style(3p/nix): Reformat project in Google C++ style

Reformatted with:

    fd . -e hh -e cc | xargs clang-format -i
This commit is contained in:
Vincent Ambo 2020-05-17 16:31:57 +01:00
parent 65a1aae98c
commit 0f2cf531f7
175 changed files with 32126 additions and 34689 deletions

View file

@ -1,143 +1,129 @@
#pragma once
#include <atomic>
#include <functional>
#include <map>
#include <queue>
#include <thread>
#include "sync.hh"
#include "util.hh"
#include <queue>
#include <functional>
#include <thread>
#include <map>
#include <atomic>
namespace nix {
MakeError(ThreadPoolShutDown, Error)
/* A simple thread pool that executes a queue of work items
(lambdas). */
class ThreadPool
{
public:
/* A simple thread pool that executes a queue of work items
(lambdas). */
class ThreadPool {
public:
ThreadPool(size_t maxThreads = 0);
ThreadPool(size_t maxThreads = 0);
~ThreadPool();
~ThreadPool();
// FIXME: use std::packaged_task?
typedef std::function<void()> work_t;
// FIXME: use std::packaged_task?
typedef std::function<void()> work_t;
/* Enqueue a function to be executed by the thread pool. */
void enqueue(const work_t& t);
/* Enqueue a function to be executed by the thread pool. */
void enqueue(const work_t & t);
/* Execute work items until the queue is empty. Note that work
items are allowed to add new items to the queue; this is
handled correctly. Queue processing stops prematurely if any
work item throws an exception. This exception is propagated to
the calling thread. If multiple work items throw an exception
concurrently, only one item is propagated; the others are
printed on stderr and otherwise ignored. */
void process();
/* Execute work items until the queue is empty. Note that work
items are allowed to add new items to the queue; this is
handled correctly. Queue processing stops prematurely if any
work item throws an exception. This exception is propagated to
the calling thread. If multiple work items throw an exception
concurrently, only one item is propagated; the others are
printed on stderr and otherwise ignored. */
void process();
private:
size_t maxThreads;
private:
struct State {
std::queue<work_t> pending;
size_t active = 0;
std::exception_ptr exception;
std::vector<std::thread> workers;
bool draining = false;
};
size_t maxThreads;
std::atomic_bool quit{false};
struct State
{
std::queue<work_t> pending;
size_t active = 0;
std::exception_ptr exception;
std::vector<std::thread> workers;
bool draining = false;
};
Sync<State> state_;
std::atomic_bool quit{false};
std::condition_variable work;
Sync<State> state_;
void doWork(bool mainThread);
std::condition_variable work;
void doWork(bool mainThread);
void shutdown();
void shutdown();
};
/* Process in parallel a set of items of type T that have a partial
ordering between them. Thus, any item is only processed after all
its dependencies have been processed. */
template<typename T>
void processGraph(
ThreadPool & pool,
const std::set<T> & nodes,
std::function<std::set<T>(const T &)> getEdges,
std::function<void(const T &)> processNode)
{
struct Graph {
std::set<T> left;
std::map<T, std::set<T>> refs, rrefs;
};
template <typename T>
void processGraph(ThreadPool& pool, const std::set<T>& nodes,
std::function<std::set<T>(const T&)> getEdges,
std::function<void(const T&)> processNode) {
struct Graph {
std::set<T> left;
std::map<T, std::set<T>> refs, rrefs;
};
Sync<Graph> graph_(Graph{nodes, {}, {}});
Sync<Graph> graph_(Graph{nodes, {}, {}});
std::function<void(const T &)> worker;
std::function<void(const T&)> worker;
worker = [&](const T & node) {
worker = [&](const T& node) {
{
auto graph(graph_.lock());
auto i = graph->refs.find(node);
if (i == graph->refs.end()) goto getRefs;
goto doWork;
}
{
auto graph(graph_.lock());
auto i = graph->refs.find(node);
if (i == graph->refs.end())
goto getRefs;
goto doWork;
getRefs : {
auto refs = getEdges(node);
refs.erase(node);
{
auto graph(graph_.lock());
for (auto& ref : refs)
if (graph->left.count(ref)) {
graph->refs[node].insert(ref);
graph->rrefs[ref].insert(node);
}
if (graph->refs[node].empty()) goto doWork;
}
}
getRefs:
{
auto refs = getEdges(node);
refs.erase(node);
return;
{
auto graph(graph_.lock());
for (auto & ref : refs)
if (graph->left.count(ref)) {
graph->refs[node].insert(ref);
graph->rrefs[ref].insert(node);
}
if (graph->refs[node].empty())
goto doWork;
}
}
doWork:
processNode(node);
return;
/* Enqueue work for all nodes that were waiting on this one
and have no unprocessed dependencies. */
{
auto graph(graph_.lock());
for (auto& rref : graph->rrefs[node]) {
auto& refs(graph->refs[rref]);
auto i = refs.find(node);
assert(i != refs.end());
refs.erase(i);
if (refs.empty()) pool.enqueue(std::bind(worker, rref));
}
graph->left.erase(node);
graph->refs.erase(node);
graph->rrefs.erase(node);
}
};
doWork:
processNode(node);
for (auto& node : nodes) pool.enqueue(std::bind(worker, std::ref(node)));
/* Enqueue work for all nodes that were waiting on this one
and have no unprocessed dependencies. */
{
auto graph(graph_.lock());
for (auto & rref : graph->rrefs[node]) {
auto & refs(graph->refs[rref]);
auto i = refs.find(node);
assert(i != refs.end());
refs.erase(i);
if (refs.empty())
pool.enqueue(std::bind(worker, rref));
}
graph->left.erase(node);
graph->refs.erase(node);
graph->rrefs.erase(node);
}
};
pool.process();
for (auto & node : nodes)
pool.enqueue(std::bind(worker, std::ref(node)));
pool.process();
if (!graph_.lock()->left.empty())
throw Error("graph processing incomplete (cyclic reference?)");
if (!graph_.lock()->left.empty())
throw Error("graph processing incomplete (cyclic reference?)");
}
}
} // namespace nix