Export of internal Abseil changes
-- 1bc4d36e13fb9175ea8cdaa00213aa9d4417c669 by Andy Getzendanner <durandal@google.com>: Fix pointer format specifier in documentation Import of https://github.com/abseil/abseil-cpp/pull/614 PiperOrigin-RevId: 293227540 -- c7b43b30493c4fb5f2ec3264672b08bfe1ea3709 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 293160245 -- 64439365e2b4a0b5e51ae0a7dafdb15912402dfd by Shahriar Rouf <nafi@google.com>: Add benchmarks for string_view: BM_CompareFirstOneLess and BM_CompareSecondOneLess. PiperOrigin-RevId: 293031676 -- b273b420cab24a6e3f487430987e09f4eb1caec4 by Greg Falcon <gfalcon@google.com>: Remove an unreachable line from charconv.cc. Fixes github issue #613. PiperOrigin-RevId: 292980167 -- 70babb5f7a3d9fdd00a2b3085c3c2b9fe0265c79 by Gennadiy Rozental <rogeeff@google.com>: Move GetFlag implementation into FlagImpl. This change will allow us to hide details of GetFlag overloads inside implementation detais. Eventually we'll migrate to a different implementation. No semantic changes in this CL. PiperOrigin-RevId: 292930847 -- 94bee7b7cc31e0167ee4b953281c1e78c96a574a by Abseil Team <absl-team@google.com>: Clarification in absl::Exponential documentation. PiperOrigin-RevId: 292912672 -- d6916d30c5c1d3ee9ae46d69ec0a166a760c99c7 by Derek Mauro <dmauro@google.com>: Make AtomicHook constant-initializable on Clang for Windows. Only mark AtomicHook as constant-initializable on platforms where it is actually constant-initializable. PiperOrigin-RevId: 292655939 GitOrigin-RevId: 1bc4d36e13fb9175ea8cdaa00213aa9d4417c669 Change-Id: I090b231a0ca0d92868e494ab5b3fa86c902889d5
This commit is contained in:
		
							parent
							
								
									36bcd9599b
								
							
						
					
					
						commit
						08a7e7bf97
					
				
					 15 changed files with 315 additions and 228 deletions
				
			
		| 
						 | 
				
			
			@ -34,7 +34,10 @@ cc_library(
 | 
			
		|||
    visibility = [
 | 
			
		||||
        "//absl:__subpackages__",
 | 
			
		||||
    ],
 | 
			
		||||
    deps = [":config"],
 | 
			
		||||
    deps = [
 | 
			
		||||
        ":config",
 | 
			
		||||
        ":core_headers",
 | 
			
		||||
    ],
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
cc_library(
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -23,6 +23,7 @@ absl_cc_library(
 | 
			
		|||
    "internal/atomic_hook.h"
 | 
			
		||||
  DEPS
 | 
			
		||||
    absl::config
 | 
			
		||||
    absl::core_headers
 | 
			
		||||
  COPTS
 | 
			
		||||
    ${ABSL_DEFAULT_COPTS}
 | 
			
		||||
)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -20,16 +20,21 @@
 | 
			
		|||
#include <cstdint>
 | 
			
		||||
#include <utility>
 | 
			
		||||
 | 
			
		||||
#include "absl/base/attributes.h"
 | 
			
		||||
#include "absl/base/config.h"
 | 
			
		||||
 | 
			
		||||
#ifdef _MSC_FULL_VER
 | 
			
		||||
#define ABSL_HAVE_WORKING_ATOMIC_POINTER 0
 | 
			
		||||
#if defined(_MSC_VER) && !defined(__clang__)
 | 
			
		||||
#define ABSL_HAVE_WORKING_CONSTEXPR_STATIC_INIT 0
 | 
			
		||||
#else
 | 
			
		||||
#define ABSL_HAVE_WORKING_ATOMIC_POINTER 1
 | 
			
		||||
#define ABSL_HAVE_WORKING_CONSTEXPR_STATIC_INIT 1
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if defined(_MSC_VER)
 | 
			
		||||
#define ABSL_HAVE_WORKING_ATOMIC_POINTER 0
 | 
			
		||||
#else
 | 
			
		||||
#define ABSL_HAVE_WORKING_ATOMIC_POINTER 1
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
namespace absl {
 | 
			
		||||
ABSL_NAMESPACE_BEGIN
 | 
			
		||||
namespace base_internal {
 | 
			
		||||
| 
						 | 
				
			
			@ -37,6 +42,15 @@ namespace base_internal {
 | 
			
		|||
template <typename T>
 | 
			
		||||
class AtomicHook;
 | 
			
		||||
 | 
			
		||||
// To workaround AtomicHook not being constant-initializable on some platforms,
 | 
			
		||||
// prefer to annotate instances with `ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES`
 | 
			
		||||
// instead of `ABSL_CONST_INIT`.
 | 
			
		||||
#if ABSL_HAVE_WORKING_CONSTEXPR_STATIC_INIT
 | 
			
		||||
#define ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES ABSL_CONST_INIT
 | 
			
		||||
#else
 | 
			
		||||
#define ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// `AtomicHook` is a helper class, templatized on a raw function pointer type,
 | 
			
		||||
// for implementing Abseil customization hooks.  It is a callable object that
 | 
			
		||||
// dispatches to the registered hook.  Objects of type `AtomicHook` must have
 | 
			
		||||
| 
						 | 
				
			
			@ -45,8 +59,11 @@ class AtomicHook;
 | 
			
		|||
// A default constructed object performs a no-op (and returns a default
 | 
			
		||||
// constructed object) if no hook has been registered.
 | 
			
		||||
//
 | 
			
		||||
// Hooks can be pre-registered via constant initialization, for example,
 | 
			
		||||
// `ABSL_CONST_INIT static AtomicHook<void(*)()> my_hook(DefaultAction);`
 | 
			
		||||
// Hooks can be pre-registered via constant initialization, for example:
 | 
			
		||||
//
 | 
			
		||||
// ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES static AtomicHook<void(*)()>
 | 
			
		||||
//     my_hook(DefaultAction);
 | 
			
		||||
//
 | 
			
		||||
// and then changed at runtime via a call to `Store()`.
 | 
			
		||||
//
 | 
			
		||||
// Reads and writes guarantee memory_order_acquire/memory_order_release
 | 
			
		||||
| 
						 | 
				
			
			@ -65,11 +82,15 @@ class AtomicHook<ReturnType (*)(Args...)> {
 | 
			
		|||
#if ABSL_HAVE_WORKING_ATOMIC_POINTER && ABSL_HAVE_WORKING_CONSTEXPR_STATIC_INIT
 | 
			
		||||
  explicit constexpr AtomicHook(FnPtr default_fn)
 | 
			
		||||
      : hook_(default_fn), default_fn_(default_fn) {}
 | 
			
		||||
#elif ABSL_HAVE_WORKING_CONSTEXPR_STATIC_INIT
 | 
			
		||||
  explicit constexpr AtomicHook(FnPtr default_fn)
 | 
			
		||||
      : hook_(kUninitialized), default_fn_(default_fn) {}
 | 
			
		||||
#else
 | 
			
		||||
  // On MSVC, this function sometimes executes after dynamic initialization =(.
 | 
			
		||||
  // If a non-zero `hook_` has been installed by a dynamic initializer, we want
 | 
			
		||||
  // to preserve it.  If not, `hook_` will be zero initialized and we have no
 | 
			
		||||
  // need to set it to `kUninitialized`.
 | 
			
		||||
  // As of January 2020, on all known versions of MSVC this constructor runs in
 | 
			
		||||
  // the global constructor sequence.  If `Store()` is called by a dynamic
 | 
			
		||||
  // initializer, we want to preserve the value, even if this constructor runs
 | 
			
		||||
  // after the call to `Store()`.  If not, `hook_` will be
 | 
			
		||||
  // zero-initialized by the linker and we have no need to set it.
 | 
			
		||||
  // https://developercommunity.visualstudio.com/content/problem/336946/class-with-constexpr-constructor-not-using-static.html
 | 
			
		||||
  explicit constexpr AtomicHook(FnPtr default_fn)
 | 
			
		||||
      : /* hook_(deliberately omitted), */ default_fn_(default_fn) {
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -27,7 +27,9 @@ int value = 0;
 | 
			
		|||
void TestHook(int x) { value = x; }
 | 
			
		||||
 | 
			
		||||
TEST(AtomicHookTest, NoDefaultFunction) {
 | 
			
		||||
  ABSL_CONST_INIT static absl::base_internal::AtomicHook<void(*)(int)> hook;
 | 
			
		||||
  ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES static absl::base_internal::AtomicHook<
 | 
			
		||||
      void (*)(int)>
 | 
			
		||||
      hook;
 | 
			
		||||
  value = 0;
 | 
			
		||||
 | 
			
		||||
  // Test the default DummyFunction.
 | 
			
		||||
| 
						 | 
				
			
			@ -53,8 +55,9 @@ TEST(AtomicHookTest, NoDefaultFunction) {
 | 
			
		|||
 | 
			
		||||
TEST(AtomicHookTest, WithDefaultFunction) {
 | 
			
		||||
  // Set the default value to TestHook at compile-time.
 | 
			
		||||
  ABSL_CONST_INIT static absl::base_internal::AtomicHook<void (*)(int)> hook(
 | 
			
		||||
      TestHook);
 | 
			
		||||
  ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES static absl::base_internal::AtomicHook<
 | 
			
		||||
      void (*)(int)>
 | 
			
		||||
      hook(TestHook);
 | 
			
		||||
  value = 0;
 | 
			
		||||
 | 
			
		||||
  // Test the default value is TestHook.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -21,7 +21,8 @@ namespace absl {
 | 
			
		|||
ABSL_NAMESPACE_BEGIN
 | 
			
		||||
namespace atomic_hook_internal {
 | 
			
		||||
 | 
			
		||||
ABSL_CONST_INIT absl::base_internal::AtomicHook<VoidF> func(DefaultFunc);
 | 
			
		||||
ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<VoidF>
 | 
			
		||||
    func(DefaultFunc);
 | 
			
		||||
ABSL_CONST_INIT int default_func_calls = 0;
 | 
			
		||||
void DefaultFunc() { default_func_calls++; }
 | 
			
		||||
void RegisterFunc(VoidF f) { func.Store(f); }
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -71,10 +71,12 @@
 | 
			
		|||
// Explicitly #error out when not ABSL_LOW_LEVEL_WRITE_SUPPORTED, except for a
 | 
			
		||||
// whitelisted set of platforms for which we expect not to be able to raw log.
 | 
			
		||||
 | 
			
		||||
ABSL_CONST_INIT static absl::base_internal::AtomicHook<
 | 
			
		||||
    absl::raw_logging_internal::LogPrefixHook> log_prefix_hook;
 | 
			
		||||
ABSL_CONST_INIT static absl::base_internal::AtomicHook<
 | 
			
		||||
    absl::raw_logging_internal::AbortHook> abort_hook;
 | 
			
		||||
ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES static absl::base_internal::AtomicHook<
 | 
			
		||||
    absl::raw_logging_internal::LogPrefixHook>
 | 
			
		||||
    log_prefix_hook;
 | 
			
		||||
ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES static absl::base_internal::AtomicHook<
 | 
			
		||||
    absl::raw_logging_internal::AbortHook>
 | 
			
		||||
    abort_hook;
 | 
			
		||||
 | 
			
		||||
#ifdef ABSL_LOW_LEVEL_WRITE_SUPPORTED
 | 
			
		||||
static const char kTruncated[] = " ... (message truncated)\n";
 | 
			
		||||
| 
						 | 
				
			
			@ -225,7 +227,7 @@ bool RawLoggingFullySupported() {
 | 
			
		|||
#endif  // !ABSL_LOW_LEVEL_WRITE_SUPPORTED
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
ABSL_CONST_INIT ABSL_DLL
 | 
			
		||||
ABSL_DLL ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
 | 
			
		||||
    absl::base_internal::AtomicHook<InternalLogFunction>
 | 
			
		||||
        internal_log_function(DefaultInternalLog);
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -170,7 +170,8 @@ using InternalLogFunction = void (*)(absl::LogSeverity severity,
 | 
			
		|||
                                     const char* file, int line,
 | 
			
		||||
                                     const std::string& message);
 | 
			
		||||
 | 
			
		||||
ABSL_DLL extern base_internal::AtomicHook<InternalLogFunction>
 | 
			
		||||
ABSL_DLL ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES extern base_internal::AtomicHook<
 | 
			
		||||
    InternalLogFunction>
 | 
			
		||||
    internal_log_function;
 | 
			
		||||
 | 
			
		||||
void RegisterInternalLogFunction(InternalLogFunction func);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -57,8 +57,8 @@ namespace absl {
 | 
			
		|||
ABSL_NAMESPACE_BEGIN
 | 
			
		||||
namespace base_internal {
 | 
			
		||||
 | 
			
		||||
ABSL_CONST_INIT static base_internal::AtomicHook<void (*)(const void *lock,
 | 
			
		||||
                                                          int64_t wait_cycles)>
 | 
			
		||||
ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES static base_internal::AtomicHook<void (*)(
 | 
			
		||||
    const void *lock, int64_t wait_cycles)>
 | 
			
		||||
    submit_profile_data;
 | 
			
		||||
 | 
			
		||||
void RegisterSpinLockProfiler(void (*fn)(const void *contendedlock,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -403,8 +403,9 @@ class btree_node {
 | 
			
		|||
  //   // TODO(ezb): right now, `start` is always 0. Update insertion/merge
 | 
			
		||||
  //   // logic to allow for floating storage within nodes.
 | 
			
		||||
  //   field_type start;
 | 
			
		||||
  //   // The count of the number of populated values in the node.
 | 
			
		||||
  //   field_type count;
 | 
			
		||||
  //   // The index after the last populated value in `values`. Currently, this
 | 
			
		||||
  //   // is the same as the count of values.
 | 
			
		||||
  //   field_type finish;
 | 
			
		||||
  //   // The maximum number of values the node can hold. This is an integer in
 | 
			
		||||
  //   // [1, kNodeValues] for root leaf nodes, kNodeValues for non-root leaf
 | 
			
		||||
  //   // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal
 | 
			
		||||
| 
						 | 
				
			
			@ -415,7 +416,7 @@ class btree_node {
 | 
			
		|||
  //
 | 
			
		||||
  //   // The array of values. The capacity is `max_count` for leaf nodes and
 | 
			
		||||
  //   // kNodeValues for internal nodes. Only the values in
 | 
			
		||||
  //   // [start, start + count) have been initialized and are valid.
 | 
			
		||||
  //   // [start, finish) have been initialized and are valid.
 | 
			
		||||
  //   slot_type values[max_count];
 | 
			
		||||
  //
 | 
			
		||||
  //   // The array of child pointers. The keys in children[i] are all less
 | 
			
		||||
| 
						 | 
				
			
			@ -446,7 +447,7 @@ class btree_node {
 | 
			
		|||
                                                       slot_type, btree_node *>;
 | 
			
		||||
  constexpr static size_type SizeWithNValues(size_type n) {
 | 
			
		||||
    return layout_type(/*parent*/ 1,
 | 
			
		||||
                       /*position, start, count, max_count*/ 4,
 | 
			
		||||
                       /*position, start, finish, max_count*/ 4,
 | 
			
		||||
                       /*values*/ n,
 | 
			
		||||
                       /*children*/ 0)
 | 
			
		||||
        .AllocSize();
 | 
			
		||||
| 
						 | 
				
			
			@ -483,13 +484,13 @@ class btree_node {
 | 
			
		|||
  // Leaves can have less than kNodeValues values.
 | 
			
		||||
  constexpr static layout_type LeafLayout(const int max_values = kNodeValues) {
 | 
			
		||||
    return layout_type(/*parent*/ 1,
 | 
			
		||||
                       /*position, start, count, max_count*/ 4,
 | 
			
		||||
                       /*position, start, finish, max_count*/ 4,
 | 
			
		||||
                       /*values*/ max_values,
 | 
			
		||||
                       /*children*/ 0);
 | 
			
		||||
  }
 | 
			
		||||
  constexpr static layout_type InternalLayout() {
 | 
			
		||||
    return layout_type(/*parent*/ 1,
 | 
			
		||||
                       /*position, start, count, max_count*/ 4,
 | 
			
		||||
                       /*position, start, finish, max_count*/ 4,
 | 
			
		||||
                       /*values*/ kNodeValues,
 | 
			
		||||
                       /*children*/ kNodeValues + 1);
 | 
			
		||||
  }
 | 
			
		||||
| 
						 | 
				
			
			@ -515,12 +516,14 @@ class btree_node {
 | 
			
		|||
        reinterpret_cast<const char *>(this));
 | 
			
		||||
  }
 | 
			
		||||
  void set_parent(btree_node *p) { *GetField<0>() = p; }
 | 
			
		||||
  field_type &mutable_count() { return GetField<1>()[2]; }
 | 
			
		||||
  field_type &mutable_finish() { return GetField<1>()[2]; }
 | 
			
		||||
  slot_type *slot(int i) { return &GetField<2>()[i]; }
 | 
			
		||||
  slot_type *start_slot() { return slot(start()); }
 | 
			
		||||
  slot_type *finish_slot() { return slot(finish()); }
 | 
			
		||||
  const slot_type *slot(int i) const { return &GetField<2>()[i]; }
 | 
			
		||||
  void set_position(field_type v) { GetField<1>()[0] = v; }
 | 
			
		||||
  void set_start(field_type v) { GetField<1>()[1] = v; }
 | 
			
		||||
  void set_count(field_type v) { GetField<1>()[2] = v; }
 | 
			
		||||
  void set_finish(field_type v) { GetField<1>()[2] = v; }
 | 
			
		||||
  // This method is only called by the node init methods.
 | 
			
		||||
  void set_max_count(field_type v) { GetField<1>()[3] = v; }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -533,10 +536,20 @@ class btree_node {
 | 
			
		|||
  field_type position() const { return GetField<1>()[0]; }
 | 
			
		||||
 | 
			
		||||
  // Getter for the offset of the first value in the `values` array.
 | 
			
		||||
  field_type start() const { return GetField<1>()[1]; }
 | 
			
		||||
  field_type start() const {
 | 
			
		||||
    // TODO(ezb): when floating storage is implemented, return GetField<1>()[1];
 | 
			
		||||
    assert(GetField<1>()[1] == 0);
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Getter for the offset after the last value in the `values` array.
 | 
			
		||||
  field_type finish() const { return GetField<1>()[2]; }
 | 
			
		||||
 | 
			
		||||
  // Getters for the number of values stored in this node.
 | 
			
		||||
  field_type count() const { return GetField<1>()[2]; }
 | 
			
		||||
  field_type count() const {
 | 
			
		||||
    assert(finish() >= start());
 | 
			
		||||
    return finish() - start();
 | 
			
		||||
  }
 | 
			
		||||
  field_type max_count() const {
 | 
			
		||||
    // Internal nodes have max_count==kInternalNodeMaxCount.
 | 
			
		||||
    // Leaf nodes have max_count in [1, kNodeValues].
 | 
			
		||||
| 
						 | 
				
			
			@ -564,6 +577,7 @@ class btree_node {
 | 
			
		|||
 | 
			
		||||
  // Getters/setter for the child at position i in the node.
 | 
			
		||||
  btree_node *child(int i) const { return GetField<3>()[i]; }
 | 
			
		||||
  btree_node *start_child() const { return child(start()); }
 | 
			
		||||
  btree_node *&mutable_child(int i) { return GetField<3>()[i]; }
 | 
			
		||||
  void clear_child(int i) {
 | 
			
		||||
    absl::container_internal::SanitizerPoisonObject(&mutable_child(i));
 | 
			
		||||
| 
						 | 
				
			
			@ -596,14 +610,14 @@ class btree_node {
 | 
			
		|||
  template <typename K, typename Compare>
 | 
			
		||||
  SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value>
 | 
			
		||||
  linear_search(const K &k, const Compare &comp) const {
 | 
			
		||||
    return linear_search_impl(k, 0, count(), comp,
 | 
			
		||||
    return linear_search_impl(k, start(), finish(), comp,
 | 
			
		||||
                              btree_is_key_compare_to<Compare, key_type>());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <typename K, typename Compare>
 | 
			
		||||
  SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value>
 | 
			
		||||
  binary_search(const K &k, const Compare &comp) const {
 | 
			
		||||
    return binary_search_impl(k, 0, count(), comp,
 | 
			
		||||
    return binary_search_impl(k, start(), finish(), comp,
 | 
			
		||||
                              btree_is_key_compare_to<Compare, key_type>());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -733,10 +747,10 @@ class btree_node {
 | 
			
		|||
    n->set_parent(parent);
 | 
			
		||||
    n->set_position(0);
 | 
			
		||||
    n->set_start(0);
 | 
			
		||||
    n->set_count(0);
 | 
			
		||||
    n->set_finish(0);
 | 
			
		||||
    n->set_max_count(max_count);
 | 
			
		||||
    absl::container_internal::SanitizerPoisonMemoryRegion(
 | 
			
		||||
        n->slot(0), max_count * sizeof(slot_type));
 | 
			
		||||
        n->start_slot(), max_count * sizeof(slot_type));
 | 
			
		||||
    return n;
 | 
			
		||||
  }
 | 
			
		||||
  static btree_node *init_internal(btree_node *n, btree_node *parent) {
 | 
			
		||||
| 
						 | 
				
			
			@ -745,11 +759,12 @@ class btree_node {
 | 
			
		|||
    // internal.
 | 
			
		||||
    n->set_max_count(kInternalNodeMaxCount);
 | 
			
		||||
    absl::container_internal::SanitizerPoisonMemoryRegion(
 | 
			
		||||
        &n->mutable_child(0), (kNodeValues + 1) * sizeof(btree_node *));
 | 
			
		||||
        &n->mutable_child(n->start()),
 | 
			
		||||
        (kNodeValues + 1) * sizeof(btree_node *));
 | 
			
		||||
    return n;
 | 
			
		||||
  }
 | 
			
		||||
  void destroy(allocator_type *alloc) {
 | 
			
		||||
    for (int i = 0; i < count(); ++i) {
 | 
			
		||||
    for (int i = start(); i < finish(); ++i) {
 | 
			
		||||
      value_destroy(i, alloc);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
| 
						 | 
				
			
			@ -829,6 +844,7 @@ struct btree_iterator {
 | 
			
		|||
  using iterator_category = std::bidirectional_iterator_tag;
 | 
			
		||||
 | 
			
		||||
  btree_iterator() : node(nullptr), position(-1) {}
 | 
			
		||||
  explicit btree_iterator(Node *n) : node(n), position(n->start()) {}
 | 
			
		||||
  btree_iterator(Node *n, int p) : node(n), position(p) {}
 | 
			
		||||
 | 
			
		||||
  // NOTE: this SFINAE allows for implicit conversions from iterator to
 | 
			
		||||
| 
						 | 
				
			
			@ -858,7 +874,7 @@ struct btree_iterator {
 | 
			
		|||
 | 
			
		||||
  // Increment/decrement the iterator.
 | 
			
		||||
  void increment() {
 | 
			
		||||
    if (node->leaf() && ++position < node->count()) {
 | 
			
		||||
    if (node->leaf() && ++position < node->finish()) {
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
    increment_slow();
 | 
			
		||||
| 
						 | 
				
			
			@ -866,7 +882,7 @@ struct btree_iterator {
 | 
			
		|||
  void increment_slow();
 | 
			
		||||
 | 
			
		||||
  void decrement() {
 | 
			
		||||
    if (node->leaf() && --position >= 0) {
 | 
			
		||||
    if (node->leaf() && --position >= node->start()) {
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
    decrement_slow();
 | 
			
		||||
| 
						 | 
				
			
			@ -942,7 +958,7 @@ class btree {
 | 
			
		|||
    node_type *parent;
 | 
			
		||||
    field_type position = 0;
 | 
			
		||||
    field_type start = 0;
 | 
			
		||||
    field_type count = 0;
 | 
			
		||||
    field_type finish = 0;
 | 
			
		||||
    // max_count must be != kInternalNodeMaxCount (so that this node is regarded
 | 
			
		||||
    // as a leaf node). max_count() is never called when the tree is empty.
 | 
			
		||||
    field_type max_count = node_type::kInternalNodeMaxCount + 1;
 | 
			
		||||
| 
						 | 
				
			
			@ -1047,11 +1063,11 @@ class btree {
 | 
			
		|||
  btree &operator=(const btree &x);
 | 
			
		||||
  btree &operator=(btree &&x) noexcept;
 | 
			
		||||
 | 
			
		||||
  iterator begin() { return iterator(leftmost(), 0); }
 | 
			
		||||
  const_iterator begin() const { return const_iterator(leftmost(), 0); }
 | 
			
		||||
  iterator end() { return iterator(rightmost_, rightmost_->count()); }
 | 
			
		||||
  iterator begin() { return iterator(leftmost()); }
 | 
			
		||||
  const_iterator begin() const { return const_iterator(leftmost()); }
 | 
			
		||||
  iterator end() { return iterator(rightmost_, rightmost_->finish()); }
 | 
			
		||||
  const_iterator end() const {
 | 
			
		||||
    return const_iterator(rightmost_, rightmost_->count());
 | 
			
		||||
    return const_iterator(rightmost_, rightmost_->finish());
 | 
			
		||||
  }
 | 
			
		||||
  reverse_iterator rbegin() { return reverse_iterator(end()); }
 | 
			
		||||
  const_reverse_iterator rbegin() const {
 | 
			
		||||
| 
						 | 
				
			
			@ -1367,9 +1383,9 @@ class btree {
 | 
			
		|||
  iterator internal_emplace(iterator iter, Args &&... args);
 | 
			
		||||
 | 
			
		||||
  // Returns an iterator pointing to the first value >= the value "iter" is
 | 
			
		||||
  // pointing at. Note that "iter" might be pointing to an invalid location as
 | 
			
		||||
  // iter.position == iter.node->count(). This routine simply moves iter up in
 | 
			
		||||
  // the tree to a valid location.
 | 
			
		||||
  // pointing at. Note that "iter" might be pointing to an invalid location such
 | 
			
		||||
  // as iter.position == iter.node->finish(). This routine simply moves iter up
 | 
			
		||||
  // in the tree to a valid location.
 | 
			
		||||
  // Requires: iter.node is non-null.
 | 
			
		||||
  template <typename IterType>
 | 
			
		||||
  static IterType internal_last(IterType iter);
 | 
			
		||||
| 
						 | 
				
			
			@ -1422,7 +1438,7 @@ class btree {
 | 
			
		|||
      return node_stats(1, 0);
 | 
			
		||||
    }
 | 
			
		||||
    node_stats res(0, 1);
 | 
			
		||||
    for (int i = 0; i <= node->count(); ++i) {
 | 
			
		||||
    for (int i = node->start(); i <= node->finish(); ++i) {
 | 
			
		||||
      res += internal_stats(node->child(i));
 | 
			
		||||
    }
 | 
			
		||||
    return res;
 | 
			
		||||
| 
						 | 
				
			
			@ -1456,20 +1472,21 @@ template <typename... Args>
 | 
			
		|||
inline void btree_node<P>::emplace_value(const size_type i,
 | 
			
		||||
                                         allocator_type *alloc,
 | 
			
		||||
                                         Args &&... args) {
 | 
			
		||||
  assert(i <= count());
 | 
			
		||||
  assert(i >= start());
 | 
			
		||||
  assert(i <= finish());
 | 
			
		||||
  // Shift old values to create space for new value and then construct it in
 | 
			
		||||
  // place.
 | 
			
		||||
  if (i < count()) {
 | 
			
		||||
    value_init(count(), alloc, slot(count() - 1));
 | 
			
		||||
    for (size_type j = count() - 1; j > i; --j)
 | 
			
		||||
  if (i < finish()) {
 | 
			
		||||
    value_init(finish(), alloc, slot(finish() - 1));
 | 
			
		||||
    for (size_type j = finish() - 1; j > i; --j)
 | 
			
		||||
      params_type::move(alloc, slot(j - 1), slot(j));
 | 
			
		||||
    value_destroy(i, alloc);
 | 
			
		||||
  }
 | 
			
		||||
  value_init(i, alloc, std::forward<Args>(args)...);
 | 
			
		||||
  set_count(count() + 1);
 | 
			
		||||
  set_finish(finish() + 1);
 | 
			
		||||
 | 
			
		||||
  if (!leaf() && count() > i + 1) {
 | 
			
		||||
    for (int j = count(); j > i + 1; --j) {
 | 
			
		||||
  if (!leaf() && finish() > i + 1) {
 | 
			
		||||
    for (int j = finish(); j > i + 1; --j) {
 | 
			
		||||
      set_child(j, child(j - 1));
 | 
			
		||||
    }
 | 
			
		||||
    clear_child(i + 1);
 | 
			
		||||
| 
						 | 
				
			
			@ -1478,12 +1495,12 @@ inline void btree_node<P>::emplace_value(const size_type i,
 | 
			
		|||
 | 
			
		||||
template <typename P>
 | 
			
		||||
inline void btree_node<P>::remove_value(const int i, allocator_type *alloc) {
 | 
			
		||||
  if (!leaf() && count() > i + 1) {
 | 
			
		||||
  if (!leaf() && finish() > i + 1) {
 | 
			
		||||
    assert(child(i + 1)->count() == 0);
 | 
			
		||||
    for (size_type j = i + 1; j < count(); ++j) {
 | 
			
		||||
    for (size_type j = i + 1; j < finish(); ++j) {
 | 
			
		||||
      set_child(j, child(j + 1));
 | 
			
		||||
    }
 | 
			
		||||
    clear_child(count());
 | 
			
		||||
    clear_child(finish());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  remove_values_ignore_children(i, /*to_erase=*/1, alloc);
 | 
			
		||||
| 
						 | 
				
			
			@ -1492,9 +1509,9 @@ inline void btree_node<P>::remove_value(const int i, allocator_type *alloc) {
 | 
			
		|||
template <typename P>
 | 
			
		||||
inline void btree_node<P>::remove_values_ignore_children(
 | 
			
		||||
    const int i, const int to_erase, allocator_type *alloc) {
 | 
			
		||||
  params_type::move(alloc, slot(i + to_erase), slot(count()), slot(i));
 | 
			
		||||
  value_destroy_n(count() - to_erase, to_erase, alloc);
 | 
			
		||||
  set_count(count() - to_erase);
 | 
			
		||||
  params_type::move(alloc, slot(i + to_erase), finish_slot(), slot(i));
 | 
			
		||||
  value_destroy_n(finish() - to_erase, to_erase, alloc);
 | 
			
		||||
  set_finish(finish() - to_erase);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename P>
 | 
			
		||||
| 
						 | 
				
			
			@ -1508,37 +1525,38 @@ void btree_node<P>::rebalance_right_to_left(const int to_move,
 | 
			
		|||
  assert(to_move <= right->count());
 | 
			
		||||
 | 
			
		||||
  // 1) Move the delimiting value in the parent to the left node.
 | 
			
		||||
  value_init(count(), alloc, parent()->slot(position()));
 | 
			
		||||
  value_init(finish(), alloc, parent()->slot(position()));
 | 
			
		||||
 | 
			
		||||
  // 2) Move the (to_move - 1) values from the right node to the left node.
 | 
			
		||||
  right->uninitialized_move_n(to_move - 1, 0, count() + 1, this, alloc);
 | 
			
		||||
  right->uninitialized_move_n(to_move - 1, right->start(), finish() + 1, this,
 | 
			
		||||
                              alloc);
 | 
			
		||||
 | 
			
		||||
  // 3) Move the new delimiting value to the parent from the right node.
 | 
			
		||||
  params_type::move(alloc, right->slot(to_move - 1),
 | 
			
		||||
                    parent()->slot(position()));
 | 
			
		||||
 | 
			
		||||
  // 4) Shift the values in the right node to their correct position.
 | 
			
		||||
  params_type::move(alloc, right->slot(to_move), right->slot(right->count()),
 | 
			
		||||
                    right->slot(0));
 | 
			
		||||
  params_type::move(alloc, right->slot(to_move), right->finish_slot(),
 | 
			
		||||
                    right->start_slot());
 | 
			
		||||
 | 
			
		||||
  // 5) Destroy the now-empty to_move entries in the right node.
 | 
			
		||||
  right->value_destroy_n(right->count() - to_move, to_move, alloc);
 | 
			
		||||
  right->value_destroy_n(right->finish() - to_move, to_move, alloc);
 | 
			
		||||
 | 
			
		||||
  if (!leaf()) {
 | 
			
		||||
    // Move the child pointers from the right to the left node.
 | 
			
		||||
    for (int i = 0; i < to_move; ++i) {
 | 
			
		||||
      init_child(count() + i + 1, right->child(i));
 | 
			
		||||
      init_child(finish() + i + 1, right->child(i));
 | 
			
		||||
    }
 | 
			
		||||
    for (int i = 0; i <= right->count() - to_move; ++i) {
 | 
			
		||||
    for (int i = right->start(); i <= right->finish() - to_move; ++i) {
 | 
			
		||||
      assert(i + to_move <= right->max_count());
 | 
			
		||||
      right->init_child(i, right->child(i + to_move));
 | 
			
		||||
      right->clear_child(i + to_move);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Fixup the counts on the left and right nodes.
 | 
			
		||||
  set_count(count() + to_move);
 | 
			
		||||
  right->set_count(right->count() - to_move);
 | 
			
		||||
  // Fixup `finish` on the left and right nodes.
 | 
			
		||||
  set_finish(finish() + to_move);
 | 
			
		||||
  right->set_finish(right->finish() - to_move);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename P>
 | 
			
		||||
| 
						 | 
				
			
			@ -1562,11 +1580,11 @@ void btree_node<P>::rebalance_left_to_right(const int to_move,
 | 
			
		|||
    // the new to_move entries from the parent and left node.
 | 
			
		||||
 | 
			
		||||
    // 1) Shift existing values in the right node to their correct positions.
 | 
			
		||||
    right->uninitialized_move_n(to_move, right->count() - to_move,
 | 
			
		||||
                                right->count(), right, alloc);
 | 
			
		||||
    for (slot_type *src = right->slot(right->count() - to_move - 1),
 | 
			
		||||
                   *dest = right->slot(right->count() - 1),
 | 
			
		||||
                   *end = right->slot(0);
 | 
			
		||||
    right->uninitialized_move_n(to_move, right->finish() - to_move,
 | 
			
		||||
                                right->finish(), right, alloc);
 | 
			
		||||
    for (slot_type *src = right->slot(right->finish() - to_move - 1),
 | 
			
		||||
                   *dest = right->slot(right->finish() - 1),
 | 
			
		||||
                   *end = right->start_slot();
 | 
			
		||||
         src >= end; --src, --dest) {
 | 
			
		||||
      params_type::move(alloc, src, dest);
 | 
			
		||||
    }
 | 
			
		||||
| 
						 | 
				
			
			@ -1576,14 +1594,15 @@ void btree_node<P>::rebalance_left_to_right(const int to_move,
 | 
			
		|||
                      right->slot(to_move - 1));
 | 
			
		||||
 | 
			
		||||
    // 3) Move the (to_move - 1) values from the left node to the right node.
 | 
			
		||||
    params_type::move(alloc, slot(count() - (to_move - 1)), slot(count()),
 | 
			
		||||
                      right->slot(0));
 | 
			
		||||
    params_type::move(alloc, slot(finish() - (to_move - 1)), finish_slot(),
 | 
			
		||||
                      right->start_slot());
 | 
			
		||||
  } else {
 | 
			
		||||
    // The right node does not have enough initialized space to hold the new
 | 
			
		||||
    // to_move entries, so part of them will move to uninitialized space.
 | 
			
		||||
 | 
			
		||||
    // 1) Shift existing values in the right node to their correct positions.
 | 
			
		||||
    right->uninitialized_move_n(right->count(), 0, to_move, right, alloc);
 | 
			
		||||
    right->uninitialized_move_n(right->count(), right->start(),
 | 
			
		||||
                                right->start() + to_move, right, alloc);
 | 
			
		||||
 | 
			
		||||
    // 2) Move the delimiting value in the parent to the right node.
 | 
			
		||||
    right->value_init(to_move - 1, alloc, parent()->slot(position()));
 | 
			
		||||
| 
						 | 
				
			
			@ -1591,33 +1610,35 @@ void btree_node<P>::rebalance_left_to_right(const int to_move,
 | 
			
		|||
    // 3) Move the (to_move - 1) values from the left node to the right node.
 | 
			
		||||
    const size_type uninitialized_remaining = to_move - right->count() - 1;
 | 
			
		||||
    uninitialized_move_n(uninitialized_remaining,
 | 
			
		||||
                         count() - uninitialized_remaining, right->count(),
 | 
			
		||||
                         finish() - uninitialized_remaining, right->finish(),
 | 
			
		||||
                         right, alloc);
 | 
			
		||||
    params_type::move(alloc, slot(count() - (to_move - 1)),
 | 
			
		||||
                      slot(count() - uninitialized_remaining), right->slot(0));
 | 
			
		||||
    params_type::move(alloc, slot(finish() - (to_move - 1)),
 | 
			
		||||
                      slot(finish() - uninitialized_remaining),
 | 
			
		||||
                      right->start_slot());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // 4) Move the new delimiting value to the parent from the left node.
 | 
			
		||||
  params_type::move(alloc, slot(count() - to_move), parent()->slot(position()));
 | 
			
		||||
  params_type::move(alloc, slot(finish() - to_move),
 | 
			
		||||
                    parent()->slot(position()));
 | 
			
		||||
 | 
			
		||||
  // 5) Destroy the now-empty to_move entries in the left node.
 | 
			
		||||
  value_destroy_n(count() - to_move, to_move, alloc);
 | 
			
		||||
  value_destroy_n(finish() - to_move, to_move, alloc);
 | 
			
		||||
 | 
			
		||||
  if (!leaf()) {
 | 
			
		||||
    // Move the child pointers from the left to the right node.
 | 
			
		||||
    for (int i = right->count(); i >= 0; --i) {
 | 
			
		||||
    for (int i = right->finish(); i >= right->start(); --i) {
 | 
			
		||||
      right->init_child(i + to_move, right->child(i));
 | 
			
		||||
      right->clear_child(i);
 | 
			
		||||
    }
 | 
			
		||||
    for (int i = 1; i <= to_move; ++i) {
 | 
			
		||||
      right->init_child(i - 1, child(count() - to_move + i));
 | 
			
		||||
      clear_child(count() - to_move + i);
 | 
			
		||||
      right->init_child(i - 1, child(finish() - to_move + i));
 | 
			
		||||
      clear_child(finish() - to_move + i);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Fixup the counts on the left and right nodes.
 | 
			
		||||
  set_count(count() - to_move);
 | 
			
		||||
  right->set_count(right->count() + to_move);
 | 
			
		||||
  set_finish(finish() - to_move);
 | 
			
		||||
  right->set_finish(right->finish() + to_move);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename P>
 | 
			
		||||
| 
						 | 
				
			
			@ -1630,33 +1651,34 @@ void btree_node<P>::split(const int insert_position, btree_node *dest,
 | 
			
		|||
  // inserting at the beginning of the left node then bias the split to put
 | 
			
		||||
  // more values on the right node. If we're inserting at the end of the
 | 
			
		||||
  // right node then bias the split to put more values on the left node.
 | 
			
		||||
  if (insert_position == 0) {
 | 
			
		||||
    dest->set_count(count() - 1);
 | 
			
		||||
  if (insert_position == start()) {
 | 
			
		||||
    dest->set_finish(dest->start() + finish() - 1);
 | 
			
		||||
  } else if (insert_position == kNodeValues) {
 | 
			
		||||
    dest->set_count(0);
 | 
			
		||||
    dest->set_finish(dest->start());
 | 
			
		||||
  } else {
 | 
			
		||||
    dest->set_count(count() / 2);
 | 
			
		||||
    dest->set_finish(dest->start() + count() / 2);
 | 
			
		||||
  }
 | 
			
		||||
  set_count(count() - dest->count());
 | 
			
		||||
  set_finish(finish() - dest->count());
 | 
			
		||||
  assert(count() >= 1);
 | 
			
		||||
 | 
			
		||||
  // Move values from the left sibling to the right sibling.
 | 
			
		||||
  uninitialized_move_n(dest->count(), count(), 0, dest, alloc);
 | 
			
		||||
  uninitialized_move_n(dest->count(), finish(), dest->start(), dest, alloc);
 | 
			
		||||
 | 
			
		||||
  // Destroy the now-empty entries in the left node.
 | 
			
		||||
  value_destroy_n(count(), dest->count(), alloc);
 | 
			
		||||
  value_destroy_n(finish(), dest->count(), alloc);
 | 
			
		||||
 | 
			
		||||
  // The split key is the largest value in the left sibling.
 | 
			
		||||
  set_count(count() - 1);
 | 
			
		||||
  parent()->emplace_value(position(), alloc, slot(count()));
 | 
			
		||||
  value_destroy(count(), alloc);
 | 
			
		||||
  --mutable_finish();
 | 
			
		||||
  parent()->emplace_value(position(), alloc, finish_slot());
 | 
			
		||||
  value_destroy(finish(), alloc);
 | 
			
		||||
  parent()->init_child(position() + 1, dest);
 | 
			
		||||
 | 
			
		||||
  if (!leaf()) {
 | 
			
		||||
    for (int i = 0; i <= dest->count(); ++i) {
 | 
			
		||||
      assert(child(count() + i + 1) != nullptr);
 | 
			
		||||
      dest->init_child(i, child(count() + i + 1));
 | 
			
		||||
      clear_child(count() + i + 1);
 | 
			
		||||
    for (int i = dest->start(), j = finish() + 1; i <= dest->finish();
 | 
			
		||||
         ++i, ++j) {
 | 
			
		||||
      assert(child(j) != nullptr);
 | 
			
		||||
      dest->init_child(i, child(j));
 | 
			
		||||
      clear_child(j);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -1667,25 +1689,26 @@ void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
 | 
			
		|||
  assert(position() + 1 == src->position());
 | 
			
		||||
 | 
			
		||||
  // Move the delimiting value to the left node.
 | 
			
		||||
  value_init(count(), alloc, parent()->slot(position()));
 | 
			
		||||
  value_init(finish(), alloc, parent()->slot(position()));
 | 
			
		||||
 | 
			
		||||
  // Move the values from the right to the left node.
 | 
			
		||||
  src->uninitialized_move_n(src->count(), 0, count() + 1, this, alloc);
 | 
			
		||||
  src->uninitialized_move_n(src->count(), src->start(), finish() + 1, this,
 | 
			
		||||
                            alloc);
 | 
			
		||||
 | 
			
		||||
  // Destroy the now-empty entries in the right node.
 | 
			
		||||
  src->value_destroy_n(0, src->count(), alloc);
 | 
			
		||||
  src->value_destroy_n(src->start(), src->count(), alloc);
 | 
			
		||||
 | 
			
		||||
  if (!leaf()) {
 | 
			
		||||
    // Move the child pointers from the right to the left node.
 | 
			
		||||
    for (int i = 0; i <= src->count(); ++i) {
 | 
			
		||||
      init_child(count() + i + 1, src->child(i));
 | 
			
		||||
    for (int i = src->start(), j = finish() + 1; i <= src->finish(); ++i, ++j) {
 | 
			
		||||
      init_child(j, src->child(i));
 | 
			
		||||
      src->clear_child(i);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Fixup the counts on the src and dest nodes.
 | 
			
		||||
  set_count(1 + count() + src->count());
 | 
			
		||||
  src->set_count(0);
 | 
			
		||||
  // Fixup `finish` on the src and dest nodes.
 | 
			
		||||
  set_finish(start() + 1 + count() + src->count());
 | 
			
		||||
  src->set_finish(src->start());
 | 
			
		||||
 | 
			
		||||
  // Remove the value on the parent node.
 | 
			
		||||
  parent()->remove_value(position(), alloc);
 | 
			
		||||
| 
						 | 
				
			
			@ -1703,38 +1726,40 @@ void btree_node<P>::swap(btree_node *x, allocator_type *alloc) {
 | 
			
		|||
  }
 | 
			
		||||
 | 
			
		||||
  // Swap the values.
 | 
			
		||||
  for (slot_type *a = smaller->slot(0), *b = larger->slot(0),
 | 
			
		||||
                 *end = a + smaller->count();
 | 
			
		||||
  for (slot_type *a = smaller->start_slot(), *b = larger->start_slot(),
 | 
			
		||||
                 *end = smaller->finish_slot();
 | 
			
		||||
       a != end; ++a, ++b) {
 | 
			
		||||
    params_type::swap(alloc, a, b);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Move values that can't be swapped.
 | 
			
		||||
  const size_type to_move = larger->count() - smaller->count();
 | 
			
		||||
  larger->uninitialized_move_n(to_move, smaller->count(), smaller->count(),
 | 
			
		||||
  larger->uninitialized_move_n(to_move, smaller->finish(), smaller->finish(),
 | 
			
		||||
                               smaller, alloc);
 | 
			
		||||
  larger->value_destroy_n(smaller->count(), to_move, alloc);
 | 
			
		||||
  larger->value_destroy_n(smaller->finish(), to_move, alloc);
 | 
			
		||||
 | 
			
		||||
  if (!leaf()) {
 | 
			
		||||
    // Swap the child pointers.
 | 
			
		||||
    std::swap_ranges(&smaller->mutable_child(0),
 | 
			
		||||
                     &smaller->mutable_child(smaller->count() + 1),
 | 
			
		||||
                     &larger->mutable_child(0));
 | 
			
		||||
    std::swap_ranges(&smaller->mutable_child(smaller->start()),
 | 
			
		||||
                     &smaller->mutable_child(smaller->finish() + 1),
 | 
			
		||||
                     &larger->mutable_child(larger->start()));
 | 
			
		||||
    // Update swapped children's parent pointers.
 | 
			
		||||
    int i = 0;
 | 
			
		||||
    for (; i <= smaller->count(); ++i) {
 | 
			
		||||
    int i = smaller->start();
 | 
			
		||||
    int j = larger->start();
 | 
			
		||||
    for (; i <= smaller->finish(); ++i, ++j) {
 | 
			
		||||
      smaller->child(i)->set_parent(smaller);
 | 
			
		||||
      larger->child(i)->set_parent(larger);
 | 
			
		||||
      larger->child(j)->set_parent(larger);
 | 
			
		||||
    }
 | 
			
		||||
    // Move the child pointers that couldn't be swapped.
 | 
			
		||||
    for (; i <= larger->count(); ++i) {
 | 
			
		||||
      smaller->init_child(i, larger->child(i));
 | 
			
		||||
      larger->clear_child(i);
 | 
			
		||||
    for (; j <= larger->finish(); ++i, ++j) {
 | 
			
		||||
      smaller->init_child(i, larger->child(j));
 | 
			
		||||
      larger->clear_child(j);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Swap the counts.
 | 
			
		||||
  swap(mutable_count(), x->mutable_count());
 | 
			
		||||
  // Swap the `finish`s.
 | 
			
		||||
  // TODO(ezb): with floating storage, will also need to swap starts.
 | 
			
		||||
  swap(mutable_finish(), x->mutable_finish());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////
 | 
			
		||||
| 
						 | 
				
			
			@ -1742,23 +1767,23 @@ void btree_node<P>::swap(btree_node *x, allocator_type *alloc) {
 | 
			
		|||
template <typename N, typename R, typename P>
 | 
			
		||||
void btree_iterator<N, R, P>::increment_slow() {
 | 
			
		||||
  if (node->leaf()) {
 | 
			
		||||
    assert(position >= node->count());
 | 
			
		||||
    assert(position >= node->finish());
 | 
			
		||||
    btree_iterator save(*this);
 | 
			
		||||
    while (position == node->count() && !node->is_root()) {
 | 
			
		||||
    while (position == node->finish() && !node->is_root()) {
 | 
			
		||||
      assert(node->parent()->child(node->position()) == node);
 | 
			
		||||
      position = node->position();
 | 
			
		||||
      node = node->parent();
 | 
			
		||||
    }
 | 
			
		||||
    if (position == node->count()) {
 | 
			
		||||
    if (position == node->finish()) {
 | 
			
		||||
      *this = save;
 | 
			
		||||
    }
 | 
			
		||||
  } else {
 | 
			
		||||
    assert(position < node->count());
 | 
			
		||||
    assert(position < node->finish());
 | 
			
		||||
    node = node->child(position + 1);
 | 
			
		||||
    while (!node->leaf()) {
 | 
			
		||||
      node = node->child(0);
 | 
			
		||||
      node = node->start_child();
 | 
			
		||||
    }
 | 
			
		||||
    position = 0;
 | 
			
		||||
    position = node->start();
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1767,21 +1792,21 @@ void btree_iterator<N, R, P>::decrement_slow() {
 | 
			
		|||
  if (node->leaf()) {
 | 
			
		||||
    assert(position <= -1);
 | 
			
		||||
    btree_iterator save(*this);
 | 
			
		||||
    while (position < 0 && !node->is_root()) {
 | 
			
		||||
    while (position < node->start() && !node->is_root()) {
 | 
			
		||||
      assert(node->parent()->child(node->position()) == node);
 | 
			
		||||
      position = node->position() - 1;
 | 
			
		||||
      node = node->parent();
 | 
			
		||||
    }
 | 
			
		||||
    if (position < 0) {
 | 
			
		||||
    if (position < node->start()) {
 | 
			
		||||
      *this = save;
 | 
			
		||||
    }
 | 
			
		||||
  } else {
 | 
			
		||||
    assert(position >= 0);
 | 
			
		||||
    assert(position >= node->start());
 | 
			
		||||
    node = node->child(position);
 | 
			
		||||
    while (!node->leaf()) {
 | 
			
		||||
      node = node->child(node->count());
 | 
			
		||||
      node = node->child(node->finish());
 | 
			
		||||
    }
 | 
			
		||||
    position = node->count() - 1;
 | 
			
		||||
    position = node->finish() - 1;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -2068,8 +2093,8 @@ auto btree<P>::rebalance_after_delete(iterator iter) -> iterator {
 | 
			
		|||
 | 
			
		||||
  // Adjust our return value. If we're pointing at the end of a node, advance
 | 
			
		||||
  // the iterator.
 | 
			
		||||
  if (res.position == res.node->count()) {
 | 
			
		||||
    res.position = res.node->count() - 1;
 | 
			
		||||
  if (res.position == res.node->finish()) {
 | 
			
		||||
    res.position = res.node->finish() - 1;
 | 
			
		||||
    ++res;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -2101,7 +2126,7 @@ auto btree<P>::erase_range(iterator begin, iterator end)
 | 
			
		|||
  while (size_ > target_size) {
 | 
			
		||||
    if (begin.node->leaf()) {
 | 
			
		||||
      const size_type remaining_to_erase = size_ - target_size;
 | 
			
		||||
      const size_type remaining_in_node = begin.node->count() - begin.position;
 | 
			
		||||
      const size_type remaining_in_node = begin.node->finish() - begin.position;
 | 
			
		||||
      begin = erase_from_leaf_node(
 | 
			
		||||
          begin, (std::min)(remaining_to_erase, remaining_in_node));
 | 
			
		||||
    } else {
 | 
			
		||||
| 
						 | 
				
			
			@ -2124,7 +2149,8 @@ void btree<P>::erase_same_node(iterator begin, iterator end) {
 | 
			
		|||
      internal_clear(node->child(begin.position + i + 1));
 | 
			
		||||
    }
 | 
			
		||||
    // Rotate children after end into new positions.
 | 
			
		||||
    for (size_type i = begin.position + to_erase + 1; i <= node->count(); ++i) {
 | 
			
		||||
    for (size_type i = begin.position + to_erase + 1; i <= node->finish();
 | 
			
		||||
         ++i) {
 | 
			
		||||
      node->set_child(i - to_erase, node->child(i));
 | 
			
		||||
      node->clear_child(i);
 | 
			
		||||
    }
 | 
			
		||||
| 
						 | 
				
			
			@ -2144,8 +2170,8 @@ auto btree<P>::erase_from_leaf_node(iterator begin, size_type to_erase)
 | 
			
		|||
    -> iterator {
 | 
			
		||||
  node_type *node = begin.node;
 | 
			
		||||
  assert(node->leaf());
 | 
			
		||||
  assert(node->count() > begin.position);
 | 
			
		||||
  assert(begin.position + to_erase <= node->count());
 | 
			
		||||
  assert(node->finish() > begin.position);
 | 
			
		||||
  assert(begin.position + to_erase <= node->finish());
 | 
			
		||||
 | 
			
		||||
  node->remove_values_ignore_children(begin.position, to_erase,
 | 
			
		||||
                                      mutable_allocator());
 | 
			
		||||
| 
						 | 
				
			
			@ -2214,7 +2240,7 @@ void btree<P>::verify() const {
 | 
			
		|||
  assert(rightmost_ != nullptr);
 | 
			
		||||
  assert(empty() || size() == internal_verify(root(), nullptr, nullptr));
 | 
			
		||||
  assert(leftmost() == (++const_iterator(root(), -1)).node);
 | 
			
		||||
  assert(rightmost_ == (--const_iterator(root(), root()->count())).node);
 | 
			
		||||
  assert(rightmost_ == (--const_iterator(root(), root()->finish())).node);
 | 
			
		||||
  assert(leftmost()->leaf());
 | 
			
		||||
  assert(rightmost_->leaf());
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -2229,7 +2255,7 @@ void btree<P>::rebalance_or_split(iterator *iter) {
 | 
			
		|||
  // First try to make room on the node by rebalancing.
 | 
			
		||||
  node_type *parent = node->parent();
 | 
			
		||||
  if (node != root()) {
 | 
			
		||||
    if (node->position() > 0) {
 | 
			
		||||
    if (node->position() > parent->start()) {
 | 
			
		||||
      // Try rebalancing with our left sibling.
 | 
			
		||||
      node_type *left = parent->child(node->position() - 1);
 | 
			
		||||
      assert(left->max_count() == kNodeValues);
 | 
			
		||||
| 
						 | 
				
			
			@ -2241,13 +2267,13 @@ void btree<P>::rebalance_or_split(iterator *iter) {
 | 
			
		|||
                      (1 + (insert_position < kNodeValues));
 | 
			
		||||
        to_move = (std::max)(1, to_move);
 | 
			
		||||
 | 
			
		||||
        if (((insert_position - to_move) >= 0) ||
 | 
			
		||||
            ((left->count() + to_move) < kNodeValues)) {
 | 
			
		||||
        if (insert_position - to_move >= node->start() ||
 | 
			
		||||
            left->count() + to_move < kNodeValues) {
 | 
			
		||||
          left->rebalance_right_to_left(to_move, node, mutable_allocator());
 | 
			
		||||
 | 
			
		||||
          assert(node->max_count() - node->count() == to_move);
 | 
			
		||||
          insert_position = insert_position - to_move;
 | 
			
		||||
          if (insert_position < 0) {
 | 
			
		||||
          if (insert_position < node->start()) {
 | 
			
		||||
            insert_position = insert_position + left->count() + 1;
 | 
			
		||||
            node = left;
 | 
			
		||||
          }
 | 
			
		||||
| 
						 | 
				
			
			@ -2258,7 +2284,7 @@ void btree<P>::rebalance_or_split(iterator *iter) {
 | 
			
		|||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (node->position() < parent->count()) {
 | 
			
		||||
    if (node->position() < parent->finish()) {
 | 
			
		||||
      // Try rebalancing with our right sibling.
 | 
			
		||||
      node_type *right = parent->child(node->position() + 1);
 | 
			
		||||
      assert(right->max_count() == kNodeValues);
 | 
			
		||||
| 
						 | 
				
			
			@ -2266,15 +2292,15 @@ void btree<P>::rebalance_or_split(iterator *iter) {
 | 
			
		|||
        // We bias rebalancing based on the position being inserted. If we're
 | 
			
		||||
        // inserting at the beginning of the left node then we bias rebalancing
 | 
			
		||||
        // to fill up the right node.
 | 
			
		||||
        int to_move =
 | 
			
		||||
            (kNodeValues - right->count()) / (1 + (insert_position > 0));
 | 
			
		||||
        int to_move = (kNodeValues - right->count()) /
 | 
			
		||||
                      (1 + (insert_position > node->start()));
 | 
			
		||||
        to_move = (std::max)(1, to_move);
 | 
			
		||||
 | 
			
		||||
        if ((insert_position <= (node->count() - to_move)) ||
 | 
			
		||||
            ((right->count() + to_move) < kNodeValues)) {
 | 
			
		||||
        if (insert_position <= node->finish() - to_move ||
 | 
			
		||||
            right->count() + to_move < kNodeValues) {
 | 
			
		||||
          node->rebalance_left_to_right(to_move, right, mutable_allocator());
 | 
			
		||||
 | 
			
		||||
          if (insert_position > node->count()) {
 | 
			
		||||
          if (insert_position > node->finish()) {
 | 
			
		||||
            insert_position = insert_position - node->count() - 1;
 | 
			
		||||
            node = right;
 | 
			
		||||
          }
 | 
			
		||||
| 
						 | 
				
			
			@ -2297,10 +2323,11 @@ void btree<P>::rebalance_or_split(iterator *iter) {
 | 
			
		|||
    // Create a new root node and set the current root node as the child of the
 | 
			
		||||
    // new root.
 | 
			
		||||
    parent = new_internal_node(parent);
 | 
			
		||||
    parent->init_child(0, root());
 | 
			
		||||
    parent->init_child(parent->start(), root());
 | 
			
		||||
    mutable_root() = parent;
 | 
			
		||||
    // If the former root was a leaf node, then it's now the rightmost node.
 | 
			
		||||
    assert(!parent->child(0)->leaf() || parent->child(0) == rightmost_);
 | 
			
		||||
    assert(!parent->start_child()->leaf() ||
 | 
			
		||||
           parent->start_child() == rightmost_);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Split the node.
 | 
			
		||||
| 
						 | 
				
			
			@ -2314,7 +2341,7 @@ void btree<P>::rebalance_or_split(iterator *iter) {
 | 
			
		|||
    node->split(insert_position, split_node, mutable_allocator());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if (insert_position > node->count()) {
 | 
			
		||||
  if (insert_position > node->finish()) {
 | 
			
		||||
    insert_position = insert_position - node->count() - 1;
 | 
			
		||||
    node = split_node;
 | 
			
		||||
  }
 | 
			
		||||
| 
						 | 
				
			
			@ -2334,22 +2361,22 @@ void btree<P>::merge_nodes(node_type *left, node_type *right) {
 | 
			
		|||
template <typename P>
 | 
			
		||||
bool btree<P>::try_merge_or_rebalance(iterator *iter) {
 | 
			
		||||
  node_type *parent = iter->node->parent();
 | 
			
		||||
  if (iter->node->position() > 0) {
 | 
			
		||||
  if (iter->node->position() > parent->start()) {
 | 
			
		||||
    // Try merging with our left sibling.
 | 
			
		||||
    node_type *left = parent->child(iter->node->position() - 1);
 | 
			
		||||
    assert(left->max_count() == kNodeValues);
 | 
			
		||||
    if ((1 + left->count() + iter->node->count()) <= kNodeValues) {
 | 
			
		||||
    if (1 + left->count() + iter->node->count() <= kNodeValues) {
 | 
			
		||||
      iter->position += 1 + left->count();
 | 
			
		||||
      merge_nodes(left, iter->node);
 | 
			
		||||
      iter->node = left;
 | 
			
		||||
      return true;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  if (iter->node->position() < parent->count()) {
 | 
			
		||||
  if (iter->node->position() < parent->finish()) {
 | 
			
		||||
    // Try merging with our right sibling.
 | 
			
		||||
    node_type *right = parent->child(iter->node->position() + 1);
 | 
			
		||||
    assert(right->max_count() == kNodeValues);
 | 
			
		||||
    if ((1 + iter->node->count() + right->count()) <= kNodeValues) {
 | 
			
		||||
    if (1 + iter->node->count() + right->count() <= kNodeValues) {
 | 
			
		||||
      merge_nodes(iter->node, right);
 | 
			
		||||
      return true;
 | 
			
		||||
    }
 | 
			
		||||
| 
						 | 
				
			
			@ -2357,23 +2384,22 @@ bool btree<P>::try_merge_or_rebalance(iterator *iter) {
 | 
			
		|||
    // we deleted the first element from iter->node and the node is not
 | 
			
		||||
    // empty. This is a small optimization for the common pattern of deleting
 | 
			
		||||
    // from the front of the tree.
 | 
			
		||||
    if ((right->count() > kMinNodeValues) &&
 | 
			
		||||
        ((iter->node->count() == 0) || (iter->position > 0))) {
 | 
			
		||||
    if (right->count() > kMinNodeValues &&
 | 
			
		||||
        (iter->node->count() == 0 || iter->position > iter->node->start())) {
 | 
			
		||||
      int to_move = (right->count() - iter->node->count()) / 2;
 | 
			
		||||
      to_move = (std::min)(to_move, right->count() - 1);
 | 
			
		||||
      iter->node->rebalance_right_to_left(to_move, right, mutable_allocator());
 | 
			
		||||
      return false;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  if (iter->node->position() > 0) {
 | 
			
		||||
  if (iter->node->position() > parent->start()) {
 | 
			
		||||
    // Try rebalancing with our left sibling. We don't perform rebalancing if
 | 
			
		||||
    // we deleted the last element from iter->node and the node is not
 | 
			
		||||
    // empty. This is a small optimization for the common pattern of deleting
 | 
			
		||||
    // from the back of the tree.
 | 
			
		||||
    node_type *left = parent->child(iter->node->position() - 1);
 | 
			
		||||
    if ((left->count() > kMinNodeValues) &&
 | 
			
		||||
        ((iter->node->count() == 0) ||
 | 
			
		||||
         (iter->position < iter->node->count()))) {
 | 
			
		||||
    if (left->count() > kMinNodeValues &&
 | 
			
		||||
        (iter->node->count() == 0 || iter->position < iter->node->finish())) {
 | 
			
		||||
      int to_move = (left->count() - iter->node->count()) / 2;
 | 
			
		||||
      to_move = (std::min)(to_move, left->count() - 1);
 | 
			
		||||
      left->rebalance_left_to_right(to_move, iter->node, mutable_allocator());
 | 
			
		||||
| 
						 | 
				
			
			@ -2396,7 +2422,7 @@ void btree<P>::try_shrink() {
 | 
			
		|||
    mutable_root() = EmptyNode();
 | 
			
		||||
    rightmost_ = EmptyNode();
 | 
			
		||||
  } else {
 | 
			
		||||
    node_type *child = root()->child(0);
 | 
			
		||||
    node_type *child = root()->start_child();
 | 
			
		||||
    child->make_root();
 | 
			
		||||
    delete_internal_node(root());
 | 
			
		||||
    mutable_root() = child;
 | 
			
		||||
| 
						 | 
				
			
			@ -2407,7 +2433,7 @@ template <typename P>
 | 
			
		|||
template <typename IterType>
 | 
			
		||||
inline IterType btree<P>::internal_last(IterType iter) {
 | 
			
		||||
  assert(iter.node != nullptr);
 | 
			
		||||
  while (iter.position == iter.node->count()) {
 | 
			
		||||
  while (iter.position == iter.node->finish()) {
 | 
			
		||||
    iter.position = iter.node->position();
 | 
			
		||||
    iter.node = iter.node->parent();
 | 
			
		||||
    if (iter.node->leaf()) {
 | 
			
		||||
| 
						 | 
				
			
			@ -2463,7 +2489,7 @@ template <typename K>
 | 
			
		|||
inline auto btree<P>::internal_locate_impl(
 | 
			
		||||
    const K &key, std::false_type /* IsCompareTo */) const
 | 
			
		||||
    -> SearchResult<iterator, false> {
 | 
			
		||||
  iterator iter(const_cast<node_type *>(root()), 0);
 | 
			
		||||
  iterator iter(const_cast<node_type *>(root()));
 | 
			
		||||
  for (;;) {
 | 
			
		||||
    iter.position = iter.node->lower_bound(key, key_comp()).value;
 | 
			
		||||
    // NOTE: we don't need to walk all the way down the tree if the keys are
 | 
			
		||||
| 
						 | 
				
			
			@ -2483,7 +2509,7 @@ template <typename K>
 | 
			
		|||
inline auto btree<P>::internal_locate_impl(
 | 
			
		||||
    const K &key, std::true_type /* IsCompareTo */) const
 | 
			
		||||
    -> SearchResult<iterator, true> {
 | 
			
		||||
  iterator iter(const_cast<node_type *>(root()), 0);
 | 
			
		||||
  iterator iter(const_cast<node_type *>(root()));
 | 
			
		||||
  for (;;) {
 | 
			
		||||
    SearchResult<int, true> res = iter.node->lower_bound(key, key_comp());
 | 
			
		||||
    iter.position = res.value;
 | 
			
		||||
| 
						 | 
				
			
			@ -2501,7 +2527,7 @@ inline auto btree<P>::internal_locate_impl(
 | 
			
		|||
template <typename P>
 | 
			
		||||
template <typename K>
 | 
			
		||||
auto btree<P>::internal_lower_bound(const K &key) const -> iterator {
 | 
			
		||||
  iterator iter(const_cast<node_type *>(root()), 0);
 | 
			
		||||
  iterator iter(const_cast<node_type *>(root()));
 | 
			
		||||
  for (;;) {
 | 
			
		||||
    iter.position = iter.node->lower_bound(key, key_comp()).value;
 | 
			
		||||
    if (iter.node->leaf()) {
 | 
			
		||||
| 
						 | 
				
			
			@ -2515,7 +2541,7 @@ auto btree<P>::internal_lower_bound(const K &key) const -> iterator {
 | 
			
		|||
template <typename P>
 | 
			
		||||
template <typename K>
 | 
			
		||||
auto btree<P>::internal_upper_bound(const K &key) const -> iterator {
 | 
			
		||||
  iterator iter(const_cast<node_type *>(root()), 0);
 | 
			
		||||
  iterator iter(const_cast<node_type *>(root()));
 | 
			
		||||
  for (;;) {
 | 
			
		||||
    iter.position = iter.node->upper_bound(key, key_comp());
 | 
			
		||||
    if (iter.node->leaf()) {
 | 
			
		||||
| 
						 | 
				
			
			@ -2546,7 +2572,7 @@ auto btree<P>::internal_find(const K &key) const -> iterator {
 | 
			
		|||
template <typename P>
 | 
			
		||||
void btree<P>::internal_clear(node_type *node) {
 | 
			
		||||
  if (!node->leaf()) {
 | 
			
		||||
    for (int i = 0; i <= node->count(); ++i) {
 | 
			
		||||
    for (int i = node->start(); i <= node->finish(); ++i) {
 | 
			
		||||
      internal_clear(node->child(i));
 | 
			
		||||
    }
 | 
			
		||||
    delete_internal_node(node);
 | 
			
		||||
| 
						 | 
				
			
			@ -2561,23 +2587,23 @@ int btree<P>::internal_verify(const node_type *node, const key_type *lo,
 | 
			
		|||
  assert(node->count() > 0);
 | 
			
		||||
  assert(node->count() <= node->max_count());
 | 
			
		||||
  if (lo) {
 | 
			
		||||
    assert(!compare_keys(node->key(0), *lo));
 | 
			
		||||
    assert(!compare_keys(node->key(node->start()), *lo));
 | 
			
		||||
  }
 | 
			
		||||
  if (hi) {
 | 
			
		||||
    assert(!compare_keys(*hi, node->key(node->count() - 1)));
 | 
			
		||||
    assert(!compare_keys(*hi, node->key(node->finish() - 1)));
 | 
			
		||||
  }
 | 
			
		||||
  for (int i = 1; i < node->count(); ++i) {
 | 
			
		||||
  for (int i = node->start() + 1; i < node->finish(); ++i) {
 | 
			
		||||
    assert(!compare_keys(node->key(i), node->key(i - 1)));
 | 
			
		||||
  }
 | 
			
		||||
  int count = node->count();
 | 
			
		||||
  if (!node->leaf()) {
 | 
			
		||||
    for (int i = 0; i <= node->count(); ++i) {
 | 
			
		||||
    for (int i = node->start(); i <= node->finish(); ++i) {
 | 
			
		||||
      assert(node->child(i) != nullptr);
 | 
			
		||||
      assert(node->child(i)->parent() == node);
 | 
			
		||||
      assert(node->child(i)->position() == i);
 | 
			
		||||
      count +=
 | 
			
		||||
          internal_verify(node->child(i), (i == 0) ? lo : &node->key(i - 1),
 | 
			
		||||
                          (i == node->count()) ? hi : &node->key(i));
 | 
			
		||||
      count += internal_verify(node->child(i),
 | 
			
		||||
                               i == node->start() ? lo : &node->key(i - 1),
 | 
			
		||||
                               i == node->finish() ? hi : &node->key(i));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return count;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -186,15 +186,17 @@ class Flag {
 | 
			
		|||
//
 | 
			
		||||
//   // FLAGS_firstname is a Flag of type `std::string`
 | 
			
		||||
//   std::string first_name = absl::GetFlag(FLAGS_firstname);
 | 
			
		||||
template <typename T>
 | 
			
		||||
ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag) {
 | 
			
		||||
  return flag.Get();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#ifndef NDEBUG
 | 
			
		||||
// We want to validate the type mismatch between type definition and
 | 
			
		||||
// declaration. The lock-free implementation does not allow us to do it,
 | 
			
		||||
// so in debug builds we always use the slower implementation, which always
 | 
			
		||||
// validates the type.
 | 
			
		||||
template <typename T>
 | 
			
		||||
ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag) {
 | 
			
		||||
  return flag.Get();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// We currently need an external linkage for built-in types because shared
 | 
			
		||||
// libraries have different addresses of flags_internal::FlagOps<T> which
 | 
			
		||||
// might cause log spam when checking the same flag type.
 | 
			
		||||
| 
						 | 
				
			
			@ -202,29 +204,6 @@ ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag) {
 | 
			
		|||
  ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag);
 | 
			
		||||
ABSL_FLAGS_INTERNAL_BUILTIN_TYPES(ABSL_FLAGS_INTERNAL_BUILT_IN_EXPORT)
 | 
			
		||||
#undef ABSL_FLAGS_INTERNAL_BUILT_IN_EXPORT
 | 
			
		||||
#else
 | 
			
		||||
template <typename T,
 | 
			
		||||
          typename std::enable_if<
 | 
			
		||||
              !flags_internal::IsAtomicFlagTypeTrait<T>::value, int>::type = 0>
 | 
			
		||||
ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag) {
 | 
			
		||||
  return flag.Get();
 | 
			
		||||
}
 | 
			
		||||
// Overload for `GetFlag()` for types that support lock-free reads.
 | 
			
		||||
template <typename T,
 | 
			
		||||
          typename std::enable_if<
 | 
			
		||||
              flags_internal::IsAtomicFlagTypeTrait<T>::value, int>::type = 0>
 | 
			
		||||
ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag) {
 | 
			
		||||
  // T might not be default constructible.
 | 
			
		||||
  union U {
 | 
			
		||||
    T value;
 | 
			
		||||
    U() {}
 | 
			
		||||
  };
 | 
			
		||||
  U result;
 | 
			
		||||
  if (flag.AtomicGet(&result.value)) {
 | 
			
		||||
    return result.value;
 | 
			
		||||
  }
 | 
			
		||||
  return flag.Get();
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// SetFlag()
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -244,16 +244,32 @@ class FlagImpl {
 | 
			
		|||
  bool TryParse(void** dst, absl::string_view value, std::string* err) const
 | 
			
		||||
      ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
 | 
			
		||||
 | 
			
		||||
#ifndef NDEBUG
 | 
			
		||||
  template <typename T>
 | 
			
		||||
  bool AtomicGet(T* v) const {
 | 
			
		||||
  void Get(T* dst) const {
 | 
			
		||||
    Read(dst, &flags_internal::FlagOps<T>);
 | 
			
		||||
  }
 | 
			
		||||
#else
 | 
			
		||||
  template <typename T, typename std::enable_if<
 | 
			
		||||
                            !flags_internal::IsAtomicFlagTypeTrait<T>::value,
 | 
			
		||||
                            int>::type = 0>
 | 
			
		||||
  void Get(T* dst) const {
 | 
			
		||||
    Read(dst, &flags_internal::FlagOps<T>);
 | 
			
		||||
  }
 | 
			
		||||
  // Overload for `GetFlag()` for types that support lock-free reads.
 | 
			
		||||
  template <typename T,
 | 
			
		||||
            typename std::enable_if<
 | 
			
		||||
                flags_internal::IsAtomicFlagTypeTrait<T>::value, int>::type = 0>
 | 
			
		||||
  void Get(T* dst) const {
 | 
			
		||||
    using U = flags_internal::BestAtomicType<T>;
 | 
			
		||||
    const typename U::type r = atomics_.template load<T>();
 | 
			
		||||
    if (r != U::AtomicInit()) {
 | 
			
		||||
      std::memcpy(static_cast<void*>(v), &r, sizeof(T));
 | 
			
		||||
      return true;
 | 
			
		||||
      std::memcpy(static_cast<void*>(dst), &r, sizeof(T));
 | 
			
		||||
    } else {
 | 
			
		||||
      Read(dst, &flags_internal::FlagOps<T>);
 | 
			
		||||
    }
 | 
			
		||||
    return false;
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  // Mutating access methods
 | 
			
		||||
  void Write(const void* src, const flags_internal::FlagOpFn src_op)
 | 
			
		||||
| 
						 | 
				
			
			@ -397,12 +413,10 @@ class Flag final : public flags_internal::CommandLineFlag {
 | 
			
		|||
    };
 | 
			
		||||
    U u;
 | 
			
		||||
 | 
			
		||||
    impl_.Read(&u.value, &flags_internal::FlagOps<T>);
 | 
			
		||||
    impl_.Get(&u.value);
 | 
			
		||||
    return std::move(u.value);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  bool AtomicGet(T* v) const { return impl_.AtomicGet(v); }
 | 
			
		||||
 | 
			
		||||
  void Set(const T& v) { impl_.Write(&v, &flags_internal::FlagOps<T>); }
 | 
			
		||||
 | 
			
		||||
  void SetCallback(const flags_internal::FlagCallback mutation_callback) {
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -291,10 +291,10 @@ RealType Beta(URBG&& urbg,  // NOLINT(runtime/references)
 | 
			
		|||
// absl::Exponential<T>(bitgen, lambda = 1)
 | 
			
		||||
// -----------------------------------------------------------------------------
 | 
			
		||||
//
 | 
			
		||||
// `absl::Exponential` produces a floating point number for discrete
 | 
			
		||||
// distributions of events occurring continuously and independently at a
 | 
			
		||||
// constant average rate. `T` must be a floating point type, but may be inferred
 | 
			
		||||
// from the type of `lambda`.
 | 
			
		||||
// `absl::Exponential` produces a floating point number representing the
 | 
			
		||||
// distance (time) between two consecutive events in a point process of events
 | 
			
		||||
// occurring continuously and independently at a constant average rate. `T` must
 | 
			
		||||
// be a floating point type, but may be inferred from the type of `lambda`.
 | 
			
		||||
//
 | 
			
		||||
// See https://en.wikipedia.org/wiki/Exponential_distribution.
 | 
			
		||||
//
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -673,7 +673,6 @@ from_chars_result FromCharsImpl(const char* first, const char* last,
 | 
			
		|||
    EncodeResult(calculated, negative, &result, &value);
 | 
			
		||||
    return result;
 | 
			
		||||
  }
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
}  // namespace
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -160,11 +160,45 @@ void BM_CompareSame(benchmark::State& state) {
 | 
			
		|||
  absl::string_view b = y;
 | 
			
		||||
 | 
			
		||||
  for (auto _ : state) {
 | 
			
		||||
    benchmark::DoNotOptimize(a);
 | 
			
		||||
    benchmark::DoNotOptimize(b);
 | 
			
		||||
    benchmark::DoNotOptimize(a.compare(b));
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
BENCHMARK(BM_CompareSame)->DenseRange(0, 3)->Range(4, 1 << 10);
 | 
			
		||||
 | 
			
		||||
void BM_CompareFirstOneLess(benchmark::State& state) {
 | 
			
		||||
  const int len = state.range(0);
 | 
			
		||||
  std::string x(len, 'a');
 | 
			
		||||
  std::string y = x;
 | 
			
		||||
  y.back() = 'b';
 | 
			
		||||
  absl::string_view a = x;
 | 
			
		||||
  absl::string_view b = y;
 | 
			
		||||
 | 
			
		||||
  for (auto _ : state) {
 | 
			
		||||
    benchmark::DoNotOptimize(a);
 | 
			
		||||
    benchmark::DoNotOptimize(b);
 | 
			
		||||
    benchmark::DoNotOptimize(a.compare(b));
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
BENCHMARK(BM_CompareFirstOneLess)->DenseRange(1, 3)->Range(4, 1 << 10);
 | 
			
		||||
 | 
			
		||||
void BM_CompareSecondOneLess(benchmark::State& state) {
 | 
			
		||||
  const int len = state.range(0);
 | 
			
		||||
  std::string x(len, 'a');
 | 
			
		||||
  std::string y = x;
 | 
			
		||||
  x.back() = 'b';
 | 
			
		||||
  absl::string_view a = x;
 | 
			
		||||
  absl::string_view b = y;
 | 
			
		||||
 | 
			
		||||
  for (auto _ : state) {
 | 
			
		||||
    benchmark::DoNotOptimize(a);
 | 
			
		||||
    benchmark::DoNotOptimize(b);
 | 
			
		||||
    benchmark::DoNotOptimize(a.compare(b));
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
BENCHMARK(BM_CompareSecondOneLess)->DenseRange(1, 3)->Range(4, 1 << 10);
 | 
			
		||||
 | 
			
		||||
void BM_find_string_view_len_one(benchmark::State& state) {
 | 
			
		||||
  std::string haystack(state.range(0), '0');
 | 
			
		||||
  absl::string_view s(haystack);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -107,13 +107,16 @@ static_assert(
 | 
			
		|||
    sizeof(MutexGlobals) == ABSL_CACHELINE_SIZE,
 | 
			
		||||
    "MutexGlobals must occupy an entire cacheline to prevent false sharing");
 | 
			
		||||
 | 
			
		||||
ABSL_CONST_INIT absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)>
 | 
			
		||||
ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
 | 
			
		||||
    absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)>
 | 
			
		||||
        submit_profile_data;
 | 
			
		||||
ABSL_CONST_INIT absl::base_internal::AtomicHook<
 | 
			
		||||
    void (*)(const char *msg, const void *obj, int64_t wait_cycles)> mutex_tracer;
 | 
			
		||||
ABSL_CONST_INIT absl::base_internal::AtomicHook<
 | 
			
		||||
    void (*)(const char *msg, const void *cv)> cond_var_tracer;
 | 
			
		||||
ABSL_CONST_INIT absl::base_internal::AtomicHook<
 | 
			
		||||
ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<void (*)(
 | 
			
		||||
    const char *msg, const void *obj, int64_t wait_cycles)>
 | 
			
		||||
    mutex_tracer;
 | 
			
		||||
ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
 | 
			
		||||
    absl::base_internal::AtomicHook<void (*)(const char *msg, const void *cv)>
 | 
			
		||||
        cond_var_tracer;
 | 
			
		||||
ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<
 | 
			
		||||
    bool (*)(const void *pc, char *out, int out_size)>
 | 
			
		||||
    symbolizer(absl::Symbolize);
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue