feat(users/Profpatsch/my-prelude): update libraries

The latest and greatest!

Change-Id: I34c0e9f41b3b3cc727d9ea89c7ce6a43271b3170
Reviewed-on: https://cl.tvl.fyi/c/depot/+/11169
Autosubmit: Profpatsch <mail@profpatsch.de>
Tested-by: BuildkiteCI
Reviewed-by: Profpatsch <mail@profpatsch.de>
This commit is contained in:
Profpatsch 2024-03-16 23:26:49 +01:00 committed by clbot
parent 8335076173
commit 11a2098e0b
7 changed files with 513 additions and 145 deletions

View file

@ -1,11 +1,7 @@
{-# LANGUAGE ImplicitParams #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# OPTIONS_GHC -fexpose-all-unfoldings #-}
{-# LANGUAGE ViewPatterns #-}
module MyPrelude
( -- * Text conversions
@ -15,6 +11,7 @@ module MyPrelude
fmt,
textToString,
stringToText,
stringToBytesUtf8,
showToText,
textToBytesUtf8,
textToBytesUtf8Lazy,
@ -42,6 +39,7 @@ module MyPrelude
HasField,
-- * Control flow
doAs,
(&),
(<&>),
(<|>),
@ -91,6 +89,9 @@ module MyPrelude
failure,
successes,
failures,
traverseValidate,
traverseValidateM,
traverseValidateM_,
eitherToValidation,
eitherToListValidation,
validationToEither,
@ -100,15 +101,28 @@ module MyPrelude
validationToThese,
thenThese,
thenValidate,
thenValidateM,
NonEmpty ((:|)),
pattern IsEmpty,
pattern IsNonEmpty,
singleton,
nonEmpty,
nonEmptyDef,
overNonEmpty,
zipNonEmpty,
zipWithNonEmpty,
zip3NonEmpty,
zipWith3NonEmpty,
zip4NonEmpty,
toList,
toNonEmptyDefault,
lengthNatural,
maximum1,
minimum1,
maximumBy1,
minimumBy1,
Vector,
Generic,
Lift,
Semigroup,
sconcat,
Monoid,
@ -120,6 +134,7 @@ module MyPrelude
Identity (Identity, runIdentity),
Natural,
intToNatural,
Scientific,
Contravariant,
contramap,
(>$<),
@ -132,10 +147,16 @@ module MyPrelude
Category,
(>>>),
(&>>),
Any,
-- * Enum definition
inverseFunction,
inverseMap,
enumerateAll,
-- * Map helpers
mapFromListOn,
mapFromListOnMerge,
-- * Error handling
HasCallStack,
@ -145,6 +166,7 @@ where
import Control.Applicative ((<|>))
import Control.Category (Category, (>>>))
import Control.Foldl.NonEmpty qualified as Foldl1
import Control.Monad (guard, join, unless, when)
import Control.Monad.Catch (MonadThrow (throwM))
import Control.Monad.Except
@ -164,13 +186,15 @@ import Data.Char qualified
import Data.Coerce (Coercible, coerce)
import Data.Data (Proxy (Proxy))
import Data.Error
import Data.Foldable (Foldable (foldMap', toList), fold, foldl', for_, traverse_)
import Data.Foldable (Foldable (foldMap', toList), fold, foldl', for_, sequenceA_, traverse_)
import Data.Foldable qualified as Foldable
import Data.Function ((&))
import Data.Functor ((<&>))
import Data.Functor.Contravariant (Contravariant (contramap), (>$<))
import Data.Functor.Identity (Identity (runIdentity))
import Data.List (zip4)
import Data.List.NonEmpty (NonEmpty ((:|)), nonEmpty)
import Data.List.NonEmpty qualified as NonEmpty
import Data.Map.Strict
( Map,
)
@ -178,7 +202,8 @@ import Data.Map.Strict qualified as Map
import Data.Maybe (fromMaybe, mapMaybe)
import Data.Maybe qualified as Maybe
import Data.Profunctor (Profunctor, dimap, lmap, rmap)
import Data.Semigroup (Max (Max, getMax), Min (Min, getMin), sconcat)
import Data.Scientific (Scientific)
import Data.Semigroup (sconcat)
import Data.Semigroup.Foldable (Foldable1 (fold1), foldMap1)
import Data.Semigroup.Traversable (Traversable1)
import Data.Semigroupoid (Semigroupoid (o))
@ -192,14 +217,17 @@ import Data.Text.Lazy qualified
import Data.Text.Lazy.Encoding qualified
import Data.These (These (That, These, This))
import Data.Traversable (for)
import Data.Vector (Vector)
import Data.Void (Void, absurd)
import Data.Word (Word8)
import GHC.Exception (errorCallWithCallStackException)
import GHC.Exts (RuntimeRep, TYPE, raise#)
import GHC.Exts (Any, RuntimeRep, TYPE, raise#)
import GHC.Generics (Generic)
import GHC.Natural (Natural)
import GHC.Records (HasField)
import GHC.Stack (HasCallStack)
import GHC.Utils.Encoding qualified as GHC
import Language.Haskell.TH.Syntax (Lift)
import PyF (fmt)
import System.Exit qualified
import System.IO qualified
@ -212,6 +240,21 @@ import Validation
validationToEither,
)
-- | Mark a `do`-block with the type of the Monad/Applicativ it uses.
-- Only intended for reading ease and making code easier to understand,
-- especially do-blocks that use unconventional monads (like Maybe or List).
--
-- Example:
--
-- @
-- doAs @Maybe $ do
-- a <- Just 'a'
-- b <- Just 'b'
-- pure (a, b)
-- @
doAs :: forall m a. m a -> m a
doAs = id
-- | Forward-applying 'contramap', like '&'/'$' and '<&>'/'<$>' but for '>$<'.
(>&<) :: (Contravariant f) => f b -> (a -> b) -> f a
(>&<) = flip contramap
@ -222,10 +265,10 @@ infixl 5 >&<
--
-- Specialized examples:
--
-- @@
-- @
-- for functions : (a -> b) -> (b -> c) -> (a -> c)
-- for Folds: Fold a b -> Fold b c -> Fold a c
-- @@
-- @
(&>>) :: (Semigroupoid s) => s a b -> s b c -> s a c
(&>>) = flip Data.Semigroupoid.o
@ -266,26 +309,51 @@ bytesToTextUtf8LenientLazy :: Data.ByteString.Lazy.ByteString -> Data.Text.Lazy.
bytesToTextUtf8LenientLazy =
Data.Text.Lazy.Encoding.decodeUtf8With Data.Text.Encoding.Error.lenientDecode
-- | Make a lazy text strict
-- | Make a lazy 'Text' strict.
toStrict :: Data.Text.Lazy.Text -> Text
toStrict = Data.Text.Lazy.toStrict
-- | Make a strict text lazy
-- | Make a strict 'Text' lazy.
toLazy :: Text -> Data.Text.Lazy.Text
toLazy = Data.Text.Lazy.fromStrict
-- | Make a lazy 'ByteString' strict.
toStrictBytes :: Data.ByteString.Lazy.ByteString -> ByteString
toStrictBytes = Data.ByteString.Lazy.toStrict
-- | Make a strict 'ByteString' lazy.
toLazyBytes :: ByteString -> Data.ByteString.Lazy.ByteString
toLazyBytes = Data.ByteString.Lazy.fromStrict
-- | Convert a (performant) 'Text' into an (imperformant) list-of-char 'String'.
--
-- Some libraries (like @time@ or @network-uri@) still use the `String` as their interface. We only want to convert to string at the edges, otherwise use 'Text'.
--
-- ATTN: Dont use `String` in code if you can avoid it, prefer `Text` instead.
textToString :: Text -> String
textToString = Data.Text.unpack
-- | Convert an (imperformant) list-of-char 'String' into a (performant) 'Text' .
--
-- Some libraries (like @time@ or @network-uri@) still use the `String` as their interface. We want to convert 'String' to 'Text' as soon as possible and only use 'Text' in our code.
--
-- ATTN: Dont use `String` in code if you can avoid it, prefer `Text` instead.
stringToText :: String -> Text
stringToText = Data.Text.pack
-- | Encode a String to an UTF-8 encoded Bytestring
--
-- ATTN: Dont use `String` in code if you can avoid it, prefer `Text` instead.
stringToBytesUtf8 :: String -> ByteString
stringToBytesUtf8 = GHC.utf8EncodeString
-- | Like `show`, but generate a 'Text'
--
-- ATTN: This goes via `String` and thus is fairly inefficient.
-- We should add a good display library at one point.
--
-- ATTN: unlike `show`, this forces the whole @'a
-- so only use if you want to display the whole thing.
showToText :: (Show a) => a -> Text
showToText = stringToText . show
@ -299,8 +367,20 @@ showToText = stringToText . show
-- >>> charToWordUnsafe ','
-- 44
charToWordUnsafe :: Char -> Word8
charToWordUnsafe = fromIntegral . Data.Char.ord
{-# INLINE charToWordUnsafe #-}
charToWordUnsafe = fromIntegral . Data.Char.ord
pattern IsEmpty :: [a]
pattern IsEmpty <- (null -> True)
where
IsEmpty = []
pattern IsNonEmpty :: NonEmpty a -> [a]
pattern IsNonEmpty n <- (nonEmpty -> Just n)
where
IsNonEmpty n = toList n
{-# COMPLETE IsEmpty, IsNonEmpty #-}
-- | Single element in a (non-empty) list.
singleton :: a -> NonEmpty a
@ -313,19 +393,69 @@ nonEmptyDef def xs =
Nothing -> def :| []
Just ne -> ne
-- | Construct a non-empty list, given a default value if the ist list was empty.
toNonEmptyDefault :: a -> [a] -> NonEmpty a
toNonEmptyDefault def xs = case xs of
[] -> def :| []
(x : xs') -> x :| xs'
-- | If the list is not empty, run the given function with a NonEmpty list, otherwise just return []
overNonEmpty :: (Applicative f) => (NonEmpty a -> f [b]) -> [a] -> f [b]
overNonEmpty f xs = case xs of
IsEmpty -> pure []
IsNonEmpty xs' -> f xs'
-- | @O(n)@. Get the maximum element from a non-empty structure.
-- | Zip two non-empty lists.
zipNonEmpty :: NonEmpty a -> NonEmpty b -> NonEmpty (a, b)
{-# INLINE zipNonEmpty #-}
zipNonEmpty ~(a :| as) ~(b :| bs) = (a, b) :| zip as bs
-- | Zip two non-empty lists, combining them with the given function
zipWithNonEmpty :: (a -> b -> c) -> NonEmpty a -> NonEmpty b -> NonEmpty c
{-# INLINE zipWithNonEmpty #-}
zipWithNonEmpty = NonEmpty.zipWith
-- | Zip three non-empty lists.
zip3NonEmpty :: NonEmpty a -> NonEmpty b -> NonEmpty c -> NonEmpty (a, b, c)
{-# INLINE zip3NonEmpty #-}
zip3NonEmpty ~(a :| as) ~(b :| bs) ~(c :| cs) = (a, b, c) :| zip3 as bs cs
-- | Zip three non-empty lists, combining them with the given function
zipWith3NonEmpty :: (a -> b -> c -> d) -> NonEmpty a -> NonEmpty b -> NonEmpty c -> NonEmpty d
{-# INLINE zipWith3NonEmpty #-}
zipWith3NonEmpty f ~(x :| xs) ~(y :| ys) ~(z :| zs) = f x y z :| zipWith3 f xs ys zs
-- | Zip four non-empty lists
zip4NonEmpty :: NonEmpty a -> NonEmpty b -> NonEmpty c -> NonEmpty d -> NonEmpty (a, b, c, d)
{-# INLINE zip4NonEmpty #-}
zip4NonEmpty ~(a :| as) ~(b :| bs) ~(c :| cs) ~(d :| ds) = (a, b, c, d) :| zip4 as bs cs ds
-- | We dont want to use Foldables `length`, because it is too polymorphic and can lead to bugs.
-- Only list-y things should have a length.
class (Foldable f) => Lengthy f
instance Lengthy []
instance Lengthy NonEmpty
instance Lengthy Vector
lengthNatural :: (Lengthy f) => f a -> Natural
lengthNatural xs =
xs
& Foldable.length
-- length can never be negative or something went really, really wrong
& fromIntegral @Int @Natural
-- | @O(n)@. Get the maximum element from a non-empty structure (strict).
maximum1 :: (Foldable1 f, Ord a) => f a -> a
maximum1 xs = xs & foldMap1 Max & getMax
maximum1 = Foldl1.fold1 Foldl1.maximum
-- | @O(n)@. Get the minimum element from a non-empty structure.
-- | @O(n)@. Get the maximum element from a non-empty structure, using the given comparator (strict).
maximumBy1 :: (Foldable1 f) => (a -> a -> Ordering) -> f a -> a
maximumBy1 f = Foldl1.fold1 (Foldl1.maximumBy f)
-- | @O(n)@. Get the minimum element from a non-empty structure (strict).
minimum1 :: (Foldable1 f, Ord a) => f a -> a
minimum1 xs = xs & foldMap1 Min & getMin
minimum1 = Foldl1.fold1 Foldl1.minimum
-- | @O(n)@. Get the minimum element from a non-empty structure, using the given comparator (strict).
minimumBy1 :: (Foldable1 f) => (a -> a -> Ordering) -> f a -> a
minimumBy1 f = Foldl1.fold1 (Foldl1.minimumBy f)
-- | Annotate a 'Maybe' with an error message and turn it into an 'Either'.
annotate :: err -> Maybe a -> Either err a
@ -355,8 +485,48 @@ findMaybe mPred list =
Just a -> mPred a
Nothing -> Nothing
-- | 'traverse' with a function returning 'Either' and collect all errors that happen, if they happen.
--
-- Does not shortcut on error, so will always traverse the whole list/'Traversable' structure.
--
-- This is a useful error handling function in many circumstances,
-- because it wont only return the first error that happens, but rather all of them.
traverseValidate :: forall t a err b. (Traversable t) => (a -> Either err b) -> t a -> Either (NonEmpty err) (t b)
traverseValidate f as =
as
& traverse @t @(Validation _) (eitherToListValidation . f)
& validationToEither
-- | 'traverse' with a function returning 'm Either' and collect all errors that happen, if they happen.
--
-- Does not shortcut on error, so will always traverse the whole list/'Traversable' structure.
--
-- This is a useful error handling function in many circumstances,
-- because it wont only return the first error that happens, but rather all of them.
traverseValidateM :: forall t m a err b. (Traversable t, Applicative m) => (a -> m (Either err b)) -> t a -> m (Either (NonEmpty err) (t b))
traverseValidateM f as =
as
& traverse @t @m (\a -> a & f <&> eitherToListValidation)
<&> sequenceA @t @(Validation _)
<&> validationToEither
-- | 'traverse_' with a function returning 'm Either' and collect all errors that happen, if they happen.
--
-- Does not shortcut on error, so will always traverse the whole list/'Traversable' structure.
--
-- This is a useful error handling function in many circumstances,
-- because it wont only return the first error that happens, but rather all of them.
traverseValidateM_ :: forall t m a err. (Traversable t, Applicative m) => (a -> m (Either err ())) -> t a -> m (Either (NonEmpty err) ())
traverseValidateM_ f as =
as
& traverse @t @m (\a -> a & f <&> eitherToListValidation)
<&> sequenceA_ @t @(Validation _)
<&> validationToEither
-- | Like 'eitherToValidation', but puts the Error side into a NonEmpty list
-- to make it combine with other validations.
--
-- See also 'validateEithers', if you have a list of Either and want to collect all errors.
eitherToListValidation :: Either a c -> Validation (NonEmpty a) c
eitherToListValidation = first singleton . eitherToValidation
@ -388,15 +558,26 @@ thenThese f x = do
th <- x
join <$> traverse f th
-- | Nested validating bind-like combinator inside some other @m@.
-- | Nested validating bind-like combinator.
--
-- Use if you want to collect errors, and want to chain multiple functions returning 'Validation'.
thenValidate ::
(a -> Validation err b) ->
Validation err a ->
Validation err b
thenValidate f = \case
Success a -> f a
Failure err -> Failure err
-- | Nested validating bind-like combinator inside some other @m@.
--
-- Use if you want to collect errors, and want to chain multiple functions returning 'Validation'.
thenValidateM ::
(Monad m) =>
(a -> m (Validation err b)) ->
m (Validation err a) ->
m (Validation err b)
thenValidate f x =
thenValidateM f x =
eitherToValidation <$> do
x' <- validationToEither <$> x
case x' of
@ -429,23 +610,23 @@ exitWithMessage msg = do
--
-- … since @(Semigroup err => Validation err a)@ is a @Semigroup@/@Monoid@ itself.
traverseFold :: (Applicative ap, Traversable t, Monoid m) => (a -> ap m) -> t a -> ap m
{-# INLINE traverseFold #-}
traverseFold f xs =
-- note: could be weakened to (Foldable t) via `getAp . foldMap (Ap . f)`
fold <$> traverse f xs
{-# INLINE traverseFold #-}
-- | Like 'traverseFold', but fold over a semigroup instead of a Monoid, by providing a starting element.
traverseFoldDefault :: (Applicative ap, Traversable t, Semigroup m) => m -> (a -> ap m) -> t a -> ap m
{-# INLINE traverseFoldDefault #-}
traverseFoldDefault def f xs = foldDef def <$> traverse f xs
where
foldDef = foldr (<>)
{-# INLINE traverseFoldDefault #-}
-- | Same as 'traverseFold', but with a 'Semigroup' and 'Traversable1' restriction.
traverseFold1 :: (Applicative ap, Traversable1 t, Semigroup s) => (a -> ap s) -> t a -> ap s
{-# INLINE traverseFold1 #-}
-- note: cannot be weakened to (Foldable1 t) because there is no `Ap` for Semigroup (No `Apply` typeclass)
traverseFold1 f xs = fold1 <$> traverse f xs
{-# INLINE traverseFold1 #-}
-- | Use this in places where the code is still to be implemented.
--
@ -527,18 +708,31 @@ inverseFunction f k = Map.lookup k $ inverseMap f
-- it returns a mapping from all possible outputs to their possible inputs.
--
-- This has the same restrictions of 'inverseFunction'.
inverseMap ::
forall a k.
(Bounded a, Enum a, Ord k) =>
(a -> k) ->
Map k a
inverseMap f =
universe
<&> (\a -> (f a, a))
& Map.fromList
where
universe :: [a]
universe = [minBound .. maxBound]
inverseMap :: forall a k. (Bounded a, Enum a, Ord k) => (a -> k) -> Map k a
inverseMap f = enumerateAll <&> (\a -> (f a, a)) & Map.fromList
-- | All possible values in this enum.
enumerateAll :: (Enum a, Bounded a) => [a]
enumerateAll = [minBound .. maxBound]
-- | Create a 'Map' from a list of values, extracting the map key from each value. Like 'Map.fromList'.
--
-- Attention: if the key is not unique, the earliest value with the key will be in the map.
mapFromListOn :: (Ord key) => (a -> key) -> [a] -> Map key a
mapFromListOn f xs = xs <&> (\x -> (f x, x)) & Map.fromList
-- | Create a 'Map' from a list of values, merging multiple values at the same key with '<>' (left-to-right)
--
-- `f` has to extract the key and value. Value must be mergable.
--
-- Attention: if the key is not unique, the earliest value with the key will be in the map.
mapFromListOnMerge :: (Ord key, Semigroup s) => (a -> (key, s)) -> [a] -> Map key s
mapFromListOnMerge f xs =
xs
<&> (\x -> f x)
& Map.fromListWith
-- we have to flip (`<>`) because `Map.fromListWith` merges its values “the other way around”
(flip (<>))
-- | If the predicate is true, return the @m@, else 'mempty'.
--
@ -570,12 +764,18 @@ ifTrue pred' m = if pred' then m else mempty
-- >>> import Data.Monoid (Sum(..))
--
-- >>> :{ mconcat [
-- unknown command '{'
-- ifExists (Just [1]),
-- [2, 3, 4],
-- ifExists Nothing,
-- ]
-- :}
-- [1,2,3,4]
--
-- Or any other Monoid:
--
-- >>> mconcat [ Sum 1, ifExists Sum (Just 2), Sum 3 ]
-- >>> mconcat [ Sum 1, ifExists (Just (Sum 2)), Sum 3 ]
-- Sum {getSum = 6}
ifExists :: (Monoid m) => (a -> m) -> Maybe a -> m
ifExists = foldMap
ifExists :: (Monoid m) => Maybe m -> m
ifExists = fold