Export of internal Abseil changes.
-- ac7508120c60dfe689c40929e416b6a486f83ee3 by Gennadiy Rozental <rogeeff@google.com>: Internal change PiperOrigin-RevId: 206912089 -- bd709faba88565367b6d337466e6456481b5f3e8 by Matt Calabrese <calabrese@google.com>: Implement `std::experimental::is_detected` in type_traits internals and move `is_detected_convertible` from variant's internals to type_traits internals. This is in preparation of creating workarounds for broken standard traits. PiperOrigin-RevId: 206825598 -- 0dbddea569370eb9b6348cee172d1874f9046eb4 by Jorg Brown <jorg@google.com>: Support users who turn on floating-point conversion warnings PiperOrigin-RevId: 206813209 -- 30991f757c8f0100584619d8a9c41897d029f112 by Jorg Brown <jorg@google.com>: Speed up the absl::Seconds() function for floating-point values, roughly by 4.5x, since we can take advantage of the fact that we're just taking a floating-point number and splitting it into its integral and fractional parts. PiperOrigin-RevId: 206806270 -- 6883837176838aa5a517e7a8cb4c99afd24c0d12 by Jon Cohen <cohenjon@google.com>: Remove the DISABLE_INSTALL from absl_container. It doesn't do anything. PiperOrigin-RevId: 206802544 -- 92ab14fed06e6dd1f01a0284bd7f95d3e2c0c3d8 by Jon Cohen <cohenjon@google.com>: Internal change PiperOrigin-RevId: 206776244 -- 17b76c7f364ac562d9e0faeca0320f63aa3fdb85 by Jorg Brown <jorg@google.com>: Fix absl/strings:numbers_test flakiness due to exceeding the 1-minute timeout PiperOrigin-RevId: 206763175 -- 6637843f2e198b8efd90e5577fbc86bdea43b2cc by Abseil Team <absl-team@google.com>: Adds templated allocator to absl::FixedArray with corresponding tests PiperOrigin-RevId: 206354178 -- bced22f81add828c9b4c60eb45554d36c22e2f96 by Abseil Team <absl-team@google.com>: Adds templated allocator to absl::FixedArray with corresponding tests PiperOrigin-RevId: 206347377 -- 75be14a71d2d5e335812d5b7670120271fb5bd79 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 206326935 -- 6929e43f4c7898b1f51e441911a19092a06fbf97 by Abseil Team <absl-team@google.com>: Adds templated allocator to absl::FixedArray with corresponding tests PiperOrigin-RevId: 206326368 -- 55ae34b75ff029eb267f9519e577bab8a575b487 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 206233448 -- 6950a8ccddf35d451eec2d02cd28a797c8b7cf6a by Matt Kulukundis <kfm@google.com>: Internal change PiperOrigin-RevId: 206035613 GitOrigin-RevId: ac7508120c60dfe689c40929e416b6a486f83ee3 Change-Id: I675605abbedab6b3ac9aa82195cbd059ff7c82b1
This commit is contained in:
parent
9acad869d2
commit
2125e6444a
17 changed files with 1066 additions and 237 deletions
|
|
@ -895,13 +895,10 @@ bool ParseDuration(const std::string& dur_string, Duration* d) {
|
|||
*d = dur;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool ParseFlag(const std::string& text, Duration* dst, std::string* ) {
|
||||
return ParseDuration(text, dst);
|
||||
}
|
||||
|
||||
std::string UnparseFlag(Duration d) {
|
||||
return FormatDuration(d);
|
||||
}
|
||||
std::string UnparseFlag(Duration d) { return FormatDuration(d); }
|
||||
|
||||
} // namespace absl
|
||||
|
|
|
|||
|
|
@ -27,47 +27,113 @@ namespace {
|
|||
//
|
||||
|
||||
void BM_Duration_Factory_Nanoseconds(benchmark::State& state) {
|
||||
int64_t i = 0;
|
||||
while (state.KeepRunning()) {
|
||||
benchmark::DoNotOptimize(absl::Nanoseconds(1));
|
||||
benchmark::DoNotOptimize(absl::Nanoseconds(i));
|
||||
i += 314159;
|
||||
}
|
||||
}
|
||||
BENCHMARK(BM_Duration_Factory_Nanoseconds);
|
||||
|
||||
void BM_Duration_Factory_Microseconds(benchmark::State& state) {
|
||||
int64_t i = 0;
|
||||
while (state.KeepRunning()) {
|
||||
benchmark::DoNotOptimize(absl::Microseconds(1));
|
||||
benchmark::DoNotOptimize(absl::Microseconds(i));
|
||||
i += 314;
|
||||
}
|
||||
}
|
||||
BENCHMARK(BM_Duration_Factory_Microseconds);
|
||||
|
||||
void BM_Duration_Factory_Milliseconds(benchmark::State& state) {
|
||||
int64_t i = 0;
|
||||
while (state.KeepRunning()) {
|
||||
benchmark::DoNotOptimize(absl::Milliseconds(1));
|
||||
benchmark::DoNotOptimize(absl::Milliseconds(i));
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
BENCHMARK(BM_Duration_Factory_Milliseconds);
|
||||
|
||||
void BM_Duration_Factory_Seconds(benchmark::State& state) {
|
||||
int64_t i = 0;
|
||||
while (state.KeepRunning()) {
|
||||
benchmark::DoNotOptimize(absl::Seconds(1));
|
||||
benchmark::DoNotOptimize(absl::Seconds(i));
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
BENCHMARK(BM_Duration_Factory_Seconds);
|
||||
|
||||
void BM_Duration_Factory_Minutes(benchmark::State& state) {
|
||||
int64_t i = 0;
|
||||
while (state.KeepRunning()) {
|
||||
benchmark::DoNotOptimize(absl::Minutes(1));
|
||||
benchmark::DoNotOptimize(absl::Minutes(i));
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
BENCHMARK(BM_Duration_Factory_Minutes);
|
||||
|
||||
void BM_Duration_Factory_Hours(benchmark::State& state) {
|
||||
int64_t i = 0;
|
||||
while (state.KeepRunning()) {
|
||||
benchmark::DoNotOptimize(absl::Hours(1));
|
||||
benchmark::DoNotOptimize(absl::Hours(i));
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
BENCHMARK(BM_Duration_Factory_Hours);
|
||||
|
||||
void BM_Duration_Factory_DoubleNanoseconds(benchmark::State& state) {
|
||||
double d = 1;
|
||||
while (state.KeepRunning()) {
|
||||
benchmark::DoNotOptimize(absl::Nanoseconds(d));
|
||||
d = d * 1.00000001 + 1;
|
||||
}
|
||||
}
|
||||
BENCHMARK(BM_Duration_Factory_DoubleNanoseconds);
|
||||
|
||||
void BM_Duration_Factory_DoubleMicroseconds(benchmark::State& state) {
|
||||
double d = 1e-3;
|
||||
while (state.KeepRunning()) {
|
||||
benchmark::DoNotOptimize(absl::Microseconds(d));
|
||||
d = d * 1.00000001 + 1e-3;
|
||||
}
|
||||
}
|
||||
BENCHMARK(BM_Duration_Factory_DoubleMicroseconds);
|
||||
|
||||
void BM_Duration_Factory_DoubleMilliseconds(benchmark::State& state) {
|
||||
double d = 1e-6;
|
||||
while (state.KeepRunning()) {
|
||||
benchmark::DoNotOptimize(absl::Milliseconds(d));
|
||||
d = d * 1.00000001 + 1e-6;
|
||||
}
|
||||
}
|
||||
BENCHMARK(BM_Duration_Factory_DoubleMilliseconds);
|
||||
|
||||
void BM_Duration_Factory_DoubleSeconds(benchmark::State& state) {
|
||||
double d = 1e-9;
|
||||
while (state.KeepRunning()) {
|
||||
benchmark::DoNotOptimize(absl::Seconds(d));
|
||||
d = d * 1.00000001 + 1e-9;
|
||||
}
|
||||
}
|
||||
BENCHMARK(BM_Duration_Factory_DoubleSeconds);
|
||||
|
||||
void BM_Duration_Factory_DoubleMinutes(benchmark::State& state) {
|
||||
double d = 1e-9;
|
||||
while (state.KeepRunning()) {
|
||||
benchmark::DoNotOptimize(absl::Minutes(d));
|
||||
d = d * 1.00000001 + 1e-9;
|
||||
}
|
||||
}
|
||||
BENCHMARK(BM_Duration_Factory_DoubleMinutes);
|
||||
|
||||
void BM_Duration_Factory_DoubleHours(benchmark::State& state) {
|
||||
double d = 1e-9;
|
||||
while (state.KeepRunning()) {
|
||||
benchmark::DoNotOptimize(absl::Hours(d));
|
||||
d = d * 1.00000001 + 1e-9;
|
||||
}
|
||||
}
|
||||
BENCHMARK(BM_Duration_Factory_DoubleHours);
|
||||
|
||||
//
|
||||
// Arithmetic
|
||||
//
|
||||
|
|
|
|||
|
|
@ -16,7 +16,9 @@
|
|||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <ctime>
|
||||
#include <iomanip>
|
||||
#include <limits>
|
||||
#include <random>
|
||||
#include <string>
|
||||
|
||||
#include "gmock/gmock.h"
|
||||
|
|
@ -105,22 +107,22 @@ TEST(Duration, Factories) {
|
|||
}
|
||||
|
||||
TEST(Duration, ToConversion) {
|
||||
#define TEST_DURATION_CONVERSION(UNIT) \
|
||||
do { \
|
||||
const absl::Duration d = absl::UNIT(1.5); \
|
||||
const absl::Duration z = absl::ZeroDuration(); \
|
||||
const absl::Duration inf = absl::InfiniteDuration(); \
|
||||
const double dbl_inf = std::numeric_limits<double>::infinity(); \
|
||||
EXPECT_EQ(kint64min, absl::ToInt64##UNIT(-inf)); \
|
||||
EXPECT_EQ(-1, absl::ToInt64##UNIT(-d)); \
|
||||
EXPECT_EQ(0, absl::ToInt64##UNIT(z)); \
|
||||
EXPECT_EQ(1, absl::ToInt64##UNIT(d)); \
|
||||
EXPECT_EQ(kint64max, absl::ToInt64##UNIT(inf)); \
|
||||
EXPECT_EQ(-dbl_inf, absl::ToDouble##UNIT(-inf)); \
|
||||
EXPECT_EQ(-1.5, absl::ToDouble##UNIT(-d)); \
|
||||
EXPECT_EQ(0, absl::ToDouble##UNIT(z)); \
|
||||
EXPECT_EQ(1.5, absl::ToDouble##UNIT(d)); \
|
||||
EXPECT_EQ(dbl_inf, absl::ToDouble##UNIT(inf)); \
|
||||
#define TEST_DURATION_CONVERSION(UNIT) \
|
||||
do { \
|
||||
const absl::Duration d = absl::UNIT(1.5); \
|
||||
constexpr absl::Duration z = absl::ZeroDuration(); \
|
||||
constexpr absl::Duration inf = absl::InfiniteDuration(); \
|
||||
constexpr double dbl_inf = std::numeric_limits<double>::infinity(); \
|
||||
EXPECT_EQ(kint64min, absl::ToInt64##UNIT(-inf)); \
|
||||
EXPECT_EQ(-1, absl::ToInt64##UNIT(-d)); \
|
||||
EXPECT_EQ(0, absl::ToInt64##UNIT(z)); \
|
||||
EXPECT_EQ(1, absl::ToInt64##UNIT(d)); \
|
||||
EXPECT_EQ(kint64max, absl::ToInt64##UNIT(inf)); \
|
||||
EXPECT_EQ(-dbl_inf, absl::ToDouble##UNIT(-inf)); \
|
||||
EXPECT_EQ(-1.5, absl::ToDouble##UNIT(-d)); \
|
||||
EXPECT_EQ(0, absl::ToDouble##UNIT(z)); \
|
||||
EXPECT_EQ(1.5, absl::ToDouble##UNIT(d)); \
|
||||
EXPECT_EQ(dbl_inf, absl::ToDouble##UNIT(inf)); \
|
||||
} while (0)
|
||||
|
||||
TEST_DURATION_CONVERSION(Nanoseconds);
|
||||
|
|
@ -1284,6 +1286,16 @@ TEST(Duration, SmallConversions) {
|
|||
EXPECT_EQ(absl::Nanoseconds(1), absl::Seconds(0.875e-9));
|
||||
EXPECT_EQ(absl::Nanoseconds(1), absl::Seconds(1.000e-9));
|
||||
|
||||
EXPECT_EQ(absl::ZeroDuration(), absl::Seconds(-0.124999999e-9));
|
||||
EXPECT_EQ(-absl::Nanoseconds(1) / 4, absl::Seconds(-0.125e-9));
|
||||
EXPECT_EQ(-absl::Nanoseconds(1) / 4, absl::Seconds(-0.250e-9));
|
||||
EXPECT_EQ(-absl::Nanoseconds(1) / 2, absl::Seconds(-0.375e-9));
