refactor(nixery): Extract layering logic into separate package
This will be required for making a standalone, Nixery-style image builder function usable from Nix. Change-Id: I5e36348bd4c32d249d56f6628cd046916691319f Reviewed-on: https://cl.tvl.fyi/c/depot/+/5601 Tested-by: BuildkiteCI Reviewed-by: sterni <sternenseemann@systemli.org>
This commit is contained in:
parent
d60feb21e8
commit
796ff086be
4 changed files with 25 additions and 21 deletions
353
tools/nixery/layers/layers.go
Normal file
353
tools/nixery/layers/layers.go
Normal file
|
|
@ -0,0 +1,353 @@
|
|||
// Copyright 2022 The TVL Contributors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
// This package reads an export reference graph (i.e. a graph representing the
|
||||
// runtime dependencies of a set of derivations) created by Nix and groups it in
|
||||
// a way that is likely to match the grouping for other derivation sets with
|
||||
// overlapping dependencies.
|
||||
//
|
||||
// This is used to determine which derivations to include in which layers of a
|
||||
// container image.
|
||||
//
|
||||
// # Inputs
|
||||
//
|
||||
// * a graph of Nix runtime dependencies, generated via exportReferenceGraph
|
||||
// * popularity values of each package in the Nix package set (in the form of a
|
||||
// direct reference count)
|
||||
// * a maximum number of layers to allocate for the image (the "layer budget")
|
||||
//
|
||||
// # Algorithm
|
||||
//
|
||||
// It works by first creating a (directed) dependency tree:
|
||||
//
|
||||
// img (root node)
|
||||
// │
|
||||
// ├───> A ─────┐
|
||||
// │ v
|
||||
// ├───> B ───> E
|
||||
// │ ^
|
||||
// ├───> C ─────┘
|
||||
// │ │
|
||||
// │ v
|
||||
// └───> D ───> F
|
||||
// │
|
||||
// └────> G
|
||||
//
|
||||
// Each node (i.e. package) is then visited to determine how important
|
||||
// it is to separate this node into its own layer, specifically:
|
||||
//
|
||||
// 1. Is the node within a certain threshold percentile of absolute
|
||||
// popularity within all of nixpkgs? (e.g. `glibc`, `openssl`)
|
||||
//
|
||||
// 2. Is the node's runtime closure above a threshold size? (e.g. 100MB)
|
||||
//
|
||||
// In either case, a bit is flipped for this node representing each
|
||||
// condition and an edge to it is inserted directly from the image
|
||||
// root, if it does not already exist.
|
||||
//
|
||||
// For the rest of the example we assume 'G' is above the threshold
|
||||
// size and 'E' is popular.
|
||||
//
|
||||
// This tree is then transformed into a dominator tree:
|
||||
//
|
||||
// img
|
||||
// │
|
||||
// ├───> A
|
||||
// ├───> B
|
||||
// ├───> C
|
||||
// ├───> E
|
||||
// ├───> D ───> F
|
||||
// └───> G
|
||||
//
|
||||
// Specifically this means that the paths to A, B, C, E, G, and D
|
||||
// always pass through the root (i.e. are dominated by it), whilst F
|
||||
// is dominated by D (all paths go through it).
|
||||
//
|
||||
// The top-level subtrees are considered as the initially selected
|
||||
// layers.
|
||||
//
|
||||
// If the list of layers fits within the layer budget, it is returned.
|
||||
//
|
||||
// Otherwise, a merge rating is calculated for each layer. This is the
|
||||
// product of the layer's total size and its root node's popularity.
|
||||
//
|
||||
// Layers are then merged in ascending order of merge ratings until
|
||||
// they fit into the layer budget.
|
||||
//
|
||||
// # Threshold values
|
||||
//
|
||||
// Threshold values for the partitioning conditions mentioned above
|
||||
// have not yet been determined, but we will make a good first guess
|
||||
// based on gut feeling and proceed to measure their impact on cache
|
||||
// hits/misses.
|
||||
//
|
||||
// # Example
|
||||
//
|
||||
// Using the logic described above as well as the example presented in
|
||||
// the introduction, this program would create the following layer
|
||||
// groupings (assuming no additional partitioning):
|
||||
//
|
||||
// Layer budget: 1
|
||||
// Layers: { A, B, C, D, E, F, G }
|
||||
//
|
||||
// Layer budget: 2
|
||||
// Layers: { G }, { A, B, C, D, E, F }
|
||||
//
|
||||
// Layer budget: 3
|
||||
// Layers: { G }, { E }, { A, B, C, D, F }
|
||||
//
|
||||
// Layer budget: 4
|
||||
// Layers: { G }, { E }, { D, F }, { A, B, C }
|
||||
//
|
||||
// ...
|
||||
//
|
||||
// Layer budget: 10
|
||||
// Layers: { E }, { D, F }, { A }, { B }, { C }
|
||||
package layers
|
||||
|
||||
import (
|
||||
"crypto/sha1"
|
||||
"fmt"
|
||||
"regexp"
|
||||
"sort"
|
||||
"strings"
|
||||
|
||||
log "github.com/sirupsen/logrus"
|
||||
"gonum.org/v1/gonum/graph/flow"
|
||||
"gonum.org/v1/gonum/graph/simple"
|
||||
)
|
||||
|
||||
// runtimeGraph represents structured information from Nix about the runtime
|
||||
// dependencies of a derivation.
|
||||
//
|
||||
// This is generated in Nix by using the exportReferencesGraph feature.
|
||||
type RuntimeGraph struct {
|
||||
References struct {
|
||||
Graph []string `json:"graph"`
|
||||
} `json:"exportReferencesGraph"`
|
||||
|
||||
Graph []struct {
|
||||
Size uint64 `json:"closureSize"`
|
||||
Path string `json:"path"`
|
||||
Refs []string `json:"references"`
|
||||
} `json:"graph"`
|
||||
}
|
||||
|
||||
// Popularity data for each Nix package that was calculated in advance.
|
||||
//
|
||||
// Popularity is a number from 1-100 that represents the
|
||||
// popularity percentile in which this package resides inside
|
||||
// of the nixpkgs tree.
|
||||
type Popularity = map[string]int
|
||||
|
||||
// Layer represents the data returned for each layer that Nix should
|
||||
// build for the container image.
|
||||
type Layer struct {
|
||||
Contents []string `json:"contents"`
|
||||
MergeRating uint64
|
||||
}
|
||||
|
||||
// Hash the contents of a layer to create a deterministic identifier that can be
|
||||
// used for caching.
|
||||
func (l *Layer) Hash() string {
|
||||
sum := sha1.Sum([]byte(strings.Join(l.Contents, ":")))
|
||||
return fmt.Sprintf("%x", sum)
|
||||
}
|
||||
|
||||
func (a Layer) merge(b Layer) Layer {
|
||||
a.Contents = append(a.Contents, b.Contents...)
|
||||
a.MergeRating += b.MergeRating
|
||||
return a
|
||||
}
|
||||
|
||||
// closure as pointed to by the graph nodes.
|
||||
type closure struct {
|
||||
GraphID int64
|
||||
Path string
|
||||
Size uint64
|
||||
Refs []string
|
||||
Popularity int
|
||||
}
|
||||
|
||||
func (c *closure) ID() int64 {
|
||||
return c.GraphID
|
||||
}
|
||||
|
||||
var nixRegexp = regexp.MustCompile(`^/nix/store/[a-z0-9]+-`)
|
||||
|
||||
// PackageFromPath returns the name of a Nix package based on its
|
||||
// output store path.
|
||||
func PackageFromPath(path string) string {
|
||||
return nixRegexp.ReplaceAllString(path, "")
|
||||
}
|
||||
|
||||
// DOTID provides a human-readable package name. The name stems from
|
||||
// the dot format used by GraphViz, into which the dependency graph
|
||||
// can be rendered.
|
||||
func (c *closure) DOTID() string {
|
||||
return PackageFromPath(c.Path)
|
||||
}
|
||||
|
||||
// bigOrPopular checks whether this closure should be considered for
|
||||
// separation into its own layer, even if it would otherwise only
|
||||
// appear in a subtree of the dominator tree.
|
||||
func (c *closure) bigOrPopular() bool {
|
||||
const sizeThreshold = 100 * 1000000 // 100MB
|
||||
|
||||
if c.Size > sizeThreshold {
|
||||
return true
|
||||
}
|
||||
|
||||
// Threshold value is picked arbitrarily right now. The reason
|
||||
// for this is that some packages (such as `cacert`) have very
|
||||
// few direct dependencies, but are required by pretty much
|
||||
// everything.
|
||||
if c.Popularity >= 100 {
|
||||
return true
|
||||
}
|
||||
|
||||
return false
|
||||
}
|
||||
|
||||
func insertEdges(graph *simple.DirectedGraph, cmap *map[string]*closure, node *closure) {
|
||||
// Big or popular nodes get a separate edge from the top to
|
||||
// flag them for their own layer.
|
||||
if node.bigOrPopular() && !graph.HasEdgeFromTo(0, node.ID()) {
|
||||
edge := graph.NewEdge(graph.Node(0), node)
|
||||
graph.SetEdge(edge)
|
||||
}
|
||||
|
||||
for _, c := range node.Refs {
|
||||
// Nix adds a self reference to each node, which
|
||||
// should not be inserted.
|
||||
if c != node.Path {
|
||||
edge := graph.NewEdge(node, (*cmap)[c])
|
||||
graph.SetEdge(edge)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Create a graph structure from the references supplied by Nix.
|
||||
func buildGraph(refs *RuntimeGraph, pop *Popularity) *simple.DirectedGraph {
|
||||
cmap := make(map[string]*closure)
|
||||
graph := simple.NewDirectedGraph()
|
||||
|
||||
// Insert all closures into the graph, as well as a fake root
|
||||
// closure which serves as the top of the tree.
|
||||
//
|
||||
// A map from store paths to IDs is kept to actually insert
|
||||
// edges below.
|
||||
root := &closure{
|
||||
GraphID: 0,
|
||||
Path: "image_root",
|
||||
}
|
||||
graph.AddNode(root)
|
||||
|
||||
for idx, c := range refs.Graph {
|
||||
node := &closure{
|
||||
GraphID: int64(idx + 1), // inc because of root node
|
||||
Path: c.Path,
|
||||
Size: c.Size,
|
||||
Refs: c.Refs,
|
||||
}
|
||||
|
||||
// The packages `nss-cacert` and `iana-etc` are added
|
||||
// by Nixery to *every single image* and should have a
|
||||
// very high popularity.
|
||||
//
|
||||
// Other popularity values are populated from the data
|
||||
// set assembled by Nixery's popcount.
|
||||
id := node.DOTID()
|
||||
if strings.HasPrefix(id, "nss-cacert") || strings.HasPrefix(id, "iana-etc") {
|
||||
// glibc has ~300k references, these packages need *more*
|
||||
node.Popularity = 500000
|
||||
} else if p, ok := (*pop)[id]; ok {
|
||||
node.Popularity = p
|
||||
} else {
|
||||
node.Popularity = 1
|
||||
}
|
||||
|
||||
graph.AddNode(node)
|
||||
cmap[c.Path] = node
|
||||
}
|
||||
|
||||
// Insert the top-level closures with edges from the root
|
||||
// node, then insert all edges for each closure.
|
||||
for _, p := range refs.References.Graph {
|
||||
edge := graph.NewEdge(root, cmap[p])
|
||||
graph.SetEdge(edge)
|
||||
}
|
||||
|
||||
for _, c := range cmap {
|
||||
insertEdges(graph, &cmap, c)
|
||||
}
|
||||
|
||||
return graph
|
||||
}
|
||||
|
||||
// Extracts a subgraph starting at the specified root from the
|
||||
// dominator tree. The subgraph is converted into a flat list of
|
||||
// layers, each containing the store paths and merge rating.
|
||||
func groupLayer(dt *flow.DominatorTree, root *closure) Layer {
|
||||
size := root.Size
|
||||
contents := []string{root.Path}
|
||||
children := dt.DominatedBy(root.ID())
|
||||
|
||||
// This iteration does not use 'range' because the list being
|
||||
// iterated is modified during the iteration (yes, I'm sorry).
|
||||
for i := 0; i < len(children); i++ {
|
||||
child := children[i].(*closure)
|
||||
size += child.Size
|
||||
contents = append(contents, child.Path)
|
||||
children = append(children, dt.DominatedBy(child.ID())...)
|
||||
}
|
||||
|
||||
// Contents are sorted to ensure that hashing is consistent
|
||||
sort.Strings(contents)
|
||||
|
||||
return Layer{
|
||||
Contents: contents,
|
||||
MergeRating: uint64(root.Popularity) * size,
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate the dominator tree of the entire package set and group
|
||||
// each top-level subtree into a layer.
|
||||
//
|
||||
// Layers are merged together until they fit into the layer budget,
|
||||
// based on their merge rating.
|
||||
func dominate(budget int, graph *simple.DirectedGraph) []Layer {
|
||||
dt := flow.Dominators(graph.Node(0), graph)
|
||||
|
||||
var layers []Layer
|
||||
for _, n := range dt.DominatedBy(dt.Root().ID()) {
|
||||
layers = append(layers, groupLayer(&dt, n.(*closure)))
|
||||
}
|
||||
|
||||
sort.Slice(layers, func(i, j int) bool {
|
||||
return layers[i].MergeRating < layers[j].MergeRating
|
||||
})
|
||||
|
||||
if len(layers) > budget {
|
||||
log.WithFields(log.Fields{
|
||||
"layers": len(layers),
|
||||
"budget": budget,
|
||||
}).Info("ideal image exceeds layer budget")
|
||||
}
|
||||
|
||||
for len(layers) > budget {
|
||||
merged := layers[0].merge(layers[1])
|
||||
layers[1] = merged
|
||||
layers = layers[1:]
|
||||
}
|
||||
|
||||
return layers
|
||||
}
|
||||
|
||||
// groupLayers applies the algorithm described above the its input and returns a
|
||||
// list of layers, each consisting of a list of Nix store paths that it should
|
||||
// contain.
|
||||
func GroupLayers(refs *RuntimeGraph, pop *Popularity, budget int) []Layer {
|
||||
graph := buildGraph(refs, pop)
|
||||
return dominate(budget, graph)
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue