Export of internal Abseil changes
-- 91ca367a7548270155721bdda74611aeea2a2153 by Abseil Team <absl-team@google.com>: Replace the only usage of btree_node::swap with simpler logic using transfers and delete btree_node::swap. Add a benchmark for constructing small containers. PiperOrigin-RevId: 301169874 -- ff9d73a7125b7f8ab5733cda877204dfbfac138e by Derek Mauro <dmauro@google.com>: Ensure ABSL_CXX_STANDARD is set. Fixes #640 PiperOrigin-RevId: 301160106 -- 14ca0beee8c109e532134e7e9da7b072da1bf911 by Abseil Team <absl-team@google.com>: Rollback the change to make Cord iterators a fixed size. That change increased the iterator size, which can cause a deep recursion call to hit the stack memory limit, in turn causing a signal 11 failure. PiperOrigin-RevId: 301084915 -- 619e3cd9e56408bdb8b3b5a1e08dda1e95242264 by Matthew Brown <matthewbr@google.com>: Internal Change PiperOrigin-RevId: 300832828 -- 64f8d62ab4c4c78077dbe85a9595a8eeb6d16608 by Gennadiy Rozental <rogeeff@google.com>: Fix for empty braces support. We will call proper aggregate construction in case when {} is used as default value. In other words instead of "new T", we'll call "new T{}". PiperOrigin-RevId: 300715686 -- db3f65594d6db8b104b01262f884dff465b696ef by Abseil Team <absl-team@google.com>: Emscripten supports thread-local storage nowadays. PiperOrigin-RevId: 300675185 GitOrigin-RevId: 91ca367a7548270155721bdda74611aeea2a2153 Change-Id: I3344f745f9c3fc78775532b1808442fabd98e34a
This commit is contained in:
parent
c6954897f7
commit
7853a7586c
12 changed files with 254 additions and 283 deletions
|
|
@ -30,6 +30,7 @@
|
|||
#include "absl/base/internal/raw_logging.h"
|
||||
#include "absl/base/port.h"
|
||||
#include "absl/container/fixed_array.h"
|
||||
#include "absl/container/inlined_vector.h"
|
||||
#include "absl/strings/escaping.h"
|
||||
#include "absl/strings/internal/cord_internal.h"
|
||||
#include "absl/strings/internal/resize_uninitialized.h"
|
||||
|
|
@ -131,14 +132,6 @@ inline const CordRepExternal* CordRep::external() const {
|
|||
return static_cast<const CordRepExternal*>(this);
|
||||
}
|
||||
|
||||
using CordTreeConstPath = CordTreePath<const CordRep*, MaxCordDepth()>;
|
||||
|
||||
// This type is used to store the list of pending nodes during re-balancing.
|
||||
// Its maximum size is 2 * MaxCordDepth() because the tree has a maximum
|
||||
// possible depth of MaxCordDepth() and every concat node along a tree path
|
||||
// could theoretically be split during rebalancing.
|
||||
using RebalancingStack = CordTreePath<CordRep*, 2 * MaxCordDepth()>;
|
||||
|
||||
} // namespace cord_internal
|
||||
|
||||
static const size_t kFlatOverhead = offsetof(CordRep, data);
|
||||
|
|
@ -187,78 +180,98 @@ static constexpr size_t TagToLength(uint8_t tag) {
|
|||
// Enforce that kMaxFlatSize maps to a well-known exact tag value.
|
||||
static_assert(TagToAllocatedSize(224) == kMaxFlatSize, "Bad tag logic");
|
||||
|
||||
constexpr size_t Fibonacci(uint8_t n, const size_t a = 0, const size_t b = 1) {
|
||||
return n == 0
|
||||
? a
|
||||
: n == 1 ? b
|
||||
: Fibonacci(n - 1, b,
|
||||
(a > (size_t(-1) - b)) ? size_t(-1) : a + b);
|
||||
constexpr uint64_t Fibonacci(unsigned char n, uint64_t a = 0, uint64_t b = 1) {
|
||||
return n == 0 ? a : Fibonacci(n - 1, b, a + b);
|
||||
}
|
||||
|
||||
static_assert(Fibonacci(63) == 6557470319842,
|
||||
"Fibonacci values computed incorrectly");
|
||||
|
||||
// Minimum length required for a given depth tree -- a tree is considered
|
||||
// balanced if
|
||||
// length(t) >= kMinLength[depth(t)]
|
||||
// The node depth is allowed to become larger to reduce rebalancing
|
||||
// for larger strings (see ShouldRebalance).
|
||||
constexpr size_t kMinLength[] = {
|
||||
Fibonacci(2), Fibonacci(3), Fibonacci(4), Fibonacci(5), Fibonacci(6),
|
||||
Fibonacci(7), Fibonacci(8), Fibonacci(9), Fibonacci(10), Fibonacci(11),
|
||||
Fibonacci(12), Fibonacci(13), Fibonacci(14), Fibonacci(15), Fibonacci(16),
|
||||
Fibonacci(17), Fibonacci(18), Fibonacci(19), Fibonacci(20), Fibonacci(21),
|
||||
Fibonacci(22), Fibonacci(23), Fibonacci(24), Fibonacci(25), Fibonacci(26),
|
||||
Fibonacci(27), Fibonacci(28), Fibonacci(29), Fibonacci(30), Fibonacci(31),
|
||||
Fibonacci(32), Fibonacci(33), Fibonacci(34), Fibonacci(35), Fibonacci(36),
|
||||
Fibonacci(37), Fibonacci(38), Fibonacci(39), Fibonacci(40), Fibonacci(41),
|
||||
Fibonacci(42), Fibonacci(43), Fibonacci(44), Fibonacci(45), Fibonacci(46),
|
||||
Fibonacci(47), Fibonacci(48), Fibonacci(49), Fibonacci(50), Fibonacci(51),
|
||||
Fibonacci(52), Fibonacci(53), Fibonacci(54), Fibonacci(55), Fibonacci(56),
|
||||
Fibonacci(57), Fibonacci(58), Fibonacci(59), Fibonacci(60), Fibonacci(61),
|
||||
Fibonacci(62), Fibonacci(63), Fibonacci(64), Fibonacci(65), Fibonacci(66),
|
||||
Fibonacci(67), Fibonacci(68), Fibonacci(69), Fibonacci(70), Fibonacci(71),
|
||||
Fibonacci(72), Fibonacci(73), Fibonacci(74), Fibonacci(75), Fibonacci(76),
|
||||
Fibonacci(77), Fibonacci(78), Fibonacci(79), Fibonacci(80), Fibonacci(81),
|
||||
Fibonacci(82), Fibonacci(83), Fibonacci(84), Fibonacci(85), Fibonacci(86),
|
||||
Fibonacci(87), Fibonacci(88), Fibonacci(89), Fibonacci(90), Fibonacci(91),
|
||||
Fibonacci(92), Fibonacci(93), Fibonacci(94), Fibonacci(95)};
|
||||
// length(t) >= min_length[depth(t)]
|
||||
// The root node depth is allowed to become twice as large to reduce rebalancing
|
||||
// for larger strings (see IsRootBalanced).
|
||||
static constexpr uint64_t min_length[] = {
|
||||
Fibonacci(2),
|
||||
Fibonacci(3),
|
||||
Fibonacci(4),
|
||||
Fibonacci(5),
|
||||
Fibonacci(6),
|
||||
Fibonacci(7),
|
||||
Fibonacci(8),
|
||||
Fibonacci(9),
|
||||
Fibonacci(10),
|
||||
Fibonacci(11),
|
||||
Fibonacci(12),
|
||||
Fibonacci(13),
|
||||
Fibonacci(14),
|
||||
Fibonacci(15),
|
||||
Fibonacci(16),
|
||||
Fibonacci(17),
|
||||
Fibonacci(18),
|
||||
Fibonacci(19),
|
||||
Fibonacci(20),
|
||||
Fibonacci(21),
|
||||
Fibonacci(22),
|
||||
Fibonacci(23),
|
||||
Fibonacci(24),
|
||||
Fibonacci(25),
|
||||
Fibonacci(26),
|
||||
Fibonacci(27),
|
||||
Fibonacci(28),
|
||||
Fibonacci(29),
|
||||
Fibonacci(30),
|
||||
Fibonacci(31),
|
||||
Fibonacci(32),
|
||||
Fibonacci(33),
|
||||
Fibonacci(34),
|
||||
Fibonacci(35),
|
||||
Fibonacci(36),
|
||||
Fibonacci(37),
|
||||
Fibonacci(38),
|
||||
Fibonacci(39),
|
||||
Fibonacci(40),
|
||||
Fibonacci(41),
|
||||
Fibonacci(42),
|
||||
Fibonacci(43),
|
||||
Fibonacci(44),
|
||||
Fibonacci(45),
|
||||
Fibonacci(46),
|
||||
Fibonacci(47),
|
||||
0xffffffffffffffffull, // Avoid overflow
|
||||
};
|
||||
|
||||
static_assert(sizeof(kMinLength) / sizeof(size_t) >=
|
||||
(cord_internal::MaxCordDepth() + 1),
|
||||
"Not enough elements in kMinLength array to cover all the "
|
||||
"supported Cord depth(s)");
|
||||
static const int kMinLengthSize = ABSL_ARRAYSIZE(min_length);
|
||||
|
||||
inline bool ShouldRebalance(const CordRep* node) {
|
||||
if (node->tag != CONCAT) return false;
|
||||
// The inlined size to use with absl::InlinedVector.
|
||||
//
|
||||
// Note: The InlinedVectors in this file (and in cord.h) do not need to use
|
||||
// the same value for their inlined size. The fact that they do is historical.
|
||||
// It may be desirable for each to use a different inlined size optimized for
|
||||
// that InlinedVector's usage.
|
||||
//
|
||||
// TODO(jgm): Benchmark to see if there's a more optimal value than 47 for
|
||||
// the inlined vector size (47 exists for backward compatibility).
|
||||
static const int kInlinedVectorSize = 47;
|
||||
|
||||
size_t node_depth = node->concat()->depth();
|
||||
|
||||
if (node_depth <= 15) return false;
|
||||
|
||||
// Rebalancing Cords is expensive, so we reduce how often rebalancing occurs
|
||||
// by allowing shallow Cords to have twice the depth that the Fibonacci rule
|
||||
// would otherwise imply. Deep Cords need to follow the rule more closely,
|
||||
// however to ensure algorithm correctness. We implement this with linear
|
||||
// interpolation. Cords of depth 16 are treated as though they have a depth
|
||||
// of 16 * 1/2, and Cords of depth MaxCordDepth() interpolate to
|
||||
// MaxCordDepth() * 1.
|
||||
return node->length <
|
||||
kMinLength[(node_depth * (cord_internal::MaxCordDepth() - 16)) /
|
||||
(2 * cord_internal::MaxCordDepth() - 16 - node_depth)];
|
||||
}
|
||||
|
||||
// Unlike root balancing condition this one is part of the re-balancing
|
||||
// algorithm and has to be always matching against right depth for
|
||||
// algorithm to be correct.
|
||||
inline bool IsNodeBalanced(const CordRep* node) {
|
||||
if (node->tag != CONCAT) return true;
|
||||
|
||||
size_t node_depth = node->concat()->depth();
|
||||
|
||||
return node->length >= kMinLength[node_depth];
|
||||
static inline bool IsRootBalanced(CordRep* node) {
|
||||
if (node->tag != CONCAT) {
|
||||
return true;
|
||||
} else if (node->concat()->depth() <= 15) {
|
||||
return true;
|
||||
} else if (node->concat()->depth() > kMinLengthSize) {
|
||||
return false;
|
||||
} else {
|
||||
// Allow depth to become twice as large as implied by fibonacci rule to
|
||||
// reduce rebalancing for larger strings.
|
||||
return (node->length >= min_length[node->concat()->depth() / 2]);
|
||||
}
|
||||
}
|
||||
|
||||
static CordRep* Rebalance(CordRep* node);
|
||||
static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os);
|
||||
static bool VerifyNode(const CordRep* root, const CordRep* start_node,
|
||||
static void DumpNode(CordRep* rep, bool include_data, std::ostream* os);
|
||||
static bool VerifyNode(CordRep* root, CordRep* start_node,
|
||||
bool full_validation);
|
||||
|
||||
static inline CordRep* VerifyTree(CordRep* node) {
|
||||
|
|
@ -305,8 +318,7 @@ __attribute__((preserve_most))
|
|||
static void UnrefInternal(CordRep* rep) {
|
||||
assert(rep != nullptr);
|
||||
|
||||
cord_internal::RebalancingStack pending;
|
||||
|
||||
absl::InlinedVector<CordRep*, kInlinedVectorSize> pending;
|
||||
while (true) {
|
||||
if (rep->tag == CONCAT) {
|
||||
CordRepConcat* rep_concat = rep->concat();
|
||||
|
|
@ -388,11 +400,6 @@ static void SetConcatChildren(CordRepConcat* concat, CordRep* left,
|
|||
|
||||
concat->length = left->length + right->length;
|
||||
concat->set_depth(1 + std::max(Depth(left), Depth(right)));
|
||||
|
||||
ABSL_INTERNAL_CHECK(concat->depth() <= cord_internal::MaxCordDepth(),
|
||||
"Cord depth exceeds max");
|
||||
ABSL_INTERNAL_CHECK(concat->length >= left->length, "Cord is too long");
|
||||
ABSL_INTERNAL_CHECK(concat->length >= right->length, "Cord is too long");
|
||||
}
|
||||
|
||||
// Create a concatenation of the specified nodes.
|
||||
|
|
@ -418,7 +425,7 @@ static CordRep* RawConcat(CordRep* left, CordRep* right) {
|
|||
|
||||
static CordRep* Concat(CordRep* left, CordRep* right) {
|
||||
CordRep* rep = RawConcat(left, right);
|
||||
if (rep != nullptr && ShouldRebalance(rep)) {
|
||||
if (rep != nullptr && !IsRootBalanced(rep)) {
|
||||
rep = Rebalance(rep);
|
||||
}
|
||||
return VerifyTree(rep);
|
||||
|
|
@ -909,7 +916,7 @@ void Cord::Prepend(absl::string_view src) {
|
|||
static CordRep* RemovePrefixFrom(CordRep* node, size_t n) {
|
||||
if (n >= node->length) return nullptr;
|
||||
if (n == 0) return Ref(node);
|
||||
cord_internal::CordTreeMutablePath rhs_stack;
|
||||
absl::InlinedVector<CordRep*, kInlinedVectorSize> rhs_stack;
|
||||
|
||||
while (node->tag == CONCAT) {
|
||||
assert(n <= node->length);
|
||||
|
|
@ -950,7 +957,7 @@ static CordRep* RemovePrefixFrom(CordRep* node, size_t n) {
|
|||
static CordRep* RemoveSuffixFrom(CordRep* node, size_t n) {
|
||||
if (n >= node->length) return nullptr;
|
||||
if (n == 0) return Ref(node);
|
||||
absl::cord_internal::CordTreeMutablePath lhs_stack;
|
||||
absl::InlinedVector<CordRep*, kInlinedVectorSize> lhs_stack;
|
||||
bool inplace_ok = node->refcount.IsOne();
|
||||
|
||||
while (node->tag == CONCAT) {
|
||||
|
|
@ -1021,7 +1028,6 @@ void Cord::RemoveSuffix(size_t n) {
|
|||
|
||||
// Work item for NewSubRange().
|
||||
struct SubRange {
|
||||
SubRange() = default;
|
||||
SubRange(CordRep* a_node, size_t a_pos, size_t a_n)
|
||||
: node(a_node), pos(a_pos), n(a_n) {}
|
||||
CordRep* node; // nullptr means concat last 2 results.
|
||||
|
|
@ -1030,11 +1036,8 @@ struct SubRange {
|
|||
};
|
||||
|
||||
static CordRep* NewSubRange(CordRep* node, size_t pos, size_t n) {
|
||||
cord_internal::CordTreeMutablePath results;
|
||||
// The algorithm below in worst case scenario adds up to 3 nodes to the `todo`
|
||||
// list, but we also pop one out on every cycle. If original tree has depth d
|
||||
// todo list can grew up to 2*d in size.
|
||||
cord_internal::CordTreePath<SubRange, 2 * cord_internal::MaxCordDepth()> todo;
|
||||
absl::InlinedVector<CordRep*, kInlinedVectorSize> results;
|
||||
absl::InlinedVector<SubRange, kInlinedVectorSize> todo;
|
||||
todo.push_back(SubRange(node, pos, n));
|
||||
do {
|
||||
const SubRange& sr = todo.back();
|
||||
|
|
@ -1071,7 +1074,7 @@ static CordRep* NewSubRange(CordRep* node, size_t pos, size_t n) {
|
|||
}
|
||||
} while (!todo.empty());
|
||||
assert(results.size() == 1);
|
||||
return results.back();
|
||||
return results[0];
|
||||
}
|
||||
|
||||
Cord Cord::Subcord(size_t pos, size_t new_size) const {
|
||||
|
|
@ -1110,12 +1113,11 @@ Cord Cord::Subcord(size_t pos, size_t new_size) const {
|
|||
|
||||
class CordForest {
|
||||
public:
|
||||
explicit CordForest(size_t length) : root_length_(length), trees_({}) {}
|
||||
explicit CordForest(size_t length)
|
||||
: root_length_(length), trees_(kMinLengthSize, nullptr) {}
|
||||
|
||||
void Build(CordRep* cord_root) {
|
||||
// We are adding up to two nodes to the `pending` list, but we also popping
|
||||
// one, so the size of `pending` will never exceed `MaxCordDepth()`.
|
||||
cord_internal::CordTreeMutablePath pending(cord_root);
|
||||
std::vector<CordRep*> pending = {cord_root};
|
||||
|
||||
while (!pending.empty()) {
|
||||
CordRep* node = pending.back();
|
||||
|
|
@ -1127,20 +1129,21 @@ class CordForest {
|
|||
}
|
||||
|
||||
CordRepConcat* concat_node = node->concat();
|
||||
if (IsNodeBalanced(concat_node)) {
|
||||
AddNode(node);
|
||||
continue;
|
||||
}
|
||||
pending.push_back(concat_node->right);
|
||||
pending.push_back(concat_node->left);
|
||||
if (concat_node->depth() >= kMinLengthSize ||
|
||||
concat_node->length < min_length[concat_node->depth()]) {
|
||||
pending.push_back(concat_node->right);
|
||||
pending.push_back(concat_node->left);
|
||||
|
||||
if (concat_node->refcount.IsOne()) {
|
||||
concat_node->left = concat_freelist_;
|
||||
concat_freelist_ = concat_node;
|
||||
if (concat_node->refcount.IsOne()) {
|
||||
concat_node->left = concat_freelist_;
|
||||
concat_freelist_ = concat_node;
|
||||
} else {
|
||||
Ref(concat_node->right);
|
||||
Ref(concat_node->left);
|
||||
Unref(concat_node);
|
||||
}
|
||||
} else {
|
||||
Ref(concat_node->right);
|
||||
Ref(concat_node->left);
|
||||
Unref(concat_node);
|
||||
AddNode(node);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -1172,7 +1175,7 @@ class CordForest {
|
|||
|
||||
// Collect together everything with which we will merge with node
|
||||
int i = 0;
|
||||
for (; node->length >= kMinLength[i + 1]; ++i) {
|
||||
for (; node->length > min_length[i + 1]; ++i) {
|
||||
auto& tree_at_i = trees_[i];
|
||||
|
||||
if (tree_at_i == nullptr) continue;
|
||||
|
|
@ -1183,7 +1186,7 @@ class CordForest {
|
|||
sum = AppendNode(node, sum);
|
||||
|
||||
// Insert sum into appropriate place in the forest
|
||||
for (; sum->length >= kMinLength[i]; ++i) {
|
||||
for (; sum->length >= min_length[i]; ++i) {
|
||||
auto& tree_at_i = trees_[i];
|
||||
if (tree_at_i == nullptr) continue;
|
||||
|
||||
|
|
@ -1191,7 +1194,7 @@ class CordForest {
|
|||
tree_at_i = nullptr;
|
||||
}
|
||||
|
||||
// kMinLength[0] == 1, which means sum->length >= kMinLength[0]
|
||||
// min_length[0] == 1, which means sum->length >= min_length[0]
|
||||
assert(i > 0);
|
||||
trees_[i - 1] = sum;
|
||||
}
|
||||
|
|
@ -1224,7 +1227,9 @@ class CordForest {
|
|||
}
|
||||
|
||||
size_t root_length_;
|
||||
std::array<cord_internal::CordRep*, cord_internal::MaxCordDepth()> trees_;
|
||||
|
||||
// use an inlined vector instead of a flat array to get bounds checking
|
||||
absl::InlinedVector<CordRep*, kInlinedVectorSize> trees_;
|
||||
|
||||
// List of concat nodes we can re-use for Cord balancing.
|
||||
CordRepConcat* concat_freelist_ = nullptr;
|
||||
|
|
@ -1836,18 +1841,18 @@ absl::string_view Cord::FlattenSlowPath() {
|
|||
}
|
||||
}
|
||||
|
||||
static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os) {
|
||||
static void DumpNode(CordRep* rep, bool include_data, std::ostream* os) {
|
||||
const int kIndentStep = 1;
|
||||
int indent = 0;
|
||||
cord_internal::CordTreeConstPath stack;
|
||||
cord_internal::CordTreePath<int, cord_internal::MaxCordDepth()> indents;
|
||||
absl::InlinedVector<CordRep*, kInlinedVectorSize> stack;
|
||||
absl::InlinedVector<int, kInlinedVectorSize> indents;
|
||||
for (;;) {
|
||||
*os << std::setw(3) << rep->refcount.Get();
|
||||
*os << " " << std::setw(7) << rep->length;
|
||||
*os << " [";
|
||||
if (include_data) *os << static_cast<const void*>(rep);
|
||||
if (include_data) *os << static_cast<void*>(rep);
|
||||
*os << "]";
|
||||
*os << " " << (IsNodeBalanced(rep) ? 'b' : 'u');
|
||||
*os << " " << (IsRootBalanced(rep) ? 'b' : 'u');
|
||||
*os << " " << std::setw(indent) << "";
|
||||
if (rep->tag == CONCAT) {
|
||||
*os << "CONCAT depth=" << Depth(rep) << "\n";
|
||||
|
|
@ -1868,7 +1873,7 @@ static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os) {
|
|||
} else {
|
||||
*os << "FLAT cap=" << TagToLength(rep->tag) << " [";
|
||||
if (include_data)
|
||||
*os << absl::CEscape(absl::string_view(rep->data, rep->length));
|
||||
*os << absl::CEscape(std::string(rep->data, rep->length));
|
||||
*os << "]\n";
|
||||
}
|
||||
if (stack.empty()) break;
|
||||
|
|
@ -1881,19 +1886,19 @@ static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os) {
|
|||
ABSL_INTERNAL_CHECK(indents.empty(), "");
|
||||
}
|
||||
|
||||
static std::string ReportError(const CordRep* root, const CordRep* node) {
|
||||
static std::string ReportError(CordRep* root, CordRep* node) {
|
||||
std::ostringstream buf;
|
||||
buf << "Error at node " << node << " in:";
|
||||
DumpNode(root, true, &buf);
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
static bool VerifyNode(const CordRep* root, const CordRep* start_node,
|
||||
static bool VerifyNode(CordRep* root, CordRep* start_node,
|
||||
bool full_validation) {
|
||||
cord_internal::CordTreeConstPath worklist;
|
||||
absl::InlinedVector<CordRep*, 2> worklist;
|
||||
worklist.push_back(start_node);
|
||||
do {
|
||||
const CordRep* node = worklist.back();
|
||||
CordRep* node = worklist.back();
|
||||
worklist.pop_back();
|
||||
|
||||
ABSL_INTERNAL_CHECK(node != nullptr, ReportError(root, node));
|
||||
|
|
@ -1943,7 +1948,7 @@ static bool VerifyNode(const CordRep* root, const CordRep* start_node,
|
|||
// Iterate over the tree. cur_node is never a leaf node and leaf nodes will
|
||||
// never be appended to tree_stack. This reduces overhead from manipulating
|
||||
// tree_stack.
|
||||
cord_internal::CordTreeConstPath tree_stack;
|
||||
absl::InlinedVector<const CordRep*, kInlinedVectorSize> tree_stack;
|
||||
const CordRep* cur_node = rep;
|
||||
while (true) {
|
||||
const CordRep* next_node = nullptr;
|
||||
|
|
|
|||
|
|
@ -48,6 +48,7 @@
|
|||
#include "absl/base/internal/per_thread_tls.h"
|
||||
#include "absl/base/macros.h"
|
||||
#include "absl/base/port.h"
|
||||
#include "absl/container/inlined_vector.h"
|
||||
#include "absl/functional/function_ref.h"
|
||||
#include "absl/meta/type_traits.h"
|
||||
#include "absl/strings/internal/cord_internal.h"
|
||||
|
|
@ -67,55 +68,6 @@ template <typename H>
|
|||
H HashFragmentedCord(H, const Cord&);
|
||||
}
|
||||
|
||||
namespace cord_internal {
|
||||
|
||||
// It's expensive to keep a tree perfectly balanced, so instead we keep trees
|
||||
// approximately balanced. A tree node N of depth D(N) that contains a string
|
||||
// of L(N) characters is considered balanced if L >= Fibonacci(D + 2).
|
||||
// The "+ 2" is used to ensure that every balanced leaf node contains at least
|
||||
// one character. Here we presume that
|
||||
// Fibonacci(0) = 0
|
||||
// Fibonacci(1) = 1
|
||||
// Fibonacci(2) = 1
|
||||
// Fibonacci(3) = 2
|
||||
// ...
|
||||
// The algorithm is based on paper by Hans Boehm et al:
|
||||
// https://www.cs.rit.edu/usr/local/pub/jeh/courses/QUARTERS/FP/Labs/CedarRope/rope-paper.pdf
|
||||
// In this paper authors shows that rebalancing based on cord forest of already
|
||||
// balanced subtrees can be proven to never produce tree of depth larger than
|
||||
// largest Fibonacci number representable in the same integral type as cord size
|
||||
// For 64 bit integers this is the 93rd Fibonacci number. For 32 bit integrals
|
||||
// this is 47th Fibonacci number.
|
||||
constexpr size_t MaxCordDepth() { return sizeof(size_t) == 8 ? 93 : 47; }
|
||||
|
||||
// This class models fixed max size stack of CordRep pointers.
|
||||
// The elements are being pushed back and popped from the back.
|
||||
template <typename CordRepPtr, size_t N>
|
||||
class CordTreePath {
|
||||
public:
|
||||
CordTreePath() {}
|
||||
explicit CordTreePath(CordRepPtr root) { push_back(root); }
|
||||
|
||||
bool empty() const { return size_ == 0; }
|
||||
size_t size() const { return size_; }
|
||||
void clear() { size_ = 0; }
|
||||
|
||||
CordRepPtr back() { return data_[size_ - 1]; }
|
||||
|
||||
void pop_back() {
|
||||
--size_;
|
||||
assert(size_ < N);
|
||||
}
|
||||
void push_back(CordRepPtr elem) { data_[size_++] = elem; }
|
||||
|
||||
private:
|
||||
CordRepPtr data_[N];
|
||||
size_t size_ = 0;
|
||||
};
|
||||
|
||||
using CordTreeMutablePath = CordTreePath<CordRep*, MaxCordDepth()>;
|
||||
} // namespace cord_internal
|
||||
|
||||
// A Cord is a sequence of characters.
|
||||
class Cord {
|
||||
private:
|
||||
|
|
@ -333,7 +285,8 @@ class Cord {
|
|||
absl::cord_internal::CordRep* current_leaf_ = nullptr;
|
||||
// The number of bytes left in the `Cord` over which we are iterating.
|
||||
size_t bytes_remaining_ = 0;
|
||||
absl::cord_internal::CordTreeMutablePath stack_of_right_children_;
|
||||
absl::InlinedVector<absl::cord_internal::CordRep*, 4>
|
||||
stack_of_right_children_;
|
||||
};
|
||||
|
||||
// Returns an iterator to the first chunk of the `Cord`.
|
||||
|
|
|
|||
|
|
@ -1402,53 +1402,6 @@ TEST(CordChunkIterator, Operations) {
|
|||
VerifyChunkIterator(subcords, 128);
|
||||
}
|
||||
|
||||
TEST(CordChunkIterator, MaxLengthFullTree) {
|
||||
// Start with a 1-byte cord, and then double its length in a loop. We should
|
||||
// be able to do this until the point where we would overflow size_t.
|
||||
|
||||
absl::Cord cord;
|
||||
size_t size = 1;
|
||||
AddExternalMemory("x", &cord);
|
||||
EXPECT_EQ(cord.size(), size);
|
||||
|
||||
const int kCordLengthDoublingLimit = std::numeric_limits<size_t>::digits - 1;
|
||||
for (int i = 0; i < kCordLengthDoublingLimit; ++i) {
|
||||
cord.Prepend(absl::Cord(cord));
|
||||
size <<= 1;
|
||||
|
||||
EXPECT_EQ(cord.size(), size);
|
||||
|
||||
auto chunk_it = cord.chunk_begin();
|
||||
EXPECT_EQ(*chunk_it, "x");
|
||||
}
|
||||
|
||||
EXPECT_DEATH_IF_SUPPORTED(
|
||||
(cord.Prepend(absl::Cord(cord)), *cord.chunk_begin()),
|
||||
"Cord is too long");
|
||||
}
|
||||
|
||||
TEST(CordChunkIterator, MaxDepth) {
|
||||
// By reusing nodes, it's possible in pathological cases to build a Cord that
|
||||
// exceeds both the maximum permissible length and depth. In this case, the
|
||||
// violation of the maximum depth is reported.
|
||||
absl::Cord left_child;
|
||||
AddExternalMemory("x", &left_child);
|
||||
absl::Cord root = left_child;
|
||||
|
||||
for (int i = 0; i < absl::cord_internal::MaxCordDepth() - 2; ++i) {
|
||||
size_t new_size = left_child.size() + root.size();
|
||||
root.Prepend(left_child);
|
||||
EXPECT_EQ(root.size(), new_size);
|
||||
|
||||
auto chunk_it = root.chunk_begin();
|
||||
EXPECT_EQ(*chunk_it, "x");
|
||||
|
||||
std::swap(left_child, root);
|
||||
}
|
||||
|
||||
EXPECT_DEATH_IF_SUPPORTED(root.Prepend(left_child), "Cord is too long");
|
||||
}
|
||||
|
||||
TEST(CordCharIterator, Traits) {
|
||||
static_assert(std::is_copy_constructible<absl::Cord::CharIterator>::value,
|
||||
"");
|
||||
|
|
|
|||
|
|
@ -24,6 +24,7 @@
|
|||
|
||||
#include "absl/base/config.h"
|
||||
#include "absl/base/port.h"
|
||||
#include "absl/meta/type_traits.h"
|
||||
#include "absl/strings/internal/str_format/output.h"
|
||||
#include "absl/strings/string_view.h"
|
||||
|
||||
|
|
@ -365,11 +366,22 @@ constexpr FormatConversionCharSet operator|(FormatConversionCharSet a,
|
|||
static_cast<uint64_t>(b));
|
||||
}
|
||||
|
||||
// Overloaded conversion functions to support absl::ParsedFormat.
|
||||
// Get a conversion with a single character in it.
|
||||
constexpr FormatConversionCharSet ConversionCharToConv(char c) {
|
||||
return FormatConversionCharSet(FormatConversionCharToConvValue(c));
|
||||
constexpr FormatConversionCharSet ToFormatConversionCharSet(char c) {
|
||||
return static_cast<FormatConversionCharSet>(
|
||||
FormatConversionCharToConvValue(c));
|
||||
}
|
||||
|
||||
// Get a conversion with a single character in it.
|
||||
constexpr FormatConversionCharSet ToFormatConversionCharSet(
|
||||
FormatConversionCharSet c) {
|
||||
return c;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void ToFormatConversionCharSet(T) = delete;
|
||||
|
||||
// Checks whether `c` exists in `set`.
|
||||
constexpr bool Contains(FormatConversionCharSet set, char c) {
|
||||
return (static_cast<uint64_t>(set) & FormatConversionCharToConvValue(c)) != 0;
|
||||
|
|
|
|||
|
|
@ -285,7 +285,7 @@ using FormatSpec =
|
|||
// }
|
||||
template <char... Conv>
|
||||
using ParsedFormat = str_format_internal::ExtendedParsedFormat<
|
||||
str_format_internal::ConversionCharToConv(Conv)...>;
|
||||
absl::str_format_internal::ToFormatConversionCharSet(Conv)...>;
|
||||
|
||||
// StrFormat()
|
||||
//
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue