedFormatSpec f1("%f");
// FormatUntyped will return false for bad character.
EXPECT_FALSE(absl::FormatUntyped(&actual, f1, {absl::FormatArg(p)}));
}
// Some codegen thunks that we can use to easily dump the generated assembly for
// different StrFormat calls.

View file

@ -369,6 +369,12 @@ struct SkipWhitespace {
}
};
template <typename T>
using EnableSplitIfString =
typename std::enable_if<std::is_same<T, std::string>::value ||
std::is_same<T, const std::string>::value,
int>::type;
//------------------------------------------------------------------------------
// StrSplit()
//------------------------------------------------------------------------------
@ -489,22 +495,50 @@ struct SkipWhitespace {
// Try not to depend on this distinction because the bug may one day be fixed.
template <typename Delimiter>
strings_internal::Splitter<
typename strings_internal::SelectDelimiter<Delimiter>::type, AllowEmpty>
typename strings_internal::SelectDelimiter<Delimiter>::type, AllowEmpty,
absl::string_view>
StrSplit(strings_internal::ConvertibleToStringView text, Delimiter d) {
using DelimiterType =
typename strings_internal::SelectDelimiter<Delimiter>::type;
return strings_internal::Splitter<DelimiterType, AllowEmpty>(
return strings_internal::Splitter<DelimiterType, AllowEmpty,
absl::string_view>(
text.value(), DelimiterType(d), AllowEmpty());
}
template <typename Delimiter, typename StringType,
EnableSplitIfString<StringType> = 0>
strings_internal::Splitter<
typename strings_internal::SelectDelimiter<Delimiter>::type, AllowEmpty,
std::string>
StrSplit(StringType&& text, Delimiter d) {
using DelimiterType =
typename strings_internal::SelectDelimiter<Delimiter>::type;
return strings_internal::Splitter<DelimiterType, AllowEmpty, std::string>(
std::move(text), DelimiterType(d), AllowEmpty());
}
template <typename Delimiter, typename Predicate>
strings_internal::Splitter<
typename strings_internal::SelectDelimiter<Delimiter>::type, Predicate>
typename strings_internal::SelectDelimiter<Delimiter>::type, Predicate,
absl::string_view>
StrSplit(strings_internal::ConvertibleToStringView text, Delimiter d,
Predicate p) {
using DelimiterType =
typename strings_internal::SelectDelimiter<Delimiter>::type;
return strings_internal::Splitter<DelimiterType, Predicate>(
return strings_internal::Splitter<DelimiterType, Predicate,
absl::string_view>(
text.value(), DelimiterType(d), std::move(p));
}
template <typename Delimiter, typename Predicate, typename StringType,
EnableSplitIfString<StringType> = 0>
strings_internal::Splitter<
typename strings_internal::SelectDelimiter<Delimiter>::type, Predicate,
std::string>
StrSplit(StringType&& text, Delimiter d, Predicate p) {
using DelimiterType =
typename strings_internal::SelectDelimiter<Delimiter>::type;
return strings_internal::Splitter<DelimiterType, Predicate, std::string>(
std::move(text), DelimiterType(d), std::move(p));
}

View file

@ -27,7 +27,7 @@
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/dynamic_annotations.h" // for RunningOnValgrind
#include "absl/base/dynamic_annotations.h"
#include "absl/base/macros.h"
#include "absl/container/flat_hash_map.h"
#include "absl/container/node_hash_map.h"
@ -367,7 +367,7 @@ TEST(SplitIterator, EqualityAsEndCondition) {
TEST(Splitter, RangeIterators) {
auto splitter = absl::StrSplit("a,b,c", ',');
std::vector<absl::string_view> output;
for (const absl::string_view p : splitter) {
for (const absl::string_view& p : splitter) {
output.push_back(p);
}
EXPECT_THAT(output, ElementsAre("a", "b", "c"));

View file

@ -111,6 +111,11 @@ ABSL_NAMESPACE_BEGIN
// example, when splitting a string, `std::vector<absl::string_view>` is a
// natural data type for the output.
//
// For another example, a Cord is a non-contiguous, potentially very
// long string-like object. The Cord class has an interface that iteratively
// provides string_view objects that point to the successive pieces of a Cord
// object.
//
// When constructed from a source which is NUL-terminated, the `string_view`
// itself will not include the NUL-terminator unless a specific size (including
// the NUL) is passed to the constructor. As a result, common idioms that work
@ -382,6 +387,7 @@ class string_view {
// Returns a "substring" of the `string_view` (at offset `pos` and length
// `n`) as another string_view. This function throws `std::out_of_bounds` if
// `pos > size`.
// Use absl::ClippedSubstr if you need a truncating substr operation.
constexpr string_view substr(size_type pos, size_type n = npos) const {
return ABSL_PREDICT_FALSE(pos > length_)
? (base_internal::ThrowStdOutOfRange(

View file

@ -1177,9 +1177,9 @@ TEST(FindOneCharTest, EdgeCases) {
EXPECT_EQ(absl::string_view::npos, a.rfind('x'));
}
#ifndef THREAD_SANITIZER // Allocates too much memory for tsan.
#ifndef ABSL_HAVE_THREAD_SANITIZER // Allocates too much memory for tsan.
TEST(HugeStringView, TwoPointTwoGB) {
if (sizeof(size_t) <= 4 || RunningOnValgrind())
if (sizeof(size_t) <= 4)
return;
// Try a huge string piece.
const size_t size = size_t{2200} * 1000 * 1000;
@ -1191,7 +1191,7 @@ TEST(HugeStringView, TwoPointTwoGB) {
sp.remove_suffix(2);
EXPECT_EQ(size - 1 - 2, sp.length());
}
#endif // THREAD_SANITIZER
#endif // ABSL_HAVE_THREAD_SANITIZER
#if !defined(NDEBUG) && !defined(ABSL_USES_STD_STRING_VIEW)
TEST(NonNegativeLenTest, NonNegativeLen) {