|
||||
EXPECT_EQ(-absl::Nanoseconds(1) / 2, absl::Seconds(-0.500e-9));
|
||||
EXPECT_EQ(-absl::Nanoseconds(3) / 4, absl::Seconds(-0.625e-9));
|
||||
EXPECT_EQ(-absl::Nanoseconds(3) / 4, absl::Seconds(-0.750e-9));
|
||||
EXPECT_EQ(-absl::Nanoseconds(1), absl::Seconds(-0.875e-9));
|
||||
EXPECT_EQ(-absl::Nanoseconds(1), absl::Seconds(-1.000e-9));
|
||||
|
||||
timespec ts;
|
||||
ts.tv_sec = 0;
|
||||
ts.tv_nsec = 0;
|
||||
|
|
@ -1313,6 +1325,86 @@ TEST(Duration, SmallConversions) {
|
|||
EXPECT_THAT(ToTimeval(absl::Nanoseconds(2000)), TimevalMatcher(tv));
|
||||
}
|
||||
|
||||
void VerifySameAsMul(double time_as_seconds, int* const misses) {
|
||||
auto direct_seconds = absl::Seconds(time_as_seconds);
|
||||
auto mul_by_one_second = time_as_seconds * absl::Seconds(1);
|
||||
if (direct_seconds != mul_by_one_second) {
|
||||
if (*misses > 10) return;
|
||||
ASSERT_LE(++(*misses), 10) << "Too many errors, not reporting more.";
|
||||
EXPECT_EQ(direct_seconds, mul_by_one_second)
|
||||
<< "given double time_as_seconds = " << std::setprecision(17)
|
||||
<< time_as_seconds;
|
||||
}
|
||||
}
|
||||
|
||||
// For a variety of interesting durations, we find the exact point
|
||||
// where one double converts to that duration, and the very next double
|
||||
// converts to the next duration. For both of those points, verify that
|
||||
// Seconds(point) returns the same duration as point * Seconds(1.0)
|
||||
TEST(Duration, ToDoubleSecondsCheckEdgeCases) {
|
||||
constexpr uint32_t kTicksPerSecond = absl::time_internal::kTicksPerSecond;
|
||||
constexpr auto duration_tick = absl::time_internal::MakeDuration(0, 1u);
|
||||
int misses = 0;
|
||||
for (int64_t seconds = 0; seconds < 99; ++seconds) {
|
||||
uint32_t tick_vals[] = {0, +999, +999999, +999999999, kTicksPerSecond - 1,
|
||||
0, 1000, 1000000, 1000000000, kTicksPerSecond,
|
||||
1, 1001, 1000001, 1000000001, kTicksPerSecond + 1,
|
||||
2, 1002, 1000002, 1000000002, kTicksPerSecond + 2,
|
||||
3, 1003, 1000003, 1000000003, kTicksPerSecond + 3,
|
||||
4, 1004, 1000004, 1000000004, kTicksPerSecond + 4,
|
||||
5, 6, 7, 8, 9};
|
||||
for (uint32_t ticks : tick_vals) {
|
||||
absl::Duration s_plus_t = absl::Seconds(seconds) + ticks * duration_tick;
|
||||
for (absl::Duration d : {s_plus_t, -s_plus_t}) {
|
||||
absl::Duration after_d = d + duration_tick;
|
||||
EXPECT_NE(d, after_d);
|
||||
EXPECT_EQ(after_d - d, duration_tick);
|
||||
|
||||
double low_edge = ToDoubleSeconds(d);
|
||||
EXPECT_EQ(d, absl::Seconds(low_edge));
|
||||
|
||||
double high_edge = ToDoubleSeconds(after_d);
|
||||
EXPECT_EQ(after_d, absl::Seconds(high_edge));
|
||||
|
||||
for (;;) {
|
||||
double midpoint = low_edge + (high_edge - low_edge) / 2;
|
||||
if (midpoint == low_edge || midpoint == high_edge) break;
|
||||
absl::Duration mid_duration = absl::Seconds(midpoint);
|
||||
if (mid_duration == d) {
|
||||
low_edge = midpoint;
|
||||
} else {
|
||||
EXPECT_EQ(mid_duration, after_d);
|
||||
high_edge = midpoint;
|
||||
}
|
||||
}
|
||||
// Now low_edge is the highest double that converts to Duration d,
|
||||
// and high_edge is the lowest double that converts to Duration after_d.
|
||||
VerifySameAsMul(low_edge, &misses);
|
||||
VerifySameAsMul(high_edge, &misses);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Duration, ToDoubleSecondsCheckRandom) {
|
||||
std::random_device rd;
|
||||
std::seed_seq seed({rd(), rd(), rd(), rd(), rd(), rd(), rd(), rd()});
|
||||
std::mt19937_64 gen(seed);
|
||||
// We want doubles distributed from 1/8ns up to 2^63, where
|
||||
// as many values are tested from 1ns to 2ns as from 1sec to 2sec,
|
||||
// so even distribute along a log-scale of those values, and
|
||||
// exponentiate before using them. (9.223377e+18 is just slightly
|
||||
// out of bounds for absl::Duration.)
|
||||
std::uniform_real_distribution<double> uniform(std::log(0.125e-9),
|
||||
std::log(9.223377e+18));
|
||||
int misses = 0;
|
||||
for (int i = 0; i < 1000000; ++i) {
|
||||
double d = std::exp(uniform(gen));
|
||||
VerifySameAsMul(d, &misses);
|
||||
VerifySameAsMul(-d, &misses);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Duration, ConversionSaturation) {
|
||||
absl::Duration d;
|
||||
|
||||
|
|
|
|||
|
|
@ -81,6 +81,7 @@ constexpr int64_t GetRepHi(Duration d);
|
|||
constexpr uint32_t GetRepLo(Duration d);
|
||||
constexpr Duration MakeDuration(int64_t hi, uint32_t lo);
|
||||
constexpr Duration MakeDuration(int64_t hi, int64_t lo);
|
||||
inline Duration MakePosDoubleDuration(double n);
|
||||
constexpr int64_t kTicksPerNanosecond = 4;
|
||||
constexpr int64_t kTicksPerSecond = 1000 * 1000 * 1000 * kTicksPerNanosecond;
|
||||
template <std::intmax_t N>
|
||||
|
|
@ -295,6 +296,39 @@ Duration Floor(Duration d, Duration unit);
|
|||
// absl::Duration c = absl::Ceil(d, absl::Microseconds(1)); // 123457us
|
||||
Duration Ceil(Duration d, Duration unit);
|
||||
|
||||
// InfiniteDuration()
|
||||
//
|
||||
// Returns an infinite `Duration`. To get a `Duration` representing negative
|
||||
// infinity, use `-InfiniteDuration()`.
|
||||
//
|
||||
// Duration arithmetic overflows to +/- infinity and saturates. In general,
|
||||
// arithmetic with `Duration` infinities is similar to IEEE 754 infinities
|
||||
// except where IEEE 754 NaN would be involved, in which case +/-
|
||||
// `InfiniteDuration()` is used in place of a "nan" Duration.
|
||||
//
|
||||
// Examples:
|
||||
//
|
||||
// constexpr absl::Duration inf = absl::InfiniteDuration();
|
||||
// const absl::Duration d = ... any finite duration ...
|
||||
//
|
||||
// inf == inf + inf
|
||||
// inf == inf + d
|
||||
// inf == inf - inf
|
||||
// -inf == d - inf
|
||||
//
|
||||
// inf == d * 1e100
|
||||
// inf == inf / 2
|
||||
// 0 == d / inf
|
||||
// INT64_MAX == inf / d
|
||||
//
|
||||
// // Division by zero returns infinity, or INT64_MIN/MAX where appropriate.
|
||||
// inf == d / 0
|
||||
// INT64_MAX == d / absl::ZeroDuration()
|
||||
//
|
||||
// The examples involving the `/` operator above also apply to `IDivDuration()`
|
||||
// and `FDivDuration()`.
|
||||
constexpr Duration InfiniteDuration();
|
||||
|
||||
// Nanoseconds()
|
||||
// Microseconds()
|
||||
// Milliseconds()
|
||||
|
|
@ -344,7 +378,13 @@ Duration Milliseconds(T n) {
|
|||
}
|
||||
template <typename T, time_internal::EnableIfFloat<T> = 0>
|
||||
Duration Seconds(T n) {
|
||||
return n * Seconds(1);
|
||||
if (n >= 0) {
|
||||
if (n >= std::numeric_limits<int64_t>::max()) return InfiniteDuration();
|
||||
return time_internal::MakePosDoubleDuration(n);
|
||||
} else {
|
||||
if (n <= std::numeric_limits<int64_t>::min()) return -InfiniteDuration();
|
||||
return -time_internal::MakePosDoubleDuration(-n);
|
||||
}
|
||||
}
|
||||
template <typename T, time_internal::EnableIfFloat<T> = 0>
|
||||
Duration Minutes(T n) {
|
||||
|
|
@ -439,39 +479,6 @@ std::chrono::seconds ToChronoSeconds(Duration d);
|
|||
std::chrono::minutes ToChronoMinutes(Duration d);
|
||||
std::chrono::hours ToChronoHours(Duration d);
|
||||
|
||||
// InfiniteDuration()
|
||||
//
|
||||
// Returns an infinite `Duration`. To get a `Duration` representing negative
|
||||
// infinity, use `-InfiniteDuration()`.
|
||||
//
|
||||
// Duration arithmetic overflows to +/- infinity and saturates. In general,
|
||||
// arithmetic with `Duration` infinities is similar to IEEE 754 infinities
|
||||
// except where IEEE 754 NaN would be involved, in which case +/-
|
||||
// `InfiniteDuration()` is used in place of a "nan" Duration.
|
||||
//
|
||||
// Examples:
|
||||
//
|
||||
// constexpr absl::Duration inf = absl::InfiniteDuration();
|
||||
// const absl::Duration d = ... any finite duration ...
|
||||
//
|
||||
// inf == inf + inf
|
||||
// inf == inf + d
|
||||
// inf == inf - inf
|
||||
// -inf == d - inf
|
||||
//
|
||||
// inf == d * 1e100
|
||||
// inf == inf / 2
|
||||
// 0 == d / inf
|
||||
// INT64_MAX == inf / d
|
||||
//
|
||||
// // Division by zero returns infinity, or INT64_MIN/MAX where appropriate.
|
||||
// inf == d / 0
|
||||
// INT64_MAX == d / absl::ZeroDuration()
|
||||
//
|
||||
// The examples involving the `/` operator above also apply to `IDivDuration()`
|
||||
// and `FDivDuration()`.
|
||||
constexpr Duration InfiniteDuration();
|
||||
|
||||
// FormatDuration()
|
||||
//
|
||||
// Returns a std::string representing the duration in the form "72h3m0.5s".
|
||||
|
|
@ -492,12 +499,9 @@ inline std::ostream& operator<<(std::ostream& os, Duration d) {
|
|||
// `ZeroDuration()`. Parses "inf" and "-inf" as +/- `InfiniteDuration()`.
|
||||
bool ParseDuration(const std::string& dur_string, Duration* d);
|
||||
|
||||
// ParseFlag()
|
||||
//
|
||||
// Support for flag values of type Duration. Duration flags must be specified
|
||||
// in a format that is valid input for absl::ParseDuration().
|
||||
bool ParseFlag(const std::string& text, Duration* dst, std::string* error);
|
||||
|
||||
// UnparseFlag()
|
||||
//
|
||||
std::string UnparseFlag(Duration d);
|
||||
|
||||
// Time
|
||||
|
|
@ -991,9 +995,6 @@ bool ParseTime(const std::string& format, const std::string& input, Time* time,
|
|||
bool ParseTime(const std::string& format, const std::string& input, TimeZone tz,
|
||||
Time* time, std::string* err);
|
||||
|
||||
// ParseFlag()
|
||||
// UnparseFlag()
|
||||
//
|
||||
// Support for flag values of type Time. Time flags must be specified in a
|
||||
// format that matches absl::RFC3339_full. For example:
|
||||
//
|
||||
|
|
@ -1114,6 +1115,18 @@ constexpr Duration MakeDuration(int64_t hi, int64_t lo) {
|
|||
return MakeDuration(hi, static_cast<uint32_t>(lo));
|
||||
}
|
||||
|
||||
// Make a Duration value from a floating-point number, as long as that number
|
||||
// is in the range [ 0 .. numeric_limits<int64_t>::max ), that is, as long as
|
||||
// it's positive and can be converted to int64_t without risk of UB.
|
||||
inline Duration MakePosDoubleDuration(double n) {
|
||||
const int64_t int_secs = static_cast<int64_t>(n);
|
||||
const uint32_t ticks =
|
||||
static_cast<uint32_t>((n - int_secs) * kTicksPerSecond + 0.5);
|
||||
return ticks < kTicksPerSecond
|
||||
? MakeDuration(int_secs, ticks)
|
||||
: MakeDuration(int_secs + 1, ticks - kTicksPerSecond);
|
||||
}
|
||||
|
||||
// Creates a normalized Duration from an almost-normalized (sec,ticks)
|
||||
// pair. sec may be positive or negative. ticks must be in the range
|
||||
// -kTicksPerSecond < *ticks < kTicksPerSecond. If ticks is negative it
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue