Export of internal Abseil changes

--
990253454819ce26ff1dda9ab4bbc145b61d01e4 by Xiaoyi Zhang <zhangxy@google.com>:

Import github PR https://github.com/abseil/abseil-cpp/pull/645

PiperOrigin-RevId: 303119797

--
5ac845cb7929b7d1eaf59a309afd811db5001175 by Abseil Team <absl-team@google.com>:

Fix internal exception spec compatibility error

PiperOrigin-RevId: 303104081

--
3290595dd866eecab3c7044e2e3ca0adb74f1bf5 by Gennadiy Rozental <rogeeff@google.com>:

Use FlagValue<T> to represent the value of a flag. Place it directly after
FlagImpl and use a computed offset refer to it.

The offset is computed based on the assumption that the `value_` data member
is placed directly after the impl_ data member in Flag<T>.

This change will allow us to migrate to `T`-specific storage in the generic case.

This change decreases the overhead for int flags by 32 bytes.

PiperOrigin-RevId: 303038099

--
f2b37722cd7a6d3a60ef9713f0d2bbff56f3ddbf by Derek Mauro <dmauro@google.com>:

Minor correctness fix for an ABSL_HAVE_BUILTIN conditional

PiperOrigin-RevId: 302980666

--
39c079a6141ae1c5728af8bf33a39c8aff9deb9f by Abseil Team <absl-team@google.com>:

Use ABSL_HARDENING_ASSERT in b-tree and SwissTable iterators.

PiperOrigin-RevId: 302970075

--
9668a044e080c789df32bcaa1ffb5100831cd9fa by Benjamin Barenblat <bbaren@google.com>:

Correct `add_subdirectory` line in CMake googletest support

Commit bcefbdcdf6 added support for building with CMake against a local googletest checkout, but I missed a line when constructing the diff. Change the `add_subdirectory` line to reference the correct directories.

PiperOrigin-RevId: 302947488

--
0a3c10fabf80a43ca69ab8b1570030e55f2be741 by Andy Soffer <asoffer@google.com>:

Remove unused distribution format traits.

PiperOrigin-RevId: 302896176

--
0478f2f6270e5ed64c0e28ec09556ca90b2d46a9 by Samuel Benzaquen <sbenza@google.com>:

Fix for CWG:2310.

PiperOrigin-RevId: 302734089

--
3cb978dda5cae5905affdc0914dcc2d27671ed11 by Samuel Benzaquen <sbenza@google.com>:

Fix the Allocate/Deallocate functions to use the same underlying allocator type.

PiperOrigin-RevId: 302721804

--
ae38d3984fb68b4e3ddc165fa8d5c24d5936be52 by Matthew Brown <matthewbr@google.com>:

Internal Change

PiperOrigin-RevId: 302717314

--
7357cf7abd03cc60b6e82b5f28a8e34935c3b4dc by Andy Getzendanner <durandal@google.com>:

Fix typo: s/ABSL_HARDENED_ASSERT/ABSL_HARDENING_ASSERT/

PiperOrigin-RevId: 302532164
GitOrigin-RevId: 990253454819ce26ff1dda9ab4bbc145b61d01e4
Change-Id: Ie595a221c16e1e7e1255ad42e029b646c5f3e11d
This commit is contained in:
Abseil Team 2020-03-26 08:48:01 -07:00 committed by Xiaoyi Zhang
parent 132d791b40
commit 79e0dc1151
29 changed files with 387 additions and 607 deletions

View file

@ -91,30 +91,30 @@ struct S2 {
};
TEST_F(FlagTest, Traits) {
EXPECT_EQ(flags::FlagValue::Kind<int>(),
EXPECT_EQ(flags::StorageKind<int>(),
flags::FlagValueStorageKind::kOneWordAtomic);
EXPECT_EQ(flags::FlagValue::Kind<bool>(),
EXPECT_EQ(flags::StorageKind<bool>(),
flags::FlagValueStorageKind::kOneWordAtomic);
EXPECT_EQ(flags::FlagValue::Kind<double>(),
EXPECT_EQ(flags::StorageKind<double>(),
flags::FlagValueStorageKind::kOneWordAtomic);
EXPECT_EQ(flags::FlagValue::Kind<int64_t>(),
EXPECT_EQ(flags::StorageKind<int64_t>(),
flags::FlagValueStorageKind::kOneWordAtomic);
#if defined(ABSL_FLAGS_INTERNAL_ATOMIC_DOUBLE_WORD)
EXPECT_EQ(flags::FlagValue::Kind<S1>(),
EXPECT_EQ(flags::StorageKind<S1>(),
flags::FlagValueStorageKind::kTwoWordsAtomic);
EXPECT_EQ(flags::FlagValue::Kind<S2>(),
EXPECT_EQ(flags::StorageKind<S2>(),
flags::FlagValueStorageKind::kTwoWordsAtomic);
#else
EXPECT_EQ(flags::FlagValue::Kind<S1>(),
EXPECT_EQ(flags::StorageKind<S1>(),
flags::FlagValueStorageKind::kHeapAllocated);
EXPECT_EQ(flags::FlagValue::Kind<S2>(),
EXPECT_EQ(flags::StorageKind<S2>(),
flags::FlagValueStorageKind::kHeapAllocated);
#endif
EXPECT_EQ(flags::FlagValue::Kind<std::string>(),
EXPECT_EQ(flags::StorageKind<std::string>(),
flags::FlagValueStorageKind::kHeapAllocated);
EXPECT_EQ(flags::FlagValue::Kind<std::vector<std::string>>(),
EXPECT_EQ(flags::StorageKind<std::vector<std::string>>(),
flags::FlagValueStorageKind::kHeapAllocated);
}
@ -624,10 +624,10 @@ TEST_F(FlagTest, TestNonDefaultConstructibleType) {
EXPECT_EQ(absl::GetFlag(FLAGS_ndc_flag2).value, 25);
}
// --------------------------------------------------------------------
} // namespace
// --------------------------------------------------------------------
ABSL_RETIRED_FLAG(bool, old_bool_flag, true, "old descr");
ABSL_RETIRED_FLAG(int, old_int_flag, (int)std::sqrt(10), "old descr");
ABSL_RETIRED_FLAG(std::string, old_str_flag, "", absl::StrCat("old ", "descr"));

View file

@ -25,6 +25,7 @@
#include <vector>
#include "absl/base/attributes.h"
#include "absl/base/casts.h"
#include "absl/base/config.h"
#include "absl/base/const_init.h"
#include "absl/base/optimization.h"
@ -135,18 +136,18 @@ void FlagImpl::Init() {
(*default_value_.gen_func)(), DynValueDeleter{op_});
switch (ValueStorageKind()) {
case FlagValueStorageKind::kHeapAllocated:
value_.dynamic = init_value.release();
HeapAllocatedValue() = init_value.release();
break;
case FlagValueStorageKind::kOneWordAtomic: {
int64_t atomic_value;
std::memcpy(&atomic_value, init_value.get(), flags_internal::Sizeof(op_));
value_.one_word_atomic.store(atomic_value, std::memory_order_release);
std::memcpy(&atomic_value, init_value.get(), Sizeof(op_));
OneWordValue().store(atomic_value, std::memory_order_release);
break;
}
case FlagValueStorageKind::kTwoWordsAtomic: {
AlignedTwoWords atomic_value{0, 0};
std::memcpy(&atomic_value, init_value.get(), flags_internal::Sizeof(op_));
value_.two_words_atomic.store(atomic_value, std::memory_order_release);
std::memcpy(&atomic_value, init_value.get(), Sizeof(op_));
TwoWordsValue().store(atomic_value, std::memory_order_release);
break;
}
}
@ -198,18 +199,18 @@ std::unique_ptr<void, DynValueDeleter> FlagImpl::MakeInitValue() const {
void FlagImpl::StoreValue(const void* src) {
switch (ValueStorageKind()) {
case FlagValueStorageKind::kHeapAllocated:
flags_internal::Copy(op_, src, value_.dynamic);
Copy(op_, src, HeapAllocatedValue());
break;
case FlagValueStorageKind::kOneWordAtomic: {
int64_t one_word_val;
std::memcpy(&one_word_val, src, flags_internal::Sizeof(op_));
value_.one_word_atomic.store(one_word_val, std::memory_order_release);
int64_t one_word_val = 0;
std::memcpy(&one_word_val, src, Sizeof(op_));
OneWordValue().store(one_word_val, std::memory_order_release);
break;
}
case FlagValueStorageKind::kTwoWordsAtomic: {
AlignedTwoWords two_words_val{0, 0};
std::memcpy(&two_words_val, src, flags_internal::Sizeof(op_));
value_.two_words_atomic.store(two_words_val, std::memory_order_release);
std::memcpy(&two_words_val, src, Sizeof(op_));
TwoWordsValue().store(two_words_val, std::memory_order_release);
break;
}
}
@ -258,17 +259,19 @@ std::string FlagImpl::CurrentValue() const {
switch (ValueStorageKind()) {
case FlagValueStorageKind::kHeapAllocated: {
absl::MutexLock l(guard);
return flags_internal::Unparse(op_, value_.dynamic);
return flags_internal::Unparse(op_, HeapAllocatedValue());
}
case FlagValueStorageKind::kOneWordAtomic: {
const auto one_word_val =
value_.one_word_atomic.load(std::memory_order_acquire);
return flags_internal::Unparse(op_, &one_word_val);
absl::bit_cast<std::array<char, sizeof(int64_t)>>(
OneWordValue().load(std::memory_order_acquire));
return flags_internal::Unparse(op_, one_word_val.data());
}
case FlagValueStorageKind::kTwoWordsAtomic: {
const auto two_words_val =
value_.two_words_atomic.load(std::memory_order_acquire);
return flags_internal::Unparse(op_, &two_words_val);
absl::bit_cast<std::array<char, sizeof(AlignedTwoWords)>>(
TwoWordsValue().load(std::memory_order_acquire));
return flags_internal::Unparse(op_, two_words_val.data());
}
}
@ -317,18 +320,18 @@ std::unique_ptr<FlagStateInterface> FlagImpl::SaveState() {
switch (ValueStorageKind()) {
case FlagValueStorageKind::kHeapAllocated: {
return absl::make_unique<FlagState>(
this, flags_internal::Clone(op_, value_.dynamic), modified,
this, flags_internal::Clone(op_, HeapAllocatedValue()), modified,
on_command_line, counter_);
}
case FlagValueStorageKind::kOneWordAtomic: {
return absl::make_unique<FlagState>(
this, value_.one_word_atomic.load(std::memory_order_acquire),
modified, on_command_line, counter_);
this, OneWordValue().load(std::memory_order_acquire), modified,
on_command_line, counter_);
}
case FlagValueStorageKind::kTwoWordsAtomic: {
return absl::make_unique<FlagState>(
this, value_.two_words_atomic.load(std::memory_order_acquire),
modified, on_command_line, counter_);
this, TwoWordsValue().load(std::memory_order_acquire), modified,
on_command_line, counter_);
}
}
return nullptr;
@ -359,6 +362,28 @@ bool FlagImpl::RestoreState(const FlagState& flag_state) {
return true;
}
template <typename StorageT>
typename StorageT::value_type& FlagImpl::OffsetValue() const {
char* p = reinterpret_cast<char*>(const_cast<FlagImpl*>(this));
// The offset is deduced via Flag value type specific op_.
size_t offset = flags_internal::ValueOffset(op_);
return reinterpret_cast<StorageT*>(p + offset)->value;
}
void*& FlagImpl::HeapAllocatedValue() const {
assert(ValueStorageKind() == FlagValueStorageKind::kHeapAllocated);
return OffsetValue<FlagHeapAllocatedValue>();
}
std::atomic<int64_t>& FlagImpl::OneWordValue() const {
assert(ValueStorageKind() == FlagValueStorageKind::kOneWordAtomic);
return OffsetValue<FlagOneWordValue>();
}
std::atomic<AlignedTwoWords>& FlagImpl::TwoWordsValue() const {
assert(ValueStorageKind() == FlagValueStorageKind::kTwoWordsAtomic);
return OffsetValue<FlagTwoWordsValue>();
}
// Attempts to parse supplied `value` string using parsing routine in the `flag`
// argument. If parsing successful, this function replaces the dst with newly
// parsed value. In case if any error is encountered in either step, the error
@ -383,20 +408,19 @@ void FlagImpl::Read(void* dst) const {
switch (ValueStorageKind()) {
case FlagValueStorageKind::kHeapAllocated: {
absl::MutexLock l(guard);
flags_internal::CopyConstruct(op_, value_.dynamic, dst);
flags_internal::CopyConstruct(op_, HeapAllocatedValue(), dst);
break;
}
case FlagValueStorageKind::kOneWordAtomic: {
const auto one_word_val =
value_.one_word_atomic.load(std::memory_order_acquire);
std::memcpy(dst, &one_word_val, flags_internal::Sizeof(op_));
const int64_t one_word_val =
OneWordValue().load(std::memory_order_acquire);
std::memcpy(dst, &one_word_val, Sizeof(op_));
break;
}
case FlagValueStorageKind::kTwoWordsAtomic: {
const auto two_words_val =
value_.two_words_atomic.load(std::memory_order_acquire);
std::memcpy(dst, &two_words_val, flags_internal::Sizeof(op_));
const AlignedTwoWords two_words_val =
TwoWordsValue().load(std::memory_order_acquire);
std::memcpy(dst, &two_words_val, Sizeof(op_));
break;
}
}

View file

@ -53,56 +53,13 @@ enum class FlagOp {
kStaticTypeId,
kParse,
kUnparse,
kValueOffset,
};
using FlagOpFn = void* (*)(FlagOp, const void*, void*, void*);
// Flag value specific operations routine.
// Forward declaration for Flag value specific operations.
template <typename T>
void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3) {
switch (op) {
case FlagOp::kDelete:
delete static_cast<const T*>(v1);
return nullptr;
case FlagOp::kClone:
return new T(*static_cast<const T*>(v1));
case FlagOp::kCopy:
*static_cast<T*>(v2) = *static_cast<const T*>(v1);
return nullptr;
case FlagOp::kCopyConstruct:
new (v2) T(*static_cast<const T*>(v1));
return nullptr;
case FlagOp::kSizeof:
return reinterpret_cast<void*>(sizeof(T));
case FlagOp::kStaticTypeId: {
auto* static_id = &FlagStaticTypeIdGen<T>;
// Cast from function pointer to void* is not portable.
// We don't have an easy way to work around this, but it works fine
// on all the platforms we test and as long as size of pointers match
// we should be fine to do reinterpret cast.
static_assert(sizeof(void*) == sizeof(static_id),
"Flag's static type id does not work on this platform");
return reinterpret_cast<void*>(static_id);
}
case FlagOp::kParse: {
// Initialize the temporary instance of type T based on current value in
// destination (which is going to be flag's default value).
T temp(*static_cast<T*>(v2));
if (!absl::ParseFlag<T>(*static_cast<const absl::string_view*>(v1), &temp,
static_cast<std::string*>(v3))) {
return nullptr;
}
*static_cast<T*>(v2) = std::move(temp);
return v2;
}
case FlagOp::kUnparse:
*static_cast<std::string*>(v2) =
absl::UnparseFlag<T>(*static_cast<const T*>(v1));
return nullptr;
default:
return nullptr;
}
}
void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3);
// Deletes memory interpreting obj as flag value type pointer.
inline void Delete(FlagOpFn op, const void* obj) {
@ -144,6 +101,16 @@ inline FlagStaticTypeId StaticTypeId(FlagOpFn op) {
return reinterpret_cast<FlagStaticTypeId>(
op(FlagOp::kStaticTypeId, nullptr, nullptr, nullptr));
}
// Returns offset of the field value_ from the field impl_ inside of
// absl::Flag<T> data. Given FlagImpl pointer p you can get the
// location of the corresponding value as:
// reinterpret_cast<char*>(p) + ValueOffset().
inline ptrdiff_t ValueOffset(FlagOpFn op) {
// This sequence of casts reverses the sequence from
// `flags_internal::FlagOps()`
return static_cast<ptrdiff_t>(reinterpret_cast<intptr_t>(
op(FlagOp::kValueOffset, nullptr, nullptr, nullptr)));
}
///////////////////////////////////////////////////////////////////////////////
// Flag help auxiliary structs.
@ -239,6 +206,10 @@ using FlagUseOneWordStorage = std::integral_constant<
struct alignas(16) AlignedTwoWords {
int64_t first;
int64_t second;
bool IsInitialized() const {
return first != flags_internal::UninitializedFlagValue();
}
};
template <typename T>
@ -248,8 +219,14 @@ using FlagUseTwoWordsStorage = std::integral_constant<
#else
// This is actually unused and only here to avoid ifdefs in other palces.
struct AlignedTwoWords {
constexpr AlignedTwoWords() = default;
constexpr AlignedTwoWords(int64_t, int64_t) {}
constexpr AlignedTwoWords() noexcept : dummy() {}
constexpr AlignedTwoWords(int64_t, int64_t) noexcept : dummy() {}
char dummy;
bool IsInitialized() const {
std::abort();
return true;
}
};
// This trait should be type dependent, otherwise SFINAE below will fail
@ -269,23 +246,70 @@ enum class FlagValueStorageKind : uint8_t {
kTwoWordsAtomic = 2
};
union FlagValue {
constexpr explicit FlagValue(int64_t v) : one_word_atomic(v) {}
template <typename T>
static constexpr FlagValueStorageKind StorageKind() {
return FlagUseHeapStorage<T>::value
? FlagValueStorageKind::kHeapAllocated
: FlagUseOneWordStorage<T>::value
? FlagValueStorageKind::kOneWordAtomic
: FlagUseTwoWordsStorage<T>::value
? FlagValueStorageKind::kTwoWordsAtomic
: FlagValueStorageKind::kHeapAllocated;
}
template <typename T>
static constexpr FlagValueStorageKind Kind() {
return FlagUseHeapStorage<T>::value
? FlagValueStorageKind::kHeapAllocated
: FlagUseOneWordStorage<T>::value
? FlagValueStorageKind::kOneWordAtomic
: FlagUseTwoWordsStorage<T>::value
? FlagValueStorageKind::kTwoWordsAtomic
: FlagValueStorageKind::kHeapAllocated;
struct FlagHeapAllocatedValue {
using value_type = void*;
value_type value;
};
struct FlagOneWordValue {
using value_type = std::atomic<int64_t>;
constexpr FlagOneWordValue() : value(UninitializedFlagValue()) {}
value_type value;
};
struct FlagTwoWordsValue {
using value_type = std::atomic<AlignedTwoWords>;
constexpr FlagTwoWordsValue()
: value(AlignedTwoWords{UninitializedFlagValue(), 0}) {}
value_type value;
};
template <typename T,
FlagValueStorageKind Kind = flags_internal::StorageKind<T>()>
struct FlagValue;
template <typename T>
struct FlagValue<T, FlagValueStorageKind::kHeapAllocated>
: FlagHeapAllocatedValue {
bool Get(T*) const { return false; }
};
template <typename T>
struct FlagValue<T, FlagValueStorageKind::kOneWordAtomic> : FlagOneWordValue {
bool Get(T* dst) const {
int64_t one_word_val = value.load(std::memory_order_acquire);
if (ABSL_PREDICT_FALSE(one_word_val == UninitializedFlagValue())) {
return false;
}
std::memcpy(dst, static_cast<const void*>(&one_word_val), sizeof(T));
return true;
}
};
void* dynamic;
std::atomic<int64_t> one_word_atomic;
std::atomic<flags_internal::AlignedTwoWords> two_words_atomic;
template <typename T>
struct FlagValue<T, FlagValueStorageKind::kTwoWordsAtomic> : FlagTwoWordsValue {
bool Get(T* dst) const {
AlignedTwoWords two_words_val = value.load(std::memory_order_acquire);
if (ABSL_PREDICT_FALSE(!two_words_val.IsInitialized())) {
return false;
}
std::memcpy(dst, static_cast<const void*>(&two_words_val), sizeof(T));
return true;
}
};
///////////////////////////////////////////////////////////////////////////////
@ -333,35 +357,10 @@ class FlagImpl final : public flags_internal::CommandLineFlag {
counter_(0),
callback_(nullptr),
default_value_(default_value_gen),
value_(flags_internal::UninitializedFlagValue()),
data_guard_{} {}
// Constant access methods
void Read(void* dst) const override ABSL_LOCKS_EXCLUDED(*DataGuard());
template <typename T, typename std::enable_if<FlagUseHeapStorage<T>::value,
int>::type = 0>
void Get(T* dst) const {
Read(dst);
}
template <typename T, typename std::enable_if<FlagUseOneWordStorage<T>::value,
int>::type = 0>
void Get(T* dst) const {
int64_t one_word_val =
value_.one_word_atomic.load(std::memory_order_acquire);
if (ABSL_PREDICT_FALSE(one_word_val == UninitializedFlagValue())) {
DataGuard(); // Make sure flag initialized
one_word_val = value_.one_word_atomic.load(std::memory_order_acquire);
}
std::memcpy(dst, static_cast<const void*>(&one_word_val), sizeof(T));
}
template <typename T, typename std::enable_if<
FlagUseTwoWordsStorage<T>::value, int>::type = 0>
void Get(T* dst) const {
DataGuard(); // Make sure flag initialized
const auto two_words_val =
value_.two_words_atomic.load(std::memory_order_acquire);
std::memcpy(dst, &two_words_val, sizeof(T));
}
// Mutating access methods
void Write(const void* src) ABSL_LOCKS_EXCLUDED(*DataGuard());
@ -391,6 +390,25 @@ class FlagImpl final : public flags_internal::CommandLineFlag {
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
// Flag initialization called via absl::call_once.
void Init();
// Offset value access methods. One per storage kind. These methods to not
// respect const correctness, so be very carefull using them.
// This is a shared helper routine which encapsulates most of the magic. Since
// it is only used inside the three routines below, which are defined in
// flag.cc, we can define it in that file as well.
template <typename StorageT>
typename StorageT::value_type& OffsetValue() const;
// This is an accessor for a value stored in heap allocated storage.
// Returns a mutable reference to a pointer to allow vlaue mutation.
void*& HeapAllocatedValue() const;
// This is an accessor for a value stored as one word atomic. Returns a
// mutable reference to an atomic value.
std::atomic<int64_t>& OneWordValue() const;
// This is an accessor for a value stored as two words atomic. Returns a
// mutable reference to an atomic value.
std::atomic<AlignedTwoWords>& TwoWordsValue() const;
// Attempts to parse supplied `value` string. If parsing is successful,
// returns new value. Otherwise returns nullptr.
std::unique_ptr<void, DynValueDeleter> TryParse(absl::string_view value,
@ -488,13 +506,6 @@ class FlagImpl final : public flags_internal::CommandLineFlag {
// these two cases.
FlagDefaultSrc default_value_;
// Atomically mutable flag's state
// Flag's value. This can be either the atomically stored small value or
// pointer to the heap allocated dynamic value. value_storage_kind_ is used
// to distinguish these cases.
FlagValue value_;
// This is reserved space for an absl::Mutex to guard flag data. It will be
// initialized in FlagImpl::Init via placement new.
// We can't use "absl::Mutex data_guard_", since this class is not literal.
@ -514,8 +525,9 @@ class Flag {
public:
constexpr Flag(const char* name, const char* filename, const FlagHelpArg help,
const FlagDfltGenFunc default_value_gen)
: impl_(name, filename, &FlagOps<T>, help, FlagValue::Kind<T>(),
default_value_gen) {}
: impl_(name, filename, &FlagOps<T>, help,
flags_internal::StorageKind<T>(), default_value_gen),
value_() {}
T Get() const {
// See implementation notes in CommandLineFlag::Get().
@ -530,7 +542,7 @@ class Flag {
impl_.AssertValidType(&flags_internal::FlagStaticTypeIdGen<T>);
#endif
impl_.Get(&u.value);
if (!value_.Get(&u.value)) impl_.Read(&u.value);
return std::move(u.value);
}
void Set(const T& v) {
@ -556,10 +568,63 @@ class Flag {
private:
template <typename U, bool do_register>
friend class FlagRegistrar;
// Flag's data
// The implementation depends on value_ field to be placed exactly after the
// impl_ field, so that impl_ can figure out the offset to the value and
// access it.
FlagImpl impl_;
FlagValue<T> value_;
};
///////////////////////////////////////////////////////////////////////////////
// Implementation of Flag value specific operations routine.
template <typename T>
void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3) {
switch (op) {
case FlagOp::kDelete:
delete static_cast<const T*>(v1);
return nullptr;
case FlagOp::kClone:
return new T(*static_cast<const T*>(v1));
case FlagOp::kCopy:
*static_cast<T*>(v2) = *static_cast<const T*>(v1);
return nullptr;
case FlagOp::kCopyConstruct:
new (v2) T(*static_cast<const T*>(v1));
return nullptr;
case FlagOp::kSizeof:
return reinterpret_cast<void*>(static_cast<uintptr_t>(sizeof(T)));
case FlagOp::kStaticTypeId:
return reinterpret_cast<void*>(&FlagStaticTypeIdGen<T>);
case FlagOp::kParse: {
// Initialize the temporary instance of type T based on current value in
// destination (which is going to be flag's default value).
T temp(*static_cast<T*>(v2));
if (!absl::ParseFlag<T>(*static_cast<const absl::string_view*>(v1), &temp,
static_cast<std::string*>(v3))) {
return nullptr;
}
*static_cast<T*>(v2) = std::move(temp);
return v2;
}
case FlagOp::kUnparse:
*static_cast<std::string*>(v2) =
absl::UnparseFlag<T>(*static_cast<const T*>(v1));
return nullptr;
case FlagOp::kValueOffset: {
// Round sizeof(FlagImp) to a multiple of alignof(FlagValue<T>) to get the
// offset of the data.
ptrdiff_t round_to = alignof(FlagValue<T>);
ptrdiff_t offset =
(sizeof(FlagImpl) + round_to - 1) / round_to * round_to;
return reinterpret_cast<void*>(offset);
}
}
return nullptr;
}
///////////////////////////////////////////////////////////////////////////////
// This class facilitates Flag object registration and tail expression-based
// flag definition, for example:
// ABSL_FLAG(int, foo, 42, "Foo help").OnUpdate(NotifyFooWatcher);