Squashed 'third_party/git/' content from commit cb71568594
git-subtree-dir: third_party/git git-subtree-split: cb715685942260375e1eb8153b0768a376e4ece7
This commit is contained in:
commit
1b593e1ea4
3629 changed files with 1139935 additions and 0 deletions
86
levenshtein.c
Normal file
86
levenshtein.c
Normal file
|
|
@ -0,0 +1,86 @@
|
|||
#include "cache.h"
|
||||
#include "levenshtein.h"
|
||||
|
||||
/*
|
||||
* This function implements the Damerau-Levenshtein algorithm to
|
||||
* calculate a distance between strings.
|
||||
*
|
||||
* Basically, it says how many letters need to be swapped, substituted,
|
||||
* deleted from, or added to string1, at least, to get string2.
|
||||
*
|
||||
* The idea is to build a distance matrix for the substrings of both
|
||||
* strings. To avoid a large space complexity, only the last three rows
|
||||
* are kept in memory (if swaps had the same or higher cost as one deletion
|
||||
* plus one insertion, only two rows would be needed).
|
||||
*
|
||||
* At any stage, "i + 1" denotes the length of the current substring of
|
||||
* string1 that the distance is calculated for.
|
||||
*
|
||||
* row2 holds the current row, row1 the previous row (i.e. for the substring
|
||||
* of string1 of length "i"), and row0 the row before that.
|
||||
*
|
||||
* In other words, at the start of the big loop, row2[j + 1] contains the
|
||||
* Damerau-Levenshtein distance between the substring of string1 of length
|
||||
* "i" and the substring of string2 of length "j + 1".
|
||||
*
|
||||
* All the big loop does is determine the partial minimum-cost paths.
|
||||
*
|
||||
* It does so by calculating the costs of the path ending in characters
|
||||
* i (in string1) and j (in string2), respectively, given that the last
|
||||
* operation is a substitution, a swap, a deletion, or an insertion.
|
||||
*
|
||||
* This implementation allows the costs to be weighted:
|
||||
*
|
||||
* - w (as in "sWap")
|
||||
* - s (as in "Substitution")
|
||||
* - a (for insertion, AKA "Add")
|
||||
* - d (as in "Deletion")
|
||||
*
|
||||
* Note that this algorithm calculates a distance _iff_ d == a.
|
||||
*/
|
||||
int levenshtein(const char *string1, const char *string2,
|
||||
int w, int s, int a, int d)
|
||||
{
|
||||
int len1 = strlen(string1), len2 = strlen(string2);
|
||||
int *row0, *row1, *row2;
|
||||
int i, j;
|
||||
|
||||
ALLOC_ARRAY(row0, len2 + 1);
|
||||
ALLOC_ARRAY(row1, len2 + 1);
|
||||
ALLOC_ARRAY(row2, len2 + 1);
|
||||
|
||||
for (j = 0; j <= len2; j++)
|
||||
row1[j] = j * a;
|
||||
for (i = 0; i < len1; i++) {
|
||||
int *dummy;
|
||||
|
||||
row2[0] = (i + 1) * d;
|
||||
for (j = 0; j < len2; j++) {
|
||||
/* substitution */
|
||||
row2[j + 1] = row1[j] + s * (string1[i] != string2[j]);
|
||||
/* swap */
|
||||
if (i > 0 && j > 0 && string1[i - 1] == string2[j] &&
|
||||
string1[i] == string2[j - 1] &&
|
||||
row2[j + 1] > row0[j - 1] + w)
|
||||
row2[j + 1] = row0[j - 1] + w;
|
||||
/* deletion */
|
||||
if (row2[j + 1] > row1[j + 1] + d)
|
||||
row2[j + 1] = row1[j + 1] + d;
|
||||
/* insertion */
|
||||
if (row2[j + 1] > row2[j] + a)
|
||||
row2[j + 1] = row2[j] + a;
|
||||
}
|
||||
|
||||
dummy = row0;
|
||||
row0 = row1;
|
||||
row1 = row2;
|
||||
row2 = dummy;
|
||||
}
|
||||
|
||||
i = row1[len2];
|
||||
free(row0);
|
||||
free(row1);
|
||||
free(row2);
|
||||
|
||||
return i;
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue