refactor(tvix/value): encapsulate attrset logic within value::attrs

The internal optimisations of the set representation were previously
leaking into the VM, which is highly undesirable.

Keeping it encapsulated allows us to do additional optimisations
within value::attrs without being concerned about its use in the VM.

Change-Id: I7e7020bb0983b9d355d3db747b049b2faa60131f
Reviewed-on: https://cl.tvl.fyi/c/depot/+/6108
Reviewed-by: eta <tvl@eta.st>
Tested-by: BuildkiteCI
This commit is contained in:
Vincent Ambo 2022-08-10 16:35:16 +03:00 committed by tazjin
parent 6edbfe3cba
commit 293fb0ef53
3 changed files with 194 additions and 191 deletions

View file

@ -1,7 +1,7 @@
//! This module implements the virtual (or abstract) machine that runs
//! Tvix bytecode.
use std::{collections::BTreeMap, rc::Rc};
use std::rc::Rc;
use crate::{
chunk::Chunk,
@ -23,10 +23,6 @@ impl VM {
op
}
fn peek(&self, at: usize) -> &Value {
&self.stack[self.stack.len() - 1 - at]
}
fn pop(&mut self) -> Value {
self.stack.pop().expect("TODO")
}
@ -151,110 +147,8 @@ impl VM {
}
fn run_attrset(&mut self, count: usize) -> EvalResult<()> {
// If the attribute count happens to be 2, we might be able to
// create the optimised name/value struct instead.
if count == 2 {
// When determining whether we are dealing with a
// name/value pair, we return the stack locations of name
// and value, using `0` as a sentinel value (i.e. if
// either is 0, we are dealing with some other attrset).
let is_pair = {
// The keys are located 1 & 3 values back in the
// stack.
let k1 = self.peek(1);
let k2 = self.peek(3);
match (k1, k2) {
(Value::String(NixString(s1)), Value::String(NixString(s2)))
if (s1 == "name" && s2 == "value") =>
{
(1, 2)
}
(Value::String(NixString(s1)), Value::String(NixString(s2)))
if (s1 == "value" && s2 == "name") =>
{
(2, 1)
}
// Technically this branch lets type errors pass,
// but they will be caught during normal attribute
// set construction instead.
_ => (0, 0),
}
};
match is_pair {
(1, 2) => {
// The value of 'name' is at stack slot 0, the
// value of 'value' is at stack slot 2.
let pair = Value::Attrs(Rc::new(NixAttrs::KV {
name: self.pop(),
value: {
self.pop(); // ignore the key
self.pop()
},
}));
// Clean up the last key fragment.
self.pop();
self.push(pair);
return Ok(());
}
(2, 1) => {
// The value of 'name' is at stack slot 2, the
// value of 'value' is at stack slot 0.
let pair = Value::Attrs(Rc::new(NixAttrs::KV {
value: self.pop(),
name: {
self.pop(); // ignore the key
self.pop()
},
}));
// Clean up the last key fragment.
self.pop();
self.push(pair);
return Ok(());
}
_ => {}
}
}
let mut attrs: BTreeMap<NixString, Value> = BTreeMap::new();
for _ in 0..count {
let value = self.pop();
// It is at this point that nested attribute sets need to
// be constructed (if they exist).
//
let key = self.pop();
match key {
Value::String(ks) => set_attr(&mut attrs, ks, value)?,
Value::AttrPath(mut path) => {
set_nested_attr(
&mut attrs,
path.pop().expect("AttrPath is never empty"),
path,
value,
)?;
}
other => {
return Err(Error::InvalidKeyType {
given: other.type_of(),
})
}
}
}
// TODO(tazjin): extend_reserve(count) (rust#72631)
self.push(Value::Attrs(Rc::new(NixAttrs::Map(attrs))));
let attrs = NixAttrs::construct(count, self.stack.split_off(self.stack.len() - count * 2))?;
self.push(Value::Attrs(Rc::new(attrs)));
Ok(())
}
@ -294,86 +188,6 @@ pub enum NumberPair {
Integer(i64, i64),
}
// Set an attribute on an in-construction attribute set, while
// checking against duplicate key.s
fn set_attr(
attrs: &mut BTreeMap<NixString, Value>,
key: NixString,
value: Value,
) -> EvalResult<()> {
let entry = attrs.entry(key);
match entry {
std::collections::btree_map::Entry::Occupied(entry) => {
return Err(Error::DuplicateAttrsKey {
key: entry.key().0.clone(),
})
}
std::collections::btree_map::Entry::Vacant(entry) => {
entry.insert(value);
return Ok(());
}
};
}
// Set a nested attribute inside of an attribute set, throwing a
// duplicate key error if a non-hashmap entry already exists on the
// path.
//
// There is some optimisation potential for this simple implementation
// if it becomes a problem.
fn set_nested_attr(
attrs: &mut BTreeMap<NixString, Value>,
key: NixString,
mut path: Vec<NixString>,
value: Value,
) -> EvalResult<()> {
// If there is no next key we are at the point where we
// should insert the value itself.
if path.is_empty() {
return set_attr(attrs, key, value);
}
let entry = attrs.entry(key);
// If there is not we go one step further down, in which case we
// need to ensure that there either is no entry, or the existing
// entry is a hashmap into which to insert the next value.
//
// If a value of a different type exists, the user specified a
// duplicate key.
match entry {
// Vacant entry -> new attribute set is needed.
std::collections::btree_map::Entry::Vacant(entry) => {
let mut map = BTreeMap::new();
// TODO(tazjin): technically recursing further is not
// required, we can create the whole hierarchy here, but
// it's noisy.
set_nested_attr(&mut map, path.pop().expect("next key exists"), path, value)?;
entry.insert(Value::Attrs(Rc::new(NixAttrs::Map(map))));
}
// Occupied entry: Either error out if there is something
// other than attrs, or insert the next value.
std::collections::btree_map::Entry::Occupied(mut entry) => match entry.get_mut() {
Value::Attrs(_attrs) => {
todo!("implement mutable attrsets")
}
_ => {
return Err(Error::DuplicateAttrsKey {
key: entry.key().0.clone(),
})
}
},
}
Ok(())
}
pub fn run_chunk(chunk: Chunk) -> EvalResult<Value> {
let mut vm = VM {
chunk,