Solve InterviewCake's second-largest-item-in-bst
Return a function that returns the second largest item in a binary search tree (i.e. BST). A BST is a tree where each node has no more than two children (i.e. one left child and one right child). All of the values in a BST's left subtree must be less than the value of the root node; all of the values in a BST's right subtree must be greater than the value of the root node; both left and right subtrees must also be BSTs themselves. I solved this problem thrice -- improving the performance profile each time. The final solution has a runtime complexity of O(n) and a spacetime complexity of O(1).
This commit is contained in:
		
							parent
							
								
									56d8d1d7b2
								
							
						
					
					
						commit
						319652fe08
					
				
					 2 changed files with 221 additions and 2 deletions
				
			
		
							
								
								
									
										219
									
								
								scratch/deepmind/part_two/second-largest-item-in-bst.ts
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										219
									
								
								scratch/deepmind/part_two/second-largest-item-in-bst.ts
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,219 @@ | |||
| /******************************************************************************* | ||||
|  * Setup | ||||
|  ******************************************************************************/ | ||||
| 
 | ||||
| interface BinaryTreeNode { | ||||
|   value: number; | ||||
|   left: BinaryTreeNode; | ||||
|   right: BinaryTreeNode; | ||||
| } | ||||
| 
 | ||||
| class BinaryTreeNode { | ||||
|   constructor(value: number) { | ||||
|     this.value = value; | ||||
|     this.left  = null; | ||||
|     this.right = null; | ||||
|   } | ||||
| 
 | ||||
|   insertLeft(value: number): BinaryTreeNode { | ||||
|     this.left = new BinaryTreeNode(value); | ||||
|     return this.left; | ||||
|   } | ||||
| 
 | ||||
|   insertRight(value: number): BinaryTreeNode { | ||||
|     this.right = new BinaryTreeNode(value); | ||||
|     return this.right; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| /******************************************************************************* | ||||
|  * First solution | ||||
|  ******************************************************************************/ | ||||
| 
 | ||||
| /** | ||||
|  * I first solved this problem using O(n) space and O(n*log(n)) | ||||
|  * time. InterviewCake informs me that we can improve both the time and the | ||||
|  * space performance. | ||||
|  */ | ||||
| function findSecondLargest_first(node: BinaryTreeNode): number { | ||||
|   const stack: Array<BinaryTreeNode> = []; | ||||
|   const xs: Array<number> = []; | ||||
|   stack.push(node); | ||||
| 
 | ||||
|   while (stack.length > 0) { | ||||
|     const node = stack.pop() | ||||
| 
 | ||||
|     xs.push(node.value); | ||||
| 
 | ||||
|     if (node.left) { | ||||
|       stack.push(node.left); | ||||
|     } | ||||
|     if (node.right) { | ||||
|       stack.push(node.right); | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   xs.sort(); | ||||
| 
 | ||||
|   if (xs.length < 2) { | ||||
|     throw new Error('Cannot find the second largest element in a BST with fewer than two elements.'); | ||||
|   } else { | ||||
|     return xs[xs.length - 2]; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| /******************************************************************************* | ||||
|  * Second solution | ||||
|  ******************************************************************************/ | ||||
| 
 | ||||
| /** | ||||
|  * My second solution accumulates a list of the values in the tree using an | ||||
|  * in-order traversal. This reduces the runtime costs from O(n*log(n)) from the | ||||
|  * previous solution to O(n). The memory cost is still O(n), which InterviewCake | ||||
|  * informs me can be reduced to O(1). | ||||
|  */ | ||||
| function findSecondLargest_second(node: BinaryTreeNode): number { | ||||
|   const xs: Array<number> = accumulateInorder(node); | ||||
| 
 | ||||
|   if (xs.length < 2) { | ||||
|     throw new Error('Cannot find the second largest element in a BST with fewer than two elements.'); | ||||
|   } else { | ||||
|     return xs[xs.length - 2]; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| /** | ||||
|  * Returns an array containing the values of the tree, `node`, sorted in-order | ||||
|  * (i.e. from smallest-to-largest). | ||||
|  */ | ||||
| function accumulateInorder(node: BinaryTreeNode): Array<number> { | ||||
|   let result = []; | ||||
| 
 | ||||
|   if (node.left) { | ||||
|     result = result.concat(accumulateInorder(node.left)); | ||||
|   } | ||||
|   result.push(node.value) | ||||
|   if (node.right) { | ||||
|     result = result.concat(accumulateInorder(node.right)); | ||||
|   } | ||||
| 
 | ||||
|   return result; | ||||
| } | ||||
| 
 | ||||
| /******************************************************************************* | ||||
|  * Third solution | ||||
|  ******************************************************************************/ | ||||
| 
 | ||||
| /** | ||||
|  * Returns the largest number in a BST. | ||||
|  */ | ||||
| function findLargest(node: BinaryTreeNode): number { | ||||
|   let curr: BinaryTreeNode = node; | ||||
| 
 | ||||
|   while (curr.right) { | ||||
|     curr = curr.right; | ||||
|   } | ||||
| 
 | ||||
|   return curr.value; | ||||
| } | ||||
| 
 | ||||
| /** | ||||
|  * Returns the second largest number in a BST | ||||
|  */ | ||||
| function findSecondLargest(node: BinaryTreeNode): number { | ||||
|   let curr = node; | ||||
|   let parent = null; | ||||
| 
 | ||||
|   while (curr.right) { | ||||
|     parent = curr; | ||||
|     curr = curr.right | ||||
|   } | ||||
| 
 | ||||
|   if (curr.left) { | ||||
|     return findLargest(curr.left); | ||||
|   } | ||||
|   else { | ||||
|     return parent.value; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| // Tests
 | ||||
| let desc = 'full tree'; | ||||
| let treeRoot = new BinaryTreeNode(50); | ||||
| let leftNode = treeRoot.insertLeft(30); | ||||
| leftNode.insertLeft(10); | ||||
| leftNode.insertRight(40); | ||||
| let rightNode = treeRoot.insertRight(70); | ||||
| rightNode.insertLeft(60); | ||||
| rightNode.insertRight(80); | ||||
| assertEquals(findSecondLargest(treeRoot), 70, desc); | ||||
| 
 | ||||
| desc = 'largest has a left child'; | ||||
| treeRoot = new BinaryTreeNode(50); | ||||
| leftNode = treeRoot.insertLeft(30); | ||||
| leftNode.insertLeft(10); | ||||
| leftNode.insertRight(40); | ||||
| rightNode = treeRoot.insertRight(70); | ||||
| rightNode.insertLeft(60); | ||||
| assertEquals(findSecondLargest(treeRoot), 60, desc); | ||||
| 
 | ||||
| desc = 'largest has a left subtree'; | ||||
| treeRoot = new BinaryTreeNode(50); | ||||
| leftNode = treeRoot.insertLeft(30); | ||||
| leftNode.insertLeft(10); | ||||
| leftNode.insertRight(40); | ||||
| rightNode = treeRoot.insertRight(70); | ||||
| leftNode = rightNode.insertLeft(60); | ||||
| leftNode.insertRight(65); | ||||
| leftNode = leftNode.insertLeft(55); | ||||
| leftNode.insertRight(58); | ||||
| assertEquals(findSecondLargest(treeRoot), 65, desc); | ||||
| 
 | ||||
| desc = 'second largest is root node'; | ||||
| treeRoot = new BinaryTreeNode(50); | ||||
| leftNode = treeRoot.insertLeft(30); | ||||
| leftNode.insertLeft(10); | ||||
| leftNode.insertRight(40); | ||||
| rightNode = treeRoot.insertRight(70); | ||||
| assertEquals(findSecondLargest(treeRoot), 50, desc); | ||||
| 
 | ||||
| desc = 'descending linked list'; | ||||
| treeRoot = new BinaryTreeNode(50); | ||||
| leftNode = treeRoot.insertLeft(40); | ||||
| leftNode = leftNode.insertLeft(30); | ||||
| leftNode = leftNode.insertLeft(20); | ||||
| leftNode = leftNode.insertLeft(10); | ||||
| assertEquals(findSecondLargest(treeRoot), 40, desc); | ||||
| 
 | ||||
| desc = 'ascending linked list'; | ||||
| treeRoot = new BinaryTreeNode(50); | ||||
| rightNode = treeRoot.insertRight(60); | ||||
| rightNode = rightNode.insertRight(70); | ||||
| rightNode = rightNode.insertRight(80); | ||||
| assertEquals(findSecondLargest(treeRoot), 70, desc); | ||||
| 
 | ||||
| desc = 'one node tree'; | ||||
| treeRoot = new BinaryTreeNode(50); | ||||
| assertThrowsError(() => findSecondLargest(treeRoot), desc); | ||||
| 
 | ||||
| desc = 'when tree is empty'; | ||||
| treeRoot = null; | ||||
| assertThrowsError(() => findSecondLargest(treeRoot), desc); | ||||
| 
 | ||||
| function assertEquals(a, b, desc) { | ||||
|   if (a === b) { | ||||
|     console.log(`${desc} ... PASS`); | ||||
|   } else { | ||||
|     console.log(`${desc} ... FAIL: ${a} != ${b}`) | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| function assertThrowsError(func, desc) { | ||||
|   try { | ||||
|     func(); | ||||
|     console.log(`${desc} ... FAIL`); | ||||
|   } catch (e) { | ||||
|     console.log(`${desc} ... PASS`); | ||||
|   } | ||||
| } | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue