chore(users): grfn -> aspen

Change-Id: I6c6847fac56f0a9a1a2209792e00a3aec5e672b9
Reviewed-on: https://cl.tvl.fyi/c/depot/+/10809
Autosubmit: aspen <root@gws.fyi>
Reviewed-by: sterni <sternenseemann@systemli.org>
Tested-by: BuildkiteCI
Reviewed-by: lukegb <lukegb@tvl.fyi>
This commit is contained in:
Aspen Smith 2024-02-11 22:00:40 -05:00 committed by clbot
parent 0ba476a426
commit 82ecd61f5c
478 changed files with 75 additions and 77 deletions

View file

@ -0,0 +1,364 @@
use std::collections::HashMap;
use itertools::Itertools;
use super::{BinaryOperator, Ident, Literal, UnaryOperator};
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum Pattern<'a, T> {
Id(Ident<'a>, T),
Tuple(Vec<Pattern<'a, T>>),
}
impl<'a, T> Pattern<'a, T> {
pub fn to_owned(&self) -> Pattern<'static, T>
where
T: Clone,
{
match self {
Pattern::Id(id, t) => Pattern::Id(id.to_owned(), t.clone()),
Pattern::Tuple(pats) => {
Pattern::Tuple(pats.into_iter().map(Pattern::to_owned).collect())
}
}
}
pub fn traverse_type<F, U, E>(self, f: F) -> Result<Pattern<'a, U>, E>
where
F: Fn(T) -> Result<U, E> + Clone,
{
match self {
Pattern::Id(id, t) => Ok(Pattern::Id(id, f(t)?)),
Pattern::Tuple(pats) => Ok(Pattern::Tuple(
pats.into_iter()
.map(|pat| pat.traverse_type(f.clone()))
.collect::<Result<Vec<_>, _>>()?,
)),
}
}
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct Binding<'a, T> {
pub pat: Pattern<'a, T>,
pub body: Expr<'a, T>,
}
impl<'a, T> Binding<'a, T> {
fn to_owned(&self) -> Binding<'static, T>
where
T: Clone,
{
Binding {
pat: self.pat.to_owned(),
body: self.body.to_owned(),
}
}
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum Expr<'a, T> {
Ident(Ident<'a>, T),
Literal(Literal<'a>, T),
Tuple(Vec<Expr<'a, T>>, T),
UnaryOp {
op: UnaryOperator,
rhs: Box<Expr<'a, T>>,
type_: T,
},
BinaryOp {
lhs: Box<Expr<'a, T>>,
op: BinaryOperator,
rhs: Box<Expr<'a, T>>,
type_: T,
},
Let {
bindings: Vec<Binding<'a, T>>,
body: Box<Expr<'a, T>>,
type_: T,
},
If {
condition: Box<Expr<'a, T>>,
then: Box<Expr<'a, T>>,
else_: Box<Expr<'a, T>>,
type_: T,
},
Fun {
type_args: Vec<Ident<'a>>,
args: Vec<(Ident<'a>, T)>,
body: Box<Expr<'a, T>>,
type_: T,
},
Call {
fun: Box<Expr<'a, T>>,
type_args: HashMap<Ident<'a>, T>,
args: Vec<Expr<'a, T>>,
type_: T,
},
}
impl<'a, T> Expr<'a, T> {
pub fn type_(&self) -> &T {
match self {
Expr::Ident(_, t) => t,
Expr::Literal(_, t) => t,
Expr::Tuple(_, t) => t,
Expr::UnaryOp { type_, .. } => type_,
Expr::BinaryOp { type_, .. } => type_,
Expr::Let { type_, .. } => type_,
Expr::If { type_, .. } => type_,
Expr::Fun { type_, .. } => type_,
Expr::Call { type_, .. } => type_,
}
}
pub fn traverse_type<F, U, E>(self, f: F) -> Result<Expr<'a, U>, E>
where
F: Fn(T) -> Result<U, E> + Clone,
{
match self {
Expr::Ident(id, t) => Ok(Expr::Ident(id, f(t)?)),
Expr::Literal(lit, t) => Ok(Expr::Literal(lit, f(t)?)),
Expr::UnaryOp { op, rhs, type_ } => Ok(Expr::UnaryOp {
op,
rhs: Box::new(rhs.traverse_type(f.clone())?),
type_: f(type_)?,
}),
Expr::BinaryOp {
lhs,
op,
rhs,
type_,
} => Ok(Expr::BinaryOp {
lhs: Box::new(lhs.traverse_type(f.clone())?),
op,
rhs: Box::new(rhs.traverse_type(f.clone())?),
type_: f(type_)?,
}),
Expr::Let {
bindings,
body,
type_,
} => Ok(Expr::Let {
bindings: bindings
.into_iter()
.map(|Binding { pat, body }| {
Ok(Binding {
pat: pat.traverse_type(f.clone())?,
body: body.traverse_type(f.clone())?,
})
})
.collect::<Result<Vec<_>, E>>()?,
body: Box::new(body.traverse_type(f.clone())?),
type_: f(type_)?,
}),
Expr::If {
condition,
then,
else_,
type_,
} => Ok(Expr::If {
condition: Box::new(condition.traverse_type(f.clone())?),
then: Box::new(then.traverse_type(f.clone())?),
else_: Box::new(else_.traverse_type(f.clone())?),
type_: f(type_)?,
}),
Expr::Fun {
args,
type_args,
body,
type_,
} => Ok(Expr::Fun {
args: args
.into_iter()
.map(|(id, t)| Ok((id, f.clone()(t)?)))
.collect::<Result<Vec<_>, E>>()?,
type_args,
body: Box::new(body.traverse_type(f.clone())?),
type_: f(type_)?,
}),
Expr::Call {
fun,
type_args,
args,
type_,
} => Ok(Expr::Call {
fun: Box::new(fun.traverse_type(f.clone())?),
type_args: type_args
.into_iter()
.map(|(id, ty)| Ok((id, f.clone()(ty)?)))
.collect::<Result<HashMap<_, _>, E>>()?,
args: args
.into_iter()
.map(|e| e.traverse_type(f.clone()))
.collect::<Result<Vec<_>, E>>()?,
type_: f(type_)?,
}),
Expr::Tuple(members, t) => Ok(Expr::Tuple(
members
.into_iter()
.map(|t| t.traverse_type(f.clone()))
.try_collect()?,
f(t)?,
)),
}
}
pub fn to_owned(&self) -> Expr<'static, T>
where
T: Clone,
{
match self {
Expr::Ident(id, t) => Expr::Ident(id.to_owned(), t.clone()),
Expr::Literal(lit, t) => Expr::Literal(lit.to_owned(), t.clone()),
Expr::UnaryOp { op, rhs, type_ } => Expr::UnaryOp {
op: *op,
rhs: Box::new((**rhs).to_owned()),
type_: type_.clone(),
},
Expr::BinaryOp {
lhs,
op,
rhs,
type_,
} => Expr::BinaryOp {
lhs: Box::new((**lhs).to_owned()),
op: *op,
rhs: Box::new((**rhs).to_owned()),
type_: type_.clone(),
},
Expr::Let {
bindings,
body,
type_,
} => Expr::Let {
bindings: bindings.iter().map(|b| b.to_owned()).collect(),
body: Box::new((**body).to_owned()),
type_: type_.clone(),
},
Expr::If {
condition,
then,
else_,
type_,
} => Expr::If {
condition: Box::new((**condition).to_owned()),
then: Box::new((**then).to_owned()),
else_: Box::new((**else_).to_owned()),
type_: type_.clone(),
},
Expr::Fun {
args,
type_args,
body,
type_,
} => Expr::Fun {
args: args
.iter()
.map(|(id, t)| (id.to_owned(), t.clone()))
.collect(),
type_args: type_args.iter().map(|arg| arg.to_owned()).collect(),
body: Box::new((**body).to_owned()),
type_: type_.clone(),
},
Expr::Call {
fun,
type_args,
args,
type_,
} => Expr::Call {
fun: Box::new((**fun).to_owned()),
type_args: type_args
.iter()
.map(|(id, t)| (id.to_owned(), t.clone()))
.collect(),
args: args.iter().map(|e| e.to_owned()).collect(),
type_: type_.clone(),
},
Expr::Tuple(members, t) => {
Expr::Tuple(members.into_iter().map(Expr::to_owned).collect(), t.clone())
}
}
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Decl<'a, T> {
Fun {
name: Ident<'a>,
type_args: Vec<Ident<'a>>,
args: Vec<(Ident<'a>, T)>,
body: Box<Expr<'a, T>>,
type_: T,
},
Extern {
name: Ident<'a>,
arg_types: Vec<T>,
ret_type: T,
},
}
impl<'a, T> Decl<'a, T> {
pub fn name(&self) -> &Ident<'a> {
match self {
Decl::Fun { name, .. } => name,
Decl::Extern { name, .. } => name,
}
}
pub fn set_name(&mut self, new_name: Ident<'a>) {
match self {
Decl::Fun { name, .. } => *name = new_name,
Decl::Extern { name, .. } => *name = new_name,
}
}
pub fn type_(&self) -> Option<&T> {
match self {
Decl::Fun { type_, .. } => Some(type_),
Decl::Extern { .. } => None,
}
}
pub fn traverse_type<F, U, E>(self, f: F) -> Result<Decl<'a, U>, E>
where
F: Fn(T) -> Result<U, E> + Clone,
{
match self {
Decl::Fun {
name,
type_args,
args,
body,
type_,
} => Ok(Decl::Fun {
name,
type_args,
args: args
.into_iter()
.map(|(id, t)| Ok((id, f(t)?)))
.try_collect()?,
body: Box::new(body.traverse_type(f.clone())?),
type_: f(type_)?,
}),
Decl::Extern {
name,
arg_types,
ret_type,
} => Ok(Decl::Extern {
name,
arg_types: arg_types.into_iter().map(f.clone()).try_collect()?,
ret_type: f(ret_type)?,
}),
}
}
}

View file

@ -0,0 +1,484 @@
pub(crate) mod hir;
use std::borrow::Cow;
use std::collections::HashMap;
use std::convert::TryFrom;
use std::fmt::{self, Display, Formatter};
use itertools::Itertools;
#[derive(Debug, PartialEq, Eq)]
pub struct InvalidIdentifier<'a>(Cow<'a, str>);
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub struct Ident<'a>(pub Cow<'a, str>);
impl<'a> From<&'a Ident<'a>> for &'a str {
fn from(id: &'a Ident<'a>) -> Self {
id.0.as_ref()
}
}
impl<'a> Display for Ident<'a> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl<'a> Ident<'a> {
pub fn to_owned(&self) -> Ident<'static> {
Ident(Cow::Owned(self.0.clone().into_owned()))
}
/// Construct an identifier from a &str without checking that it's a valid identifier
pub fn from_str_unchecked(s: &'a str) -> Self {
debug_assert!(is_valid_identifier(s));
Self(Cow::Borrowed(s))
}
pub fn from_string_unchecked(s: String) -> Self {
debug_assert!(is_valid_identifier(&s));
Self(Cow::Owned(s))
}
}
pub fn is_valid_identifier<S>(s: &S) -> bool
where
S: AsRef<str> + ?Sized,
{
s.as_ref()
.chars()
.any(|c| !c.is_alphanumeric() || !"_".contains(c))
}
impl<'a> TryFrom<&'a str> for Ident<'a> {
type Error = InvalidIdentifier<'a>;
fn try_from(s: &'a str) -> Result<Self, Self::Error> {
if is_valid_identifier(s) {
Ok(Ident(Cow::Borrowed(s)))
} else {
Err(InvalidIdentifier(Cow::Borrowed(s)))
}
}
}
impl<'a> TryFrom<String> for Ident<'a> {
type Error = InvalidIdentifier<'static>;
fn try_from(s: String) -> Result<Self, Self::Error> {
if is_valid_identifier(&s) {
Ok(Ident(Cow::Owned(s)))
} else {
Err(InvalidIdentifier(Cow::Owned(s)))
}
}
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum BinaryOperator {
/// `+`
Add,
/// `-`
Sub,
/// `*`
Mul,
/// `/`
Div,
/// `^`
Pow,
/// `==`
Equ,
/// `!=`
Neq,
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum UnaryOperator {
/// !
Not,
/// -
Neg,
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum Literal<'a> {
Unit,
Int(u64),
Bool(bool),
String(Cow<'a, str>),
}
impl<'a> Literal<'a> {
pub fn to_owned(&self) -> Literal<'static> {
match self {
Literal::Int(i) => Literal::Int(*i),
Literal::Bool(b) => Literal::Bool(*b),
Literal::String(s) => Literal::String(Cow::Owned(s.clone().into_owned())),
Literal::Unit => Literal::Unit,
}
}
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum Pattern<'a> {
Id(Ident<'a>),
Tuple(Vec<Pattern<'a>>),
}
impl<'a> Pattern<'a> {
pub fn to_owned(&self) -> Pattern<'static> {
match self {
Pattern::Id(id) => Pattern::Id(id.to_owned()),
Pattern::Tuple(pats) => Pattern::Tuple(pats.iter().map(Pattern::to_owned).collect()),
}
}
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct Binding<'a> {
pub pat: Pattern<'a>,
pub type_: Option<Type<'a>>,
pub body: Expr<'a>,
}
impl<'a> Binding<'a> {
fn to_owned(&self) -> Binding<'static> {
Binding {
pat: self.pat.to_owned(),
type_: self.type_.as_ref().map(|t| t.to_owned()),
body: self.body.to_owned(),
}
}
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum Expr<'a> {
Ident(Ident<'a>),
Literal(Literal<'a>),
UnaryOp {
op: UnaryOperator,
rhs: Box<Expr<'a>>,
},
BinaryOp {
lhs: Box<Expr<'a>>,
op: BinaryOperator,
rhs: Box<Expr<'a>>,
},
Let {
bindings: Vec<Binding<'a>>,
body: Box<Expr<'a>>,
},
If {
condition: Box<Expr<'a>>,
then: Box<Expr<'a>>,
else_: Box<Expr<'a>>,
},
Fun(Box<Fun<'a>>),
Call {
fun: Box<Expr<'a>>,
args: Vec<Expr<'a>>,
},
Tuple(Vec<Expr<'a>>),
Ascription {
expr: Box<Expr<'a>>,
type_: Type<'a>,
},
}
impl<'a> Expr<'a> {
pub fn to_owned(&self) -> Expr<'static> {
match self {
Expr::Ident(ref id) => Expr::Ident(id.to_owned()),
Expr::Literal(ref lit) => Expr::Literal(lit.to_owned()),
Expr::Tuple(ref members) => {
Expr::Tuple(members.into_iter().map(Expr::to_owned).collect())
}
Expr::UnaryOp { op, rhs } => Expr::UnaryOp {
op: *op,
rhs: Box::new((**rhs).to_owned()),
},
Expr::BinaryOp { lhs, op, rhs } => Expr::BinaryOp {
lhs: Box::new((**lhs).to_owned()),
op: *op,
rhs: Box::new((**rhs).to_owned()),
},
Expr::Let { bindings, body } => Expr::Let {
bindings: bindings.iter().map(|binding| binding.to_owned()).collect(),
body: Box::new((**body).to_owned()),
},
Expr::If {
condition,
then,
else_,
} => Expr::If {
condition: Box::new((**condition).to_owned()),
then: Box::new((**then).to_owned()),
else_: Box::new((**else_).to_owned()),
},
Expr::Fun(fun) => Expr::Fun(Box::new((**fun).to_owned())),
Expr::Call { fun, args } => Expr::Call {
fun: Box::new((**fun).to_owned()),
args: args.iter().map(|arg| arg.to_owned()).collect(),
},
Expr::Ascription { expr, type_ } => Expr::Ascription {
expr: Box::new((**expr).to_owned()),
type_: type_.to_owned(),
},
}
}
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct Arg<'a> {
pub ident: Ident<'a>,
pub type_: Option<Type<'a>>,
}
impl<'a> Arg<'a> {
pub fn to_owned(&self) -> Arg<'static> {
Arg {
ident: self.ident.to_owned(),
type_: self.type_.as_ref().map(Type::to_owned),
}
}
}
impl<'a> TryFrom<&'a str> for Arg<'a> {
type Error = <Ident<'a> as TryFrom<&'a str>>::Error;
fn try_from(value: &'a str) -> Result<Self, Self::Error> {
Ok(Arg {
ident: Ident::try_from(value)?,
type_: None,
})
}
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct Fun<'a> {
pub args: Vec<Arg<'a>>,
pub body: Expr<'a>,
}
impl<'a> Fun<'a> {
pub fn to_owned(&self) -> Fun<'static> {
Fun {
args: self.args.iter().map(|arg| arg.to_owned()).collect(),
body: self.body.to_owned(),
}
}
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum Decl<'a> {
Fun {
name: Ident<'a>,
body: Fun<'a>,
},
Ascription {
name: Ident<'a>,
type_: Type<'a>,
},
Extern {
name: Ident<'a>,
type_: FunctionType<'a>,
},
}
////
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct FunctionType<'a> {
pub args: Vec<Type<'a>>,
pub ret: Box<Type<'a>>,
}
impl<'a> FunctionType<'a> {
pub fn to_owned(&self) -> FunctionType<'static> {
FunctionType {
args: self.args.iter().map(|a| a.to_owned()).collect(),
ret: Box::new((*self.ret).to_owned()),
}
}
}
impl<'a> Display for FunctionType<'a> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "fn {} -> {}", self.args.iter().join(", "), self.ret)
}
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum Type<'a> {
Int,
Float,
Bool,
CString,
Unit,
Tuple(Vec<Type<'a>>),
Var(Ident<'a>),
Function(FunctionType<'a>),
}
impl<'a> Type<'a> {
pub fn to_owned(&self) -> Type<'static> {
match self {
Type::Int => Type::Int,
Type::Float => Type::Float,
Type::Bool => Type::Bool,
Type::CString => Type::CString,
Type::Unit => Type::Unit,
Type::Var(v) => Type::Var(v.to_owned()),
Type::Function(f) => Type::Function(f.to_owned()),
Type::Tuple(members) => Type::Tuple(members.iter().map(Type::to_owned).collect()),
}
}
pub fn alpha_equiv(&self, other: &Self) -> bool {
fn do_alpha_equiv<'a>(
substs: &mut HashMap<&'a Ident<'a>, &'a Ident<'a>>,
lhs: &'a Type,
rhs: &'a Type,
) -> bool {
match (lhs, rhs) {
(Type::Var(v1), Type::Var(v2)) => substs.entry(v1).or_insert(v2) == &v2,
(
Type::Function(FunctionType {
args: args1,
ret: ret1,
}),
Type::Function(FunctionType {
args: args2,
ret: ret2,
}),
) => {
args1.len() == args2.len()
&& args1
.iter()
.zip(args2)
.all(|(a1, a2)| do_alpha_equiv(substs, a1, a2))
&& do_alpha_equiv(substs, ret1, ret2)
}
_ => lhs == rhs,
}
}
let mut substs = HashMap::new();
do_alpha_equiv(&mut substs, self, other)
}
pub fn traverse_type_vars<'b, F>(self, mut f: F) -> Type<'b>
where
F: FnMut(Ident<'a>) -> Type<'b> + Clone,
{
match self {
Type::Var(tv) => f(tv),
Type::Function(FunctionType { args, ret }) => Type::Function(FunctionType {
args: args
.into_iter()
.map(|t| t.traverse_type_vars(f.clone()))
.collect(),
ret: Box::new(ret.traverse_type_vars(f)),
}),
Type::Int => Type::Int,
Type::Float => Type::Float,
Type::Bool => Type::Bool,
Type::CString => Type::CString,
Type::Tuple(members) => Type::Tuple(
members
.into_iter()
.map(|t| t.traverse_type_vars(f.clone()))
.collect(),
),
Type::Unit => Type::Unit,
}
}
pub fn as_tuple(&self) -> Option<&Vec<Type<'a>>> {
if let Self::Tuple(v) = self {
Some(v)
} else {
None
}
}
}
impl<'a> Display for Type<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Type::Int => f.write_str("int"),
Type::Float => f.write_str("float"),
Type::Bool => f.write_str("bool"),
Type::CString => f.write_str("cstring"),
Type::Unit => f.write_str("()"),
Type::Var(v) => v.fmt(f),
Type::Function(ft) => ft.fmt(f),
Type::Tuple(ms) => write!(f, "({})", ms.iter().join(", ")),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
fn type_var(n: &str) -> Type<'static> {
Type::Var(Ident::try_from(n.to_owned()).unwrap())
}
mod alpha_equiv {
use super::*;
#[test]
fn trivial() {
assert!(Type::Int.alpha_equiv(&Type::Int));
assert!(!Type::Int.alpha_equiv(&Type::Bool));
}
#[test]
fn simple_type_var() {
assert!(type_var("a").alpha_equiv(&type_var("b")));
}
#[test]
fn function_with_type_vars_equiv() {
assert!(Type::Function(FunctionType {
args: vec![type_var("a")],
ret: Box::new(type_var("b")),
})
.alpha_equiv(&Type::Function(FunctionType {
args: vec![type_var("b")],
ret: Box::new(type_var("a")),
})))
}
#[test]
fn function_with_type_vars_non_equiv() {
assert!(!Type::Function(FunctionType {
args: vec![type_var("a")],
ret: Box::new(type_var("a")),
})
.alpha_equiv(&Type::Function(FunctionType {
args: vec![type_var("b")],
ret: Box::new(type_var("a")),
})))
}
}
}

View file

@ -0,0 +1,486 @@
use std::convert::{TryFrom, TryInto};
use std::path::Path;
use std::result;
use inkwell::basic_block::BasicBlock;
use inkwell::builder::Builder;
pub use inkwell::context::Context;
use inkwell::module::Module;
use inkwell::support::LLVMString;
use inkwell::types::{BasicType, BasicTypeEnum, FunctionType, IntType, StructType};
use inkwell::values::{AnyValueEnum, BasicValueEnum, FunctionValue, StructValue};
use inkwell::{AddressSpace, IntPredicate};
use itertools::Itertools;
use thiserror::Error;
use crate::ast::hir::{Binding, Decl, Expr, Pattern};
use crate::ast::{BinaryOperator, Ident, Literal, Type, UnaryOperator};
use crate::common::env::Env;
#[derive(Debug, PartialEq, Eq, Error)]
pub enum Error {
#[error("Undefined variable {0}")]
UndefinedVariable(Ident<'static>),
#[error("LLVM Error: {0}")]
LLVMError(String),
}
impl From<LLVMString> for Error {
fn from(s: LLVMString) -> Self {
Self::LLVMError(s.to_string())
}
}
pub type Result<T> = result::Result<T, Error>;
pub struct Codegen<'ctx, 'ast> {
context: &'ctx Context,
pub module: Module<'ctx>,
builder: Builder<'ctx>,
env: Env<&'ast Ident<'ast>, AnyValueEnum<'ctx>>,
function_stack: Vec<FunctionValue<'ctx>>,
identifier_counter: u32,
}
impl<'ctx, 'ast> Codegen<'ctx, 'ast> {
pub fn new(context: &'ctx Context, module_name: &str) -> Self {
let module = context.create_module(module_name);
let builder = context.create_builder();
Self {
context,
module,
builder,
env: Default::default(),
function_stack: Default::default(),
identifier_counter: 0,
}
}
pub fn new_function<'a>(
&'a mut self,
name: &str,
ty: FunctionType<'ctx>,
) -> &'a FunctionValue<'ctx> {
self.function_stack
.push(self.module.add_function(name, ty, None));
let basic_block = self.append_basic_block("entry");
self.builder.position_at_end(basic_block);
self.function_stack.last().unwrap()
}
pub fn finish_function(&mut self, res: Option<&BasicValueEnum<'ctx>>) -> FunctionValue<'ctx> {
self.builder.build_return(match res {
// lol
Some(val) => Some(val),
None => None,
});
self.function_stack.pop().unwrap()
}
pub fn append_basic_block(&self, name: &str) -> BasicBlock<'ctx> {
self.context
.append_basic_block(*self.function_stack.last().unwrap(), name)
}
fn bind_pattern(&mut self, pat: &'ast Pattern<'ast, Type>, val: AnyValueEnum<'ctx>) {
match pat {
Pattern::Id(id, _) => self.env.set(id, val),
Pattern::Tuple(pats) => {
for (i, pat) in pats.iter().enumerate() {
let member = self
.builder
.build_extract_value(
StructValue::try_from(val).unwrap(),
i as _,
"pat_bind",
)
.unwrap();
self.bind_pattern(pat, member.into());
}
}
}
}
pub fn codegen_expr(
&mut self,
expr: &'ast Expr<'ast, Type>,
) -> Result<Option<AnyValueEnum<'ctx>>> {
match expr {
Expr::Ident(id, _) => self
.env
.resolve(id)
.cloned()
.ok_or_else(|| Error::UndefinedVariable(id.to_owned()))
.map(Some),
Expr::Literal(lit, ty) => {
let ty = self.codegen_int_type(ty);
match lit {
Literal::Int(i) => Ok(Some(AnyValueEnum::IntValue(ty.const_int(*i, false)))),
Literal::Bool(b) => Ok(Some(AnyValueEnum::IntValue(
ty.const_int(if *b { 1 } else { 0 }, false),
))),
Literal::String(s) => Ok(Some(
self.builder
.build_global_string_ptr(s, "s")
.as_pointer_value()
.into(),
)),
Literal::Unit => Ok(None),
}
}
Expr::UnaryOp { op, rhs, .. } => {
let rhs = self.codegen_expr(rhs)?.unwrap();
match op {
UnaryOperator::Not => unimplemented!(),
UnaryOperator::Neg => Ok(Some(AnyValueEnum::IntValue(
self.builder.build_int_neg(rhs.into_int_value(), "neg"),
))),
}
}
Expr::BinaryOp { lhs, op, rhs, .. } => {
let lhs = self.codegen_expr(lhs)?.unwrap();
let rhs = self.codegen_expr(rhs)?.unwrap();
match op {
BinaryOperator::Add => {
Ok(Some(AnyValueEnum::IntValue(self.builder.build_int_add(
lhs.into_int_value(),
rhs.into_int_value(),
"add",
))))
}
BinaryOperator::Sub => {
Ok(Some(AnyValueEnum::IntValue(self.builder.build_int_sub(
lhs.into_int_value(),
rhs.into_int_value(),
"add",
))))
}
BinaryOperator::Mul => {
Ok(Some(AnyValueEnum::IntValue(self.builder.build_int_sub(
lhs.into_int_value(),
rhs.into_int_value(),
"add",
))))
}
BinaryOperator::Div => Ok(Some(AnyValueEnum::IntValue(
self.builder.build_int_signed_div(
lhs.into_int_value(),
rhs.into_int_value(),
"add",
),
))),
BinaryOperator::Pow => unimplemented!(),
BinaryOperator::Equ => Ok(Some(AnyValueEnum::IntValue(
self.builder.build_int_compare(
IntPredicate::EQ,
lhs.into_int_value(),
rhs.into_int_value(),
"eq",
),
))),
BinaryOperator::Neq => todo!(),
}
}
Expr::Let { bindings, body, .. } => {
self.env.push();
for Binding { pat, body, .. } in bindings {
if let Some(val) = self.codegen_expr(body)? {
self.bind_pattern(pat, val);
}
}
let res = self.codegen_expr(body);
self.env.pop();
res
}
Expr::If {
condition,
then,
else_,
type_,
} => {
let then_block = self.append_basic_block("then");
let else_block = self.append_basic_block("else");
let join_block = self.append_basic_block("join");
let condition = self.codegen_expr(condition)?.unwrap();
self.builder.build_conditional_branch(
condition.into_int_value(),
then_block,
else_block,
);
self.builder.position_at_end(then_block);
let then_res = self.codegen_expr(then)?;
self.builder.build_unconditional_branch(join_block);
self.builder.position_at_end(else_block);
let else_res = self.codegen_expr(else_)?;
self.builder.build_unconditional_branch(join_block);
self.builder.position_at_end(join_block);
if let Some(phi_type) = self.codegen_type(type_) {
let phi = self.builder.build_phi(phi_type, "join");
phi.add_incoming(&[
(
&BasicValueEnum::try_from(then_res.unwrap()).unwrap(),
then_block,
),
(
&BasicValueEnum::try_from(else_res.unwrap()).unwrap(),
else_block,
),
]);
Ok(Some(phi.as_basic_value().into()))
} else {
Ok(None)
}
}
Expr::Call { fun, args, .. } => {
if let Expr::Ident(id, _) = &**fun {
let function = self
.module
.get_function(id.into())
.or_else(|| self.env.resolve(id)?.clone().try_into().ok())
.ok_or_else(|| Error::UndefinedVariable(id.to_owned()))?;
let args = args
.iter()
.map(|arg| Ok(self.codegen_expr(arg)?.unwrap().try_into().unwrap()))
.collect::<Result<Vec<_>>>()?;
Ok(self
.builder
.build_call(function, &args, "call")
.try_as_basic_value()
.left()
.map(|val| val.into()))
} else {
todo!()
}
}
Expr::Fun { args, body, .. } => {
let fname = self.fresh_ident("f");
let cur_block = self.builder.get_insert_block().unwrap();
let env = self.env.save(); // TODO: closures
let function = self.codegen_function(&fname, args, body)?;
self.builder.position_at_end(cur_block);
self.env.restore(env);
Ok(Some(function.into()))
}
Expr::Tuple(members, ty) => {
let values = members
.into_iter()
.map(|expr| self.codegen_expr(expr))
.collect::<Result<Vec<_>>>()?
.into_iter()
.filter_map(|x| x)
.map(|x| x.try_into().unwrap())
.collect_vec();
let field_types = ty.as_tuple().unwrap();
let tuple_type = self.codegen_tuple_type(field_types);
Ok(Some(tuple_type.const_named_struct(&values).into()))
}
}
}
pub fn codegen_function(
&mut self,
name: &str,
args: &'ast [(Ident<'ast>, Type)],
body: &'ast Expr<'ast, Type>,
) -> Result<FunctionValue<'ctx>> {
let arg_types = args
.iter()
.filter_map(|(_, at)| self.codegen_type(at))
.collect::<Vec<_>>();
self.new_function(
name,
match self.codegen_type(body.type_()) {
Some(ret_ty) => ret_ty.fn_type(&arg_types, false),
None => self.context.void_type().fn_type(&arg_types, false),
},
);
self.env.push();
for (i, (arg, _)) in args.iter().enumerate() {
self.env.set(
arg,
self.cur_function().get_nth_param(i as u32).unwrap().into(),
);
}
let res = self.codegen_expr(body)?;
self.env.pop();
Ok(self.finish_function(res.map(|av| av.try_into().unwrap()).as_ref()))
}
pub fn codegen_extern(
&mut self,
name: &str,
args: &'ast [Type],
ret: &'ast Type,
) -> Result<()> {
let arg_types = args
.iter()
.map(|t| self.codegen_type(t).unwrap())
.collect::<Vec<_>>();
self.module.add_function(
name,
match self.codegen_type(ret) {
Some(ret_ty) => ret_ty.fn_type(&arg_types, false),
None => self.context.void_type().fn_type(&arg_types, false),
},
None,
);
Ok(())
}
pub fn codegen_decl(&mut self, decl: &'ast Decl<'ast, Type>) -> Result<()> {
match decl {
Decl::Fun {
name, args, body, ..
} => {
self.codegen_function(name.into(), args, body)?;
Ok(())
}
Decl::Extern {
name,
arg_types,
ret_type,
} => self.codegen_extern(name.into(), arg_types, ret_type),
}
}
pub fn codegen_main(&mut self, expr: &'ast Expr<'ast, Type>) -> Result<()> {
self.new_function("main", self.context.i64_type().fn_type(&[], false));
let res = self.codegen_expr(expr)?;
if *expr.type_() != Type::Int {
self.builder
.build_return(Some(&self.context.i64_type().const_int(0, false)));
} else {
self.finish_function(res.map(|r| r.try_into().unwrap()).as_ref());
}
Ok(())
}
fn codegen_type(&self, type_: &'ast Type) -> Option<BasicTypeEnum<'ctx>> {
// TODO
match type_ {
Type::Int => Some(self.context.i64_type().into()),
Type::Float => Some(self.context.f64_type().into()),
Type::Bool => Some(self.context.bool_type().into()),
Type::CString => Some(
self.context
.i8_type()
.ptr_type(AddressSpace::Generic)
.into(),
),
Type::Function(_) => todo!(),
Type::Var(_) => unreachable!(),
Type::Unit => None,
Type::Tuple(ts) => Some(self.codegen_tuple_type(ts).into()),
}
}
fn codegen_tuple_type(&self, ts: &'ast [Type]) -> StructType<'ctx> {
self.context.struct_type(
ts.iter()
.filter_map(|t| self.codegen_type(t))
.collect_vec()
.as_slice(),
false,
)
}
fn codegen_int_type(&self, type_: &'ast Type) -> IntType<'ctx> {
// TODO
self.context.i64_type()
}
pub fn print_to_file<P>(&self, path: P) -> Result<()>
where
P: AsRef<Path>,
{
Ok(self.module.print_to_file(path)?)
}
pub fn binary_to_file<P>(&self, path: P) -> Result<()>
where
P: AsRef<Path>,
{
if self.module.write_bitcode_to_path(path.as_ref()) {
Ok(())
} else {
Err(Error::LLVMError(
"Error writing bitcode to output path".to_owned(),
))
}
}
fn fresh_ident(&mut self, prefix: &str) -> String {
self.identifier_counter += 1;
format!("{}{}", prefix, self.identifier_counter)
}
fn cur_function(&self) -> &FunctionValue<'ctx> {
self.function_stack.last().unwrap()
}
}
#[cfg(test)]
mod tests {
use inkwell::execution_engine::JitFunction;
use inkwell::OptimizationLevel;
use super::*;
fn jit_eval<T>(expr: &str) -> anyhow::Result<T> {
let expr = crate::parser::expr(expr).unwrap().1;
let expr = crate::tc::typecheck_expr(expr).unwrap();
let context = Context::create();
let mut codegen = Codegen::new(&context, "test");
let execution_engine = codegen
.module
.create_jit_execution_engine(OptimizationLevel::None)
.unwrap();
codegen.codegen_function("test", &[], &expr)?;
unsafe {
let fun: JitFunction<unsafe extern "C" fn() -> T> =
execution_engine.get_function("test")?;
Ok(fun.call())
}
}
#[test]
fn add_literals() {
assert_eq!(jit_eval::<i64>("1 + 2").unwrap(), 3);
}
#[test]
fn variable_shadowing() {
assert_eq!(
jit_eval::<i64>("let x = 1 in (let x = 2 in x) + x").unwrap(),
3
);
}
#[test]
fn eq() {
assert_eq!(
jit_eval::<i64>("let x = 1 in if x == 1 then 2 else 4").unwrap(),
2
);
}
#[test]
fn function_call() {
let res = jit_eval::<i64>("let id = fn x = x in id 1").unwrap();
assert_eq!(res, 1);
}
#[test]
fn bind_tuple_pattern() {
let res = jit_eval::<i64>("let (x, y) = (1, 2) in x + y").unwrap();
assert_eq!(res, 3);
}
}

View file

@ -0,0 +1,25 @@
pub mod llvm;
use inkwell::execution_engine::JitFunction;
use inkwell::OptimizationLevel;
pub use llvm::*;
use crate::ast::hir::Expr;
use crate::ast::Type;
use crate::common::Result;
pub fn jit_eval<T>(expr: &Expr<Type>) -> Result<T> {
let context = Context::create();
let mut codegen = Codegen::new(&context, "eval");
let execution_engine = codegen
.module
.create_jit_execution_engine(OptimizationLevel::None)
.map_err(Error::from)?;
codegen.codegen_function("test", &[], &expr)?;
unsafe {
let fun: JitFunction<unsafe extern "C" fn() -> T> =
execution_engine.get_function("eval").unwrap();
Ok(fun.call())
}
}

View file

@ -0,0 +1,39 @@
use clap::Clap;
use std::path::PathBuf;
use crate::ast::Type;
use crate::{parser, tc, Result};
/// Typecheck a file or expression
#[derive(Clap)]
pub struct Check {
/// File to check
path: Option<PathBuf>,
/// Expression to check
#[clap(long, short = 'e')]
expr: Option<String>,
}
fn run_expr(expr: String) -> Result<Type<'static>> {
let (_, parsed) = parser::expr(&expr)?;
let hir_expr = tc::typecheck_expr(parsed)?;
Ok(hir_expr.type_().to_owned())
}
fn run_path(path: PathBuf) -> Result<Type<'static>> {
todo!()
}
impl Check {
pub fn run(self) -> Result<()> {
let type_ = match (self.path, self.expr) {
(None, None) => Err("Must specify either a file or expression to check".into()),
(Some(_), Some(_)) => Err("Cannot specify both a file and expression to check".into()),
(None, Some(expr)) => run_expr(expr),
(Some(path), None) => run_path(path),
}?;
println!("type: {}", type_);
Ok(())
}
}

View file

@ -0,0 +1,31 @@
use std::path::PathBuf;
use clap::Clap;
use crate::common::Result;
use crate::compiler::{self, CompilerOptions};
/// Compile a source file
#[derive(Clap)]
pub struct Compile {
/// File to compile
file: PathBuf,
/// Output file
#[clap(short = 'o')]
out_file: PathBuf,
#[clap(flatten)]
options: CompilerOptions,
}
impl Compile {
pub fn run(self) -> Result<()> {
eprintln!(
">>> {} -> {}",
&self.file.to_string_lossy(),
self.out_file.to_string_lossy()
);
compiler::compile_file(&self.file, &self.out_file, &self.options)
}
}

View file

@ -0,0 +1,28 @@
use clap::Clap;
use crate::{codegen, interpreter, parser, tc, Result};
/// Evaluate an expression and print its result
#[derive(Clap)]
pub struct Eval {
/// JIT-compile with LLVM instead of interpreting
#[clap(long)]
jit: bool,
/// Expression to evaluate
expr: String,
}
impl Eval {
pub fn run(self) -> Result<()> {
let (_, parsed) = parser::expr(&self.expr)?;
let hir = tc::typecheck_expr(parsed)?;
let result = if self.jit {
codegen::jit_eval::<i64>(&hir)?.into()
} else {
interpreter::eval(&hir)?
};
println!("{}", result);
Ok(())
}
}

View file

@ -0,0 +1,7 @@
pub mod check;
pub mod compile;
pub mod eval;
pub use check::Check;
pub use compile::Compile;
pub use eval::Eval;

View file

@ -0,0 +1,59 @@
use std::borrow::Borrow;
use std::collections::HashMap;
use std::hash::Hash;
use std::mem;
/// A lexical environment
#[derive(Debug, PartialEq, Eq)]
pub struct Env<K: Eq + Hash, V>(Vec<HashMap<K, V>>);
impl<K, V> Default for Env<K, V>
where
K: Eq + Hash,
{
fn default() -> Self {
Self::new()
}
}
impl<K, V> Env<K, V>
where
K: Eq + Hash,
{
pub fn new() -> Self {
Self(vec![Default::default()])
}
pub fn push(&mut self) {
self.0.push(Default::default());
}
pub fn pop(&mut self) {
self.0.pop();
}
pub fn save(&mut self) -> Self {
mem::take(self)
}
pub fn restore(&mut self, saved: Self) {
*self = saved;
}
pub fn set(&mut self, k: K, v: V) {
self.0.last_mut().unwrap().insert(k, v);
}
pub fn resolve<'a, Q>(&'a self, k: &Q) -> Option<&'a V>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
for ctx in self.0.iter().rev() {
if let Some(res) = ctx.get(k) {
return Some(res);
}
}
None
}
}

View file

@ -0,0 +1,59 @@
use std::{io, result};
use thiserror::Error;
use crate::{codegen, interpreter, parser, tc};
#[derive(Error, Debug)]
pub enum Error {
#[error(transparent)]
IOError(#[from] io::Error),
#[error("Error parsing input: {0}")]
ParseError(#[from] parser::Error),
#[error("Error evaluating expression: {0}")]
EvalError(#[from] interpreter::Error),
#[error("Compile error: {0}")]
CodegenError(#[from] codegen::Error),
#[error("Type error: {0}")]
TypeError(#[from] tc::Error),
#[error("{0}")]
Message(String),
}
impl From<String> for Error {
fn from(s: String) -> Self {
Self::Message(s)
}
}
impl<'a> From<&'a str> for Error {
fn from(s: &'a str) -> Self {
Self::Message(s.to_owned())
}
}
impl<'a> From<nom::Err<nom::error::Error<&'a str>>> for Error {
fn from(e: nom::Err<nom::error::Error<&'a str>>) -> Self {
use nom::error::Error as NomError;
use nom::Err::*;
Self::ParseError(match e {
Incomplete(i) => Incomplete(i),
Error(NomError { input, code }) => Error(NomError {
input: input.to_owned(),
code,
}),
Failure(NomError { input, code }) => Failure(NomError {
input: input.to_owned(),
code,
}),
})
}
}
pub type Result<T> = result::Result<T, Error>;

View file

@ -0,0 +1,6 @@
pub(crate) mod env;
pub(crate) mod error;
pub(crate) mod namer;
pub use error::{Error, Result};
pub use namer::{Namer, NamerOf};

View file

@ -0,0 +1,122 @@
use std::fmt::Display;
use std::marker::PhantomData;
pub struct Namer<T, F> {
make_name: F,
counter: u64,
_phantom: PhantomData<T>,
}
impl<T, F> Namer<T, F> {
pub fn new(make_name: F) -> Self {
Namer {
make_name,
counter: 0,
_phantom: PhantomData,
}
}
}
impl Namer<String, Box<dyn Fn(u64) -> String>> {
pub fn with_prefix<T>(prefix: T) -> Self
where
T: Display + 'static,
{
Namer::new(move |i| format!("{}{}", prefix, i)).boxed()
}
pub fn with_suffix<T>(suffix: T) -> Self
where
T: Display + 'static,
{
Namer::new(move |i| format!("{}{}", i, suffix)).boxed()
}
pub fn alphabetic() -> Self {
Namer::new(|i| {
if i <= 26 {
std::char::from_u32((i + 96) as u32).unwrap().to_string()
} else {
format!(
"{}{}",
std::char::from_u32(((i % 26) + 96) as u32).unwrap(),
i - 26
)
}
})
.boxed()
}
}
impl<T, F> Namer<T, F>
where
F: Fn(u64) -> T,
{
pub fn make_name(&mut self) -> T {
self.counter += 1;
(self.make_name)(self.counter)
}
pub fn boxed(self) -> NamerOf<T>
where
F: 'static,
{
Namer {
make_name: Box::new(self.make_name),
counter: self.counter,
_phantom: self._phantom,
}
}
pub fn map<G, U>(self, f: G) -> NamerOf<U>
where
G: Fn(T) -> U + 'static,
T: 'static,
F: 'static,
{
Namer {
counter: self.counter,
make_name: Box::new(move |x| f((self.make_name)(x))),
_phantom: PhantomData,
}
}
}
pub type NamerOf<T> = Namer<T, Box<dyn Fn(u64) -> T>>;
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn prefix() {
let mut namer = Namer::with_prefix("t");
assert_eq!(namer.make_name(), "t1");
assert_eq!(namer.make_name(), "t2");
}
#[test]
fn suffix() {
let mut namer = Namer::with_suffix("t");
assert_eq!(namer.make_name(), "1t");
assert_eq!(namer.make_name(), "2t");
}
#[test]
fn alphabetic() {
let mut namer = Namer::alphabetic();
assert_eq!(namer.make_name(), "a");
assert_eq!(namer.make_name(), "b");
(0..25).for_each(|_| {
namer.make_name();
});
assert_eq!(namer.make_name(), "b2");
}
#[test]
fn custom_callback() {
let mut namer = Namer::new(|n| n + 1);
assert_eq!(namer.make_name(), 2);
assert_eq!(namer.make_name(), 3);
}
}

View file

@ -0,0 +1,89 @@
use std::fmt::{self, Display};
use std::path::Path;
use std::str::FromStr;
use std::{fs, result};
use clap::Clap;
use test_strategy::Arbitrary;
use crate::codegen::{self, Codegen};
use crate::common::Result;
use crate::passes::hir::{monomorphize, strip_positive_units};
use crate::{parser, tc};
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Arbitrary)]
pub enum OutputFormat {
LLVM,
Bitcode,
}
impl Default for OutputFormat {
fn default() -> Self {
Self::Bitcode
}
}
impl FromStr for OutputFormat {
type Err = String;
fn from_str(s: &str) -> result::Result<Self, Self::Err> {
match s {
"llvm" => Ok(Self::LLVM),
"binary" => Ok(Self::Bitcode),
_ => Err(format!(
"Invalid output format {}, expected one of {{llvm, binary}}",
s
)),
}
}
}
impl Display for OutputFormat {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
OutputFormat::LLVM => f.write_str("llvm"),
OutputFormat::Bitcode => f.write_str("binary"),
}
}
}
#[derive(Clap, Debug, PartialEq, Eq, Default)]
pub struct CompilerOptions {
#[clap(long, short = 'f', default_value)]
format: OutputFormat,
}
pub fn compile_file(input: &Path, output: &Path, options: &CompilerOptions) -> Result<()> {
let src = fs::read_to_string(input)?;
let (_, decls) = parser::toplevel(&src)?;
let mut decls = tc::typecheck_toplevel(decls)?;
monomorphize::run_toplevel(&mut decls);
strip_positive_units::run_toplevel(&mut decls);
let context = codegen::Context::create();
let mut codegen = Codegen::new(
&context,
&input
.file_stem()
.map_or("UNKNOWN".to_owned(), |s| s.to_string_lossy().into_owned()),
);
for decl in &decls {
codegen.codegen_decl(decl)?;
}
match options.format {
OutputFormat::LLVM => codegen.print_to_file(output)?,
OutputFormat::Bitcode => codegen.binary_to_file(output)?,
}
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
use test_strategy::proptest;
#[proptest]
fn output_format_display_from_str_round_trip(of: OutputFormat) {
assert_eq!(OutputFormat::from_str(&of.to_string()), Ok(of));
}
}

View file

@ -0,0 +1,19 @@
use std::result;
use thiserror::Error;
use crate::ast::{Ident, Type};
#[derive(Debug, PartialEq, Eq, Error)]
pub enum Error {
#[error("Undefined variable {0}")]
UndefinedVariable(Ident<'static>),
#[error("Unexpected type {actual}, expected type {expected}")]
InvalidType {
actual: Type<'static>,
expected: Type<'static>,
},
}
pub type Result<T> = result::Result<T, Error>;

View file

@ -0,0 +1,203 @@
mod error;
mod value;
use itertools::Itertools;
use value::Val;
pub use self::error::{Error, Result};
pub use self::value::{Function, Value};
use crate::ast::hir::{Binding, Expr, Pattern};
use crate::ast::{BinaryOperator, FunctionType, Ident, Literal, Type, UnaryOperator};
use crate::common::env::Env;
#[derive(Debug, Default)]
pub struct Interpreter<'a> {
env: Env<&'a Ident<'a>, Value<'a>>,
}
impl<'a> Interpreter<'a> {
pub fn new() -> Self {
Self::default()
}
fn resolve(&self, var: &'a Ident<'a>) -> Result<Value<'a>> {
self.env
.resolve(var)
.cloned()
.ok_or_else(|| Error::UndefinedVariable(var.to_owned()))
}
fn bind_pattern(&mut self, pattern: &'a Pattern<'a, Type>, value: Value<'a>) {
match pattern {
Pattern::Id(id, _) => self.env.set(id, value),
Pattern::Tuple(pats) => {
for (pat, val) in pats.iter().zip(value.as_tuple().unwrap().clone()) {
self.bind_pattern(pat, val);
}
}
}
}
pub fn eval(&mut self, expr: &'a Expr<'a, Type>) -> Result<Value<'a>> {
let res = match expr {
Expr::Ident(id, _) => self.resolve(id),
Expr::Literal(Literal::Int(i), _) => Ok((*i).into()),
Expr::Literal(Literal::Bool(b), _) => Ok((*b).into()),
Expr::Literal(Literal::String(s), _) => Ok(s.clone().into()),
Expr::Literal(Literal::Unit, _) => unreachable!(),
Expr::UnaryOp { op, rhs, .. } => {
let rhs = self.eval(rhs)?;
match op {
UnaryOperator::Neg => -rhs,
_ => unimplemented!(),
}
}
Expr::BinaryOp { lhs, op, rhs, .. } => {
let lhs = self.eval(lhs)?;
let rhs = self.eval(rhs)?;
match op {
BinaryOperator::Add => lhs + rhs,
BinaryOperator::Sub => lhs - rhs,
BinaryOperator::Mul => lhs * rhs,
BinaryOperator::Div => lhs / rhs,
BinaryOperator::Pow => todo!(),
BinaryOperator::Equ => Ok(lhs.eq(&rhs).into()),
BinaryOperator::Neq => todo!(),
}
}
Expr::Let { bindings, body, .. } => {
self.env.push();
for Binding { pat, body, .. } in bindings {
let val = self.eval(body)?;
self.bind_pattern(pat, val);
}
let res = self.eval(body)?;
self.env.pop();
Ok(res)
}
Expr::If {
condition,
then,
else_,
..
} => {
let condition = self.eval(condition)?;
if *(condition.as_type::<bool>()?) {
self.eval(then)
} else {
self.eval(else_)
}
}
Expr::Call { ref fun, args, .. } => {
let fun = self.eval(fun)?;
let expected_type = FunctionType {
args: args.iter().map(|_| Type::Int).collect(),
ret: Box::new(Type::Int),
};
let Function {
args: function_args,
body,
..
} = fun.as_function(expected_type)?;
let arg_values = function_args.iter().zip(
args.iter()
.map(|v| self.eval(v))
.collect::<Result<Vec<_>>>()?,
);
let mut interpreter = Interpreter::new();
for (arg_name, arg_value) in arg_values {
interpreter.env.set(arg_name, arg_value);
}
Ok(Value::from(*interpreter.eval(body)?.as_type::<i64>()?))
}
Expr::Fun {
type_args: _,
args,
body,
type_,
} => {
let type_ = match type_ {
Type::Function(ft) => ft.clone(),
_ => unreachable!("Function expression without function type"),
};
Ok(Value::from(value::Function {
// TODO
type_,
args: args.iter().map(|(arg, _)| arg.to_owned()).collect(),
body: (**body).to_owned(),
}))
}
Expr::Tuple(members, _) => Ok(Val::Tuple(
members
.into_iter()
.map(|expr| self.eval(expr))
.try_collect()?,
)
.into()),
}?;
debug_assert_eq!(&res.type_(), expr.type_());
Ok(res)
}
}
pub fn eval<'a>(expr: &'a Expr<'a, Type>) -> Result<Value<'a>> {
let mut interpreter = Interpreter::new();
interpreter.eval(expr)
}
#[cfg(test)]
mod tests {
use std::convert::TryFrom;
use super::value::{TypeOf, Val};
use super::*;
use BinaryOperator::*;
fn int_lit(i: u64) -> Box<Expr<'static, Type<'static>>> {
Box::new(Expr::Literal(Literal::Int(i), Type::Int))
}
fn do_eval<T>(src: &str) -> T
where
for<'a> &'a T: TryFrom<&'a Val<'a>>,
T: Clone + TypeOf,
{
let expr = crate::parser::expr(src).unwrap().1;
let hir = crate::tc::typecheck_expr(expr).unwrap();
let res = eval(&hir).unwrap();
res.as_type::<T>().unwrap().clone()
}
#[test]
fn simple_addition() {
let expr = Expr::BinaryOp {
lhs: int_lit(1),
op: Mul,
rhs: int_lit(2),
type_: Type::Int,
};
let res = eval(&expr).unwrap();
assert_eq!(*res.as_type::<i64>().unwrap(), 2);
}
#[test]
fn variable_shadowing() {
let res = do_eval::<i64>("let x = 1 in (let x = 2 in x) + x");
assert_eq!(res, 3);
}
#[test]
fn conditional_with_equals() {
let res = do_eval::<i64>("let x = 1 in if x == 1 then 2 else 4");
assert_eq!(res, 2);
}
#[test]
#[ignore]
fn function_call() {
let res = do_eval::<i64>("let id = fn x = x in id 1");
assert_eq!(res, 1);
}
}

View file

@ -0,0 +1,224 @@
use std::borrow::Cow;
use std::convert::TryFrom;
use std::fmt::{self, Display};
use std::ops::{Add, Div, Mul, Neg, Sub};
use std::rc::Rc;
use std::result;
use derive_more::{Deref, From, TryInto};
use itertools::Itertools;
use super::{Error, Result};
use crate::ast::hir::Expr;
use crate::ast::{FunctionType, Ident, Type};
#[derive(Debug, Clone)]
pub struct Function<'a> {
pub type_: FunctionType<'a>,
pub args: Vec<Ident<'a>>,
pub body: Expr<'a, Type<'a>>,
}
#[derive(From, TryInto)]
#[try_into(owned, ref)]
pub enum Val<'a> {
Int(i64),
Float(f64),
Bool(bool),
String(Cow<'a, str>),
Tuple(Vec<Value<'a>>),
Function(Function<'a>),
}
impl<'a> TryFrom<Val<'a>> for String {
type Error = ();
fn try_from(value: Val<'a>) -> result::Result<Self, Self::Error> {
match value {
Val::String(s) => Ok(s.into_owned()),
_ => Err(()),
}
}
}
impl<'a> fmt::Debug for Val<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Val::Int(x) => f.debug_tuple("Int").field(x).finish(),
Val::Float(x) => f.debug_tuple("Float").field(x).finish(),
Val::Bool(x) => f.debug_tuple("Bool").field(x).finish(),
Val::String(s) => f.debug_tuple("String").field(s).finish(),
Val::Function(Function { type_, .. }) => {
f.debug_struct("Function").field("type_", type_).finish()
}
Val::Tuple(members) => f.debug_tuple("Tuple").field(members).finish(),
}
}
}
impl<'a> PartialEq for Val<'a> {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(Val::Int(x), Val::Int(y)) => x == y,
(Val::Float(x), Val::Float(y)) => x == y,
(Val::Bool(x), Val::Bool(y)) => x == y,
(Val::Function(_), Val::Function(_)) => false,
(_, _) => false,
}
}
}
impl<'a> From<u64> for Val<'a> {
fn from(i: u64) -> Self {
Self::from(i as i64)
}
}
impl<'a> Display for Val<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Val::Int(x) => x.fmt(f),
Val::Float(x) => x.fmt(f),
Val::Bool(x) => x.fmt(f),
Val::String(s) => write!(f, "{:?}", s),
Val::Function(Function { type_, .. }) => write!(f, "<{}>", type_),
Val::Tuple(members) => write!(f, "({})", members.iter().join(", ")),
}
}
}
impl<'a> Val<'a> {
pub fn type_(&self) -> Type {
match self {
Val::Int(_) => Type::Int,
Val::Float(_) => Type::Float,
Val::Bool(_) => Type::Bool,
Val::String(_) => Type::CString,
Val::Function(Function { type_, .. }) => Type::Function(type_.clone()),
Val::Tuple(members) => Type::Tuple(members.iter().map(|expr| expr.type_()).collect()),
}
}
pub fn as_type<'b, T>(&'b self) -> Result<&'b T>
where
T: TypeOf + 'b + Clone,
&'b T: TryFrom<&'b Self>,
{
<&T>::try_from(self).map_err(|_| Error::InvalidType {
actual: self.type_().to_owned(),
expected: <T as TypeOf>::type_of(),
})
}
pub fn as_function<'b>(&'b self, function_type: FunctionType) -> Result<&'b Function<'a>> {
match self {
Val::Function(f) if f.type_ == function_type => Ok(&f),
_ => Err(Error::InvalidType {
actual: self.type_().to_owned(),
expected: Type::Function(function_type.to_owned()),
}),
}
}
pub fn as_tuple(&self) -> Option<&Vec<Value<'a>>> {
if let Self::Tuple(v) = self {
Some(v)
} else {
None
}
}
pub fn try_into_tuple(self) -> result::Result<Vec<Value<'a>>, Self> {
if let Self::Tuple(v) = self {
Ok(v)
} else {
Err(self)
}
}
}
#[derive(Debug, PartialEq, Clone, Deref)]
pub struct Value<'a>(Rc<Val<'a>>);
impl<'a> Display for Value<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
impl<'a, T> From<T> for Value<'a>
where
Val<'a>: From<T>,
{
fn from(x: T) -> Self {
Self(Rc::new(x.into()))
}
}
impl<'a> Neg for Value<'a> {
type Output = Result<Value<'a>>;
fn neg(self) -> Self::Output {
Ok((-self.as_type::<i64>()?).into())
}
}
impl<'a> Add for Value<'a> {
type Output = Result<Value<'a>>;
fn add(self, rhs: Self) -> Self::Output {
Ok((self.as_type::<i64>()? + rhs.as_type::<i64>()?).into())
}
}
impl<'a> Sub for Value<'a> {
type Output = Result<Value<'a>>;
fn sub(self, rhs: Self) -> Self::Output {
Ok((self.as_type::<i64>()? - rhs.as_type::<i64>()?).into())
}
}
impl<'a> Mul for Value<'a> {
type Output = Result<Value<'a>>;
fn mul(self, rhs: Self) -> Self::Output {
Ok((self.as_type::<i64>()? * rhs.as_type::<i64>()?).into())
}
}
impl<'a> Div for Value<'a> {
type Output = Result<Value<'a>>;
fn div(self, rhs: Self) -> Self::Output {
Ok((self.as_type::<f64>()? / rhs.as_type::<f64>()?).into())
}
}
pub trait TypeOf {
fn type_of() -> Type<'static>;
}
impl TypeOf for i64 {
fn type_of() -> Type<'static> {
Type::Int
}
}
impl TypeOf for bool {
fn type_of() -> Type<'static> {
Type::Bool
}
}
impl TypeOf for f64 {
fn type_of() -> Type<'static> {
Type::Float
}
}
impl TypeOf for String {
fn type_of() -> Type<'static> {
Type::CString
}
}

View file

@ -0,0 +1,36 @@
use clap::Clap;
pub mod ast;
pub mod codegen;
pub(crate) mod commands;
pub(crate) mod common;
pub mod compiler;
pub mod interpreter;
pub(crate) mod passes;
#[macro_use]
pub mod parser;
pub mod tc;
pub use common::{Error, Result};
#[derive(Clap)]
struct Opts {
#[clap(subcommand)]
subcommand: Command,
}
#[derive(Clap)]
enum Command {
Eval(commands::Eval),
Compile(commands::Compile),
Check(commands::Check),
}
fn main() -> anyhow::Result<()> {
let opts = Opts::parse();
match opts.subcommand {
Command::Eval(eval) => Ok(eval.run()?),
Command::Compile(compile) => Ok(compile.run()?),
Command::Check(check) => Ok(check.run()?),
}
}

View file

@ -0,0 +1,717 @@
use std::borrow::Cow;
use nom::character::complete::{digit1, multispace0, multispace1};
use nom::{
alt, call, char, complete, delimited, do_parse, flat_map, many0, map, named, opt, parse_to,
preceded, separated_list0, separated_list1, tag, tuple,
};
use pratt::{Affix, Associativity, PrattParser, Precedence};
use super::util::comma;
use crate::ast::{BinaryOperator, Binding, Expr, Fun, Literal, Pattern, UnaryOperator};
use crate::parser::{arg, ident, type_};
#[derive(Debug)]
enum TokenTree<'a> {
Prefix(UnaryOperator),
// Postfix(char),
Infix(BinaryOperator),
Primary(Expr<'a>),
Group(Vec<TokenTree<'a>>),
}
named!(prefix(&str) -> TokenTree, map!(alt!(
complete!(char!('-')) => { |_| UnaryOperator::Neg } |
complete!(char!('!')) => { |_| UnaryOperator::Not }
), TokenTree::Prefix));
named!(infix(&str) -> TokenTree, map!(alt!(
complete!(tag!("==")) => { |_| BinaryOperator::Equ } |
complete!(tag!("!=")) => { |_| BinaryOperator::Neq } |
complete!(char!('+')) => { |_| BinaryOperator::Add } |
complete!(char!('-')) => { |_| BinaryOperator::Sub } |
complete!(char!('*')) => { |_| BinaryOperator::Mul } |
complete!(char!('/')) => { |_| BinaryOperator::Div } |
complete!(char!('^')) => { |_| BinaryOperator::Pow }
), TokenTree::Infix));
named!(primary(&str) -> TokenTree, alt!(
do_parse!(
multispace0 >>
char!('(') >>
multispace0 >>
group: group >>
multispace0 >>
char!(')') >>
multispace0 >>
(TokenTree::Group(group))
) |
delimited!(multispace0, simple_expr, multispace0) => { |s| TokenTree::Primary(s) }
));
named!(
rest(&str) -> Vec<(TokenTree, Vec<TokenTree>, TokenTree)>,
many0!(tuple!(
infix,
delimited!(multispace0, many0!(prefix), multispace0),
primary
// many0!(postfix)
))
);
named!(group(&str) -> Vec<TokenTree>, do_parse!(
prefix: many0!(prefix)
>> primary: primary
// >> postfix: many0!(postfix)
>> rest: rest
>> ({
let mut res = prefix;
res.push(primary);
// res.append(&mut postfix);
for (infix, mut prefix, primary/*, mut postfix*/) in rest {
res.push(infix);
res.append(&mut prefix);
res.push(primary);
// res.append(&mut postfix);
}
res
})
));
fn token_tree(i: &str) -> nom::IResult<&str, Vec<TokenTree>> {
group(i)
}
struct ExprParser;
impl<'a, I> PrattParser<I> for ExprParser
where
I: Iterator<Item = TokenTree<'a>>,
{
type Error = pratt::NoError;
type Input = TokenTree<'a>;
type Output = Expr<'a>;
fn query(&mut self, input: &Self::Input) -> Result<Affix, Self::Error> {
use BinaryOperator::*;
use UnaryOperator::*;
Ok(match input {
TokenTree::Infix(Add) => Affix::Infix(Precedence(6), Associativity::Left),
TokenTree::Infix(Sub) => Affix::Infix(Precedence(6), Associativity::Left),
TokenTree::Infix(Mul) => Affix::Infix(Precedence(7), Associativity::Left),
TokenTree::Infix(Div) => Affix::Infix(Precedence(7), Associativity::Left),
TokenTree::Infix(Pow) => Affix::Infix(Precedence(8), Associativity::Right),
TokenTree::Infix(Equ) => Affix::Infix(Precedence(4), Associativity::Right),
TokenTree::Infix(Neq) => Affix::Infix(Precedence(4), Associativity::Right),
TokenTree::Prefix(Neg) => Affix::Prefix(Precedence(6)),
TokenTree::Prefix(Not) => Affix::Prefix(Precedence(6)),
TokenTree::Primary(_) => Affix::Nilfix,
TokenTree::Group(_) => Affix::Nilfix,
})
}
fn primary(&mut self, input: Self::Input) -> Result<Self::Output, Self::Error> {
Ok(match input {
TokenTree::Primary(expr) => expr,
TokenTree::Group(group) => self.parse(&mut group.into_iter()).unwrap(),
_ => unreachable!(),
})
}
fn infix(
&mut self,
lhs: Self::Output,
op: Self::Input,
rhs: Self::Output,
) -> Result<Self::Output, Self::Error> {
let op = match op {
TokenTree::Infix(op) => op,
_ => unreachable!(),
};
Ok(Expr::BinaryOp {
lhs: Box::new(lhs),
op,
rhs: Box::new(rhs),
})
}
fn prefix(&mut self, op: Self::Input, rhs: Self::Output) -> Result<Self::Output, Self::Error> {
let op = match op {
TokenTree::Prefix(op) => op,
_ => unreachable!(),
};
Ok(Expr::UnaryOp {
op,
rhs: Box::new(rhs),
})
}
fn postfix(
&mut self,
_lhs: Self::Output,
_op: Self::Input,
) -> Result<Self::Output, Self::Error> {
unreachable!()
}
}
named!(int(&str) -> Literal, map!(flat_map!(digit1, parse_to!(u64)), Literal::Int));
named!(bool_(&str) -> Literal, alt!(
complete!(tag!("true")) => { |_| Literal::Bool(true) } |
complete!(tag!("false")) => { |_| Literal::Bool(false) }
));
fn string_internal(i: &str) -> nom::IResult<&str, Cow<'_, str>, nom::error::Error<&str>> {
// TODO(grfn): use String::split_once when that's stable
let (s, rem) = if let Some(pos) = i.find('"') {
(&i[..pos], &i[(pos + 1)..])
} else {
return Err(nom::Err::Error(nom::error::Error::new(
i,
nom::error::ErrorKind::Tag,
)));
};
Ok((rem, Cow::Borrowed(s)))
}
named!(string(&str) -> Literal, preceded!(
complete!(char!('"')),
map!(
string_internal,
|s| Literal::String(s)
)
));
named!(unit(&str) -> Literal, map!(complete!(tag!("()")), |_| Literal::Unit));
named!(literal(&str) -> Literal, alt!(int | bool_ | string | unit));
named!(literal_expr(&str) -> Expr, map!(literal, Expr::Literal));
named!(tuple(&str) -> Expr, do_parse!(
complete!(tag!("("))
>> multispace0
>> fst: expr
>> comma
>> rest: separated_list0!(
comma,
expr
)
>> multispace0
>> tag!(")")
>> ({
let mut members = Vec::with_capacity(rest.len() + 1);
members.push(fst);
members.append(&mut rest.clone());
Expr::Tuple(members)
})
));
named!(tuple_pattern(&str) -> Pattern, do_parse!(
complete!(tag!("("))
>> multispace0
>> pats: separated_list0!(
comma,
pattern
)
>> multispace0
>> tag!(")")
>> (Pattern::Tuple(pats))
));
named!(pattern(&str) -> Pattern, alt!(
ident => { |id| Pattern::Id(id) } |
tuple_pattern
));
named!(binding(&str) -> Binding, do_parse!(
multispace0
>> pat: pattern
>> multispace0
>> type_: opt!(preceded!(tuple!(tag!(":"), multispace0), type_))
>> multispace0
>> char!('=')
>> multispace0
>> body: expr
>> (Binding {
pat,
type_,
body
})
));
named!(let_(&str) -> Expr, do_parse!(
tag!("let")
>> multispace0
>> bindings: separated_list1!(alt!(char!(';') | char!('\n')), binding)
>> multispace0
>> tag!("in")
>> multispace0
>> body: expr
>> (Expr::Let {
bindings,
body: Box::new(body)
})
));
named!(if_(&str) -> Expr, do_parse! (
tag!("if")
>> multispace0
>> condition: expr
>> multispace0
>> tag!("then")
>> multispace0
>> then: expr
>> multispace0
>> tag!("else")
>> multispace0
>> else_: expr
>> (Expr::If {
condition: Box::new(condition),
then: Box::new(then),
else_: Box::new(else_)
})
));
named!(ident_expr(&str) -> Expr, map!(ident, Expr::Ident));
fn ascripted<'a>(
p: impl Fn(&'a str) -> nom::IResult<&'a str, Expr, nom::error::Error<&'a str>> + 'a,
) -> impl Fn(&'a str) -> nom::IResult<&str, Expr, nom::error::Error<&'a str>> {
move |i| {
do_parse!(
i,
expr: p
>> multispace0
>> complete!(tag!(":"))
>> multispace0
>> type_: type_
>> (Expr::Ascription {
expr: Box::new(expr),
type_
})
)
}
}
named!(paren_expr(&str) -> Expr,
delimited!(complete!(tag!("(")), expr, complete!(tag!(")"))));
named!(funcref(&str) -> Expr, alt!(
ident_expr |
tuple |
paren_expr
));
named!(no_arg_call(&str) -> Expr, do_parse!(
fun: funcref
>> complete!(tag!("()"))
>> (Expr::Call {
fun: Box::new(fun),
args: vec![],
})
));
named!(fun_expr(&str) -> Expr, do_parse!(
tag!("fn")
>> multispace1
>> args: separated_list0!(multispace1, arg)
>> multispace0
>> char!('=')
>> multispace0
>> body: expr
>> (Expr::Fun(Box::new(Fun {
args,
body
})))
));
named!(fn_arg(&str) -> Expr, alt!(
ident_expr |
literal_expr |
tuple |
paren_expr
));
named!(call_with_args(&str) -> Expr, do_parse!(
fun: funcref
>> multispace1
>> args: separated_list1!(multispace1, fn_arg)
>> (Expr::Call {
fun: Box::new(fun),
args
})
));
named!(simple_expr_unascripted(&str) -> Expr, alt!(
let_ |
if_ |
fun_expr |
literal_expr |
ident_expr |
tuple
));
named!(simple_expr(&str) -> Expr, alt!(
call!(ascripted(simple_expr_unascripted)) |
simple_expr_unascripted
));
named!(pub expr(&str) -> Expr, alt!(
no_arg_call |
call_with_args |
map!(token_tree, |tt| {
ExprParser.parse(&mut tt.into_iter()).unwrap()
}) |
simple_expr
));
#[cfg(test)]
pub(crate) mod tests {
use super::*;
use crate::ast::{Arg, Ident, Pattern, Type};
use std::convert::TryFrom;
use BinaryOperator::*;
use Expr::{BinaryOp, If, Let, UnaryOp};
use UnaryOperator::*;
pub(crate) fn ident_expr(s: &str) -> Box<Expr> {
Box::new(Expr::Ident(Ident::try_from(s).unwrap()))
}
mod operators {
use super::*;
#[test]
fn mul_plus() {
let (rem, res) = expr("x*y+z").unwrap();
assert!(rem.is_empty());
assert_eq!(
res,
BinaryOp {
lhs: Box::new(BinaryOp {
lhs: ident_expr("x"),
op: Mul,
rhs: ident_expr("y")
}),
op: Add,
rhs: ident_expr("z")
}
)
}
#[test]
fn mul_plus_ws() {
let (rem, res) = expr("x * y + z").unwrap();
assert!(rem.is_empty(), "non-empty remainder: \"{}\"", rem);
assert_eq!(
res,
BinaryOp {
lhs: Box::new(BinaryOp {
lhs: ident_expr("x"),
op: Mul,
rhs: ident_expr("y")
}),
op: Add,
rhs: ident_expr("z")
}
)
}
#[test]
fn unary() {
let (rem, res) = expr("x * -z").unwrap();
assert!(rem.is_empty(), "non-empty remainder: \"{}\"", rem);
assert_eq!(
res,
BinaryOp {
lhs: ident_expr("x"),
op: Mul,
rhs: Box::new(UnaryOp {
op: Neg,
rhs: ident_expr("z"),
})
}
)
}
#[test]
fn mul_literal() {
let (rem, res) = expr("x * 3").unwrap();
assert!(rem.is_empty());
assert_eq!(
res,
BinaryOp {
lhs: ident_expr("x"),
op: Mul,
rhs: Box::new(Expr::Literal(Literal::Int(3))),
}
)
}
#[test]
fn equ() {
let res = test_parse!(expr, "x * 7 == 7");
assert_eq!(
res,
BinaryOp {
lhs: Box::new(BinaryOp {
lhs: ident_expr("x"),
op: Mul,
rhs: Box::new(Expr::Literal(Literal::Int(7)))
}),
op: Equ,
rhs: Box::new(Expr::Literal(Literal::Int(7)))
}
)
}
}
#[test]
fn unit() {
assert_eq!(test_parse!(expr, "()"), Expr::Literal(Literal::Unit));
}
#[test]
fn bools() {
assert_eq!(
test_parse!(expr, "true"),
Expr::Literal(Literal::Bool(true))
);
assert_eq!(
test_parse!(expr, "false"),
Expr::Literal(Literal::Bool(false))
);
}
#[test]
fn tuple() {
assert_eq!(
test_parse!(expr, "(1, \"seven\")"),
Expr::Tuple(vec![
Expr::Literal(Literal::Int(1)),
Expr::Literal(Literal::String(Cow::Borrowed("seven")))
])
)
}
#[test]
fn simple_string_lit() {
assert_eq!(
test_parse!(expr, "\"foobar\""),
Expr::Literal(Literal::String(Cow::Borrowed("foobar")))
)
}
#[test]
fn let_complex() {
let res = test_parse!(expr, "let x = 1; y = x * 7 in (x + y) * 4");
assert_eq!(
res,
Let {
bindings: vec![
Binding {
pat: Pattern::Id(Ident::try_from("x").unwrap()),
type_: None,
body: Expr::Literal(Literal::Int(1))
},
Binding {
pat: Pattern::Id(Ident::try_from("y").unwrap()),
type_: None,
body: Expr::BinaryOp {
lhs: ident_expr("x"),
op: Mul,
rhs: Box::new(Expr::Literal(Literal::Int(7)))
}
}
],
body: Box::new(Expr::BinaryOp {
lhs: Box::new(Expr::BinaryOp {
lhs: ident_expr("x"),
op: Add,
rhs: ident_expr("y"),
}),
op: Mul,
rhs: Box::new(Expr::Literal(Literal::Int(4))),
})
}
)
}
#[test]
fn if_simple() {
let res = test_parse!(expr, "if x == 8 then 9 else 20");
assert_eq!(
res,
If {
condition: Box::new(BinaryOp {
lhs: ident_expr("x"),
op: Equ,
rhs: Box::new(Expr::Literal(Literal::Int(8))),
}),
then: Box::new(Expr::Literal(Literal::Int(9))),
else_: Box::new(Expr::Literal(Literal::Int(20)))
}
)
}
#[test]
fn no_arg_call() {
let res = test_parse!(expr, "f()");
assert_eq!(
res,
Expr::Call {
fun: ident_expr("f"),
args: vec![]
}
);
}
#[test]
fn unit_call() {
let res = test_parse!(expr, "f ()");
assert_eq!(
res,
Expr::Call {
fun: ident_expr("f"),
args: vec![Expr::Literal(Literal::Unit)]
}
)
}
#[test]
fn call_with_args() {
let res = test_parse!(expr, "f x 1");
assert_eq!(
res,
Expr::Call {
fun: ident_expr("f"),
args: vec![*ident_expr("x"), Expr::Literal(Literal::Int(1))]
}
)
}
#[test]
fn call_funcref() {
let res = test_parse!(expr, "(let x = 1 in x) 2");
assert_eq!(
res,
Expr::Call {
fun: Box::new(Expr::Let {
bindings: vec![Binding {
pat: Pattern::Id(Ident::try_from("x").unwrap()),
type_: None,
body: Expr::Literal(Literal::Int(1))
}],
body: ident_expr("x")
}),
args: vec![Expr::Literal(Literal::Int(2))]
}
)
}
#[test]
fn anon_function() {
let res = test_parse!(expr, "let id = fn x = x in id 1");
assert_eq!(
res,
Expr::Let {
bindings: vec![Binding {
pat: Pattern::Id(Ident::try_from("id").unwrap()),
type_: None,
body: Expr::Fun(Box::new(Fun {
args: vec![Arg::try_from("x").unwrap()],
body: *ident_expr("x")
}))
}],
body: Box::new(Expr::Call {
fun: ident_expr("id"),
args: vec![Expr::Literal(Literal::Int(1))],
})
}
);
}
#[test]
fn tuple_binding() {
let res = test_parse!(expr, "let (x, y) = (1, 2) in x");
assert_eq!(
res,
Expr::Let {
bindings: vec![Binding {
pat: Pattern::Tuple(vec![
Pattern::Id(Ident::from_str_unchecked("x")),
Pattern::Id(Ident::from_str_unchecked("y"))
]),
body: Expr::Tuple(vec![
Expr::Literal(Literal::Int(1)),
Expr::Literal(Literal::Int(2))
]),
type_: None
}],
body: Box::new(Expr::Ident(Ident::from_str_unchecked("x")))
}
)
}
mod ascriptions {
use super::*;
#[test]
fn bare_ascription() {
let res = test_parse!(expr, "1: float");
assert_eq!(
res,
Expr::Ascription {
expr: Box::new(Expr::Literal(Literal::Int(1))),
type_: Type::Float
}
)
}
#[test]
fn fn_body_ascription() {
let res = test_parse!(expr, "let const_1 = fn x = 1: int in const_1 2");
assert_eq!(
res,
Expr::Let {
bindings: vec![Binding {
pat: Pattern::Id(Ident::try_from("const_1").unwrap()),
type_: None,
body: Expr::Fun(Box::new(Fun {
args: vec![Arg::try_from("x").unwrap()],
body: Expr::Ascription {
expr: Box::new(Expr::Literal(Literal::Int(1))),
type_: Type::Int,
}
}))
}],
body: Box::new(Expr::Call {
fun: ident_expr("const_1"),
args: vec![Expr::Literal(Literal::Int(2))]
})
}
)
}
#[test]
fn let_binding_ascripted() {
let res = test_parse!(expr, "let x: int = 1 in x");
assert_eq!(
res,
Expr::Let {
bindings: vec![Binding {
pat: Pattern::Id(Ident::try_from("x").unwrap()),
type_: Some(Type::Int),
body: Expr::Literal(Literal::Int(1))
}],
body: ident_expr("x")
}
)
}
}
}

View file

@ -0,0 +1,16 @@
#[cfg(test)]
#[macro_use]
macro_rules! test_parse {
($parser: ident, $src: expr) => {{
let res = $parser($src);
nom_trace::print_trace!();
let (rem, res) = res.unwrap();
assert!(
rem.is_empty(),
"non-empty remainder: \"{}\", parsed: {:?}",
rem,
res
);
res
}};
}

View file

@ -0,0 +1,240 @@
use nom::character::complete::{multispace0, multispace1};
use nom::error::{ErrorKind, ParseError};
use nom::{alt, char, complete, do_parse, eof, many0, named, separated_list0, tag, terminated};
#[macro_use]
pub(crate) mod macros;
mod expr;
mod type_;
mod util;
use crate::ast::{Arg, Decl, Fun, Ident};
pub use expr::expr;
use type_::function_type;
pub use type_::type_;
pub type Error = nom::Err<nom::error::Error<String>>;
pub(crate) fn is_reserved(s: &str) -> bool {
matches!(
s,
"if" | "then"
| "else"
| "let"
| "in"
| "fn"
| "ty"
| "int"
| "float"
| "bool"
| "true"
| "false"
| "cstring"
)
}
pub(crate) fn ident<'a, E>(i: &'a str) -> nom::IResult<&'a str, Ident, E>
where
E: ParseError<&'a str>,
{
let mut chars = i.chars();
if let Some(f) = chars.next() {
if f.is_alphabetic() || f == '_' {
let mut idx = 1;
for c in chars {
if !(c.is_alphanumeric() || c == '_') {
break;
}
idx += 1;
}
let id = &i[..idx];
if is_reserved(id) {
Err(nom::Err::Error(E::from_error_kind(i, ErrorKind::Satisfy)))
} else {
Ok((&i[idx..], Ident::from_str_unchecked(id)))
}
} else {
Err(nom::Err::Error(E::from_error_kind(i, ErrorKind::Satisfy)))
}
} else {
Err(nom::Err::Error(E::from_error_kind(i, ErrorKind::Eof)))
}
}
named!(ascripted_arg(&str) -> Arg, do_parse!(
complete!(char!('(')) >>
multispace0 >>
ident: ident >>
multispace0 >>
complete!(char!(':')) >>
multispace0 >>
type_: type_ >>
multispace0 >>
complete!(char!(')')) >>
(Arg {
ident,
type_: Some(type_)
})
));
named!(arg(&str) -> Arg, alt!(
ident => { |ident| Arg {ident, type_: None}} |
ascripted_arg
));
named!(extern_decl(&str) -> Decl, do_parse!(
complete!(tag!("extern"))
>> multispace1
>> name: ident
>> multispace0
>> char!(':')
>> multispace0
>> type_: function_type
>> multispace0
>> (Decl::Extern {
name,
type_
})
));
named!(fun_decl(&str) -> Decl, do_parse!(
complete!(tag!("fn"))
>> multispace1
>> name: ident
>> multispace1
>> args: separated_list0!(multispace1, arg)
>> multispace0
>> char!('=')
>> multispace0
>> body: expr
>> (Decl::Fun {
name,
body: Fun {
args,
body
}
})
));
named!(ascription_decl(&str) -> Decl, do_parse!(
complete!(tag!("ty"))
>> multispace1
>> name: ident
>> multispace0
>> complete!(char!(':'))
>> multispace0
>> type_: type_
>> multispace0
>> (Decl::Ascription {
name,
type_
})
));
named!(pub decl(&str) -> Decl, alt!(
ascription_decl |
fun_decl |
extern_decl
));
named!(pub toplevel(&str) -> Vec<Decl>, do_parse!(
decls: many0!(decl)
>> multispace0
>> eof!()
>> (decls)));
#[cfg(test)]
mod tests {
use std::convert::TryInto;
use crate::ast::{BinaryOperator, Expr, FunctionType, Literal, Type};
use super::*;
use expr::tests::ident_expr;
#[test]
fn fn_decl() {
let res = test_parse!(decl, "fn id x = x");
assert_eq!(
res,
Decl::Fun {
name: "id".try_into().unwrap(),
body: Fun {
args: vec!["x".try_into().unwrap()],
body: *ident_expr("x"),
}
}
)
}
#[test]
fn ascripted_fn_args() {
test_parse!(ascripted_arg, "(x : int)");
let res = test_parse!(decl, "fn plus1 (x : int) = x + 1");
assert_eq!(
res,
Decl::Fun {
name: "plus1".try_into().unwrap(),
body: Fun {
args: vec![Arg {
ident: "x".try_into().unwrap(),
type_: Some(Type::Int),
}],
body: Expr::BinaryOp {
lhs: ident_expr("x"),
op: BinaryOperator::Add,
rhs: Box::new(Expr::Literal(Literal::Int(1))),
}
}
}
);
}
#[test]
fn multiple_decls() {
let res = test_parse!(
toplevel,
"fn id x = x
fn plus x y = x + y
fn main = plus (id 2) 7"
);
assert_eq!(res.len(), 3);
let res = test_parse!(
toplevel,
"fn id x = x\nfn plus x y = x + y\nfn main = plus (id 2) 7\n"
);
assert_eq!(res.len(), 3);
}
#[test]
fn top_level_ascription() {
let res = test_parse!(toplevel, "ty id : fn a -> a");
assert_eq!(
res,
vec![Decl::Ascription {
name: "id".try_into().unwrap(),
type_: Type::Function(FunctionType {
args: vec![Type::Var("a".try_into().unwrap())],
ret: Box::new(Type::Var("a".try_into().unwrap()))
})
}]
)
}
#[test]
fn return_unit() {
assert_eq!(
test_parse!(decl, "fn g _ = ()"),
Decl::Fun {
name: "g".try_into().unwrap(),
body: Fun {
args: vec![Arg {
ident: "_".try_into().unwrap(),
type_: None,
}],
body: Expr::Literal(Literal::Unit),
},
}
)
}
}

View file

@ -0,0 +1,152 @@
use nom::character::complete::{multispace0, multispace1};
use nom::{alt, delimited, do_parse, map, named, opt, separated_list0, tag, terminated, tuple};
use super::ident;
use super::util::comma;
use crate::ast::{FunctionType, Type};
named!(pub function_type(&str) -> FunctionType, do_parse!(
tag!("fn")
>> multispace1
>> args: map!(opt!(terminated!(separated_list0!(
comma,
type_
), multispace1)), |args| args.unwrap_or_default())
>> tag!("->")
>> multispace1
>> ret: type_
>> (FunctionType {
args,
ret: Box::new(ret)
})
));
named!(tuple_type(&str) -> Type, do_parse!(
tag!("(")
>> multispace0
>> fst: type_
>> comma
>> rest: separated_list0!(
comma,
type_
)
>> multispace0
>> tag!(")")
>> ({
let mut members = Vec::with_capacity(rest.len() + 1);
members.push(fst);
members.append(&mut rest.clone());
Type::Tuple(members)
})
));
named!(pub type_(&str) -> Type, alt!(
tag!("int") => { |_| Type::Int } |
tag!("float") => { |_| Type::Float } |
tag!("bool") => { |_| Type::Bool } |
tag!("cstring") => { |_| Type::CString } |
tag!("()") => { |_| Type::Unit } |
tuple_type |
function_type => { |ft| Type::Function(ft) }|
ident => { |id| Type::Var(id) } |
delimited!(
tuple!(tag!("("), multispace0),
type_,
tuple!(tag!(")"), multispace0)
)
));
#[cfg(test)]
mod tests {
use std::convert::TryFrom;
use super::*;
use crate::ast::Ident;
#[test]
fn simple_types() {
assert_eq!(test_parse!(type_, "int"), Type::Int);
assert_eq!(test_parse!(type_, "float"), Type::Float);
assert_eq!(test_parse!(type_, "bool"), Type::Bool);
assert_eq!(test_parse!(type_, "cstring"), Type::CString);
assert_eq!(test_parse!(type_, "()"), Type::Unit);
}
#[test]
fn no_arg_fn_type() {
assert_eq!(
test_parse!(type_, "fn -> int"),
Type::Function(FunctionType {
args: vec![],
ret: Box::new(Type::Int)
})
);
}
#[test]
fn fn_type_with_args() {
assert_eq!(
test_parse!(type_, "fn int, bool -> int"),
Type::Function(FunctionType {
args: vec![Type::Int, Type::Bool],
ret: Box::new(Type::Int)
})
);
}
#[test]
fn fn_taking_fn() {
assert_eq!(
test_parse!(type_, "fn fn int, bool -> bool, float -> float"),
Type::Function(FunctionType {
args: vec![
Type::Function(FunctionType {
args: vec![Type::Int, Type::Bool],
ret: Box::new(Type::Bool)
}),
Type::Float
],
ret: Box::new(Type::Float)
})
)
}
#[test]
fn parenthesized() {
assert_eq!(
test_parse!(type_, "fn (fn int, bool -> bool), float -> float"),
Type::Function(FunctionType {
args: vec![
Type::Function(FunctionType {
args: vec![Type::Int, Type::Bool],
ret: Box::new(Type::Bool)
}),
Type::Float
],
ret: Box::new(Type::Float)
})
)
}
#[test]
fn tuple() {
assert_eq!(
test_parse!(type_, "(int, int)"),
Type::Tuple(vec![Type::Int, Type::Int])
)
}
#[test]
fn type_vars() {
assert_eq!(
test_parse!(type_, "fn x, y -> x"),
Type::Function(FunctionType {
args: vec![
Type::Var(Ident::try_from("x").unwrap()),
Type::Var(Ident::try_from("y").unwrap()),
],
ret: Box::new(Type::Var(Ident::try_from("x").unwrap())),
})
)
}
}

View file

@ -0,0 +1,8 @@
use nom::character::complete::multispace0;
use nom::{complete, map, named, tag, tuple};
named!(pub(crate) comma(&str) -> (), map!(tuple!(
multispace0,
complete!(tag!(",")),
multispace0
) ,|_| ()));

View file

@ -0,0 +1,211 @@
use std::collections::HashMap;
use crate::ast::hir::{Binding, Decl, Expr, Pattern};
use crate::ast::{BinaryOperator, Ident, Literal, UnaryOperator};
pub(crate) mod monomorphize;
pub(crate) mod strip_positive_units;
pub(crate) trait Visitor<'a, 'ast, T: 'ast>: Sized + 'a {
type Error;
fn visit_type(&mut self, _type: &mut T) -> Result<(), Self::Error> {
Ok(())
}
fn visit_ident(&mut self, _ident: &mut Ident<'ast>) -> Result<(), Self::Error> {
Ok(())
}
fn visit_literal(&mut self, _literal: &mut Literal<'ast>) -> Result<(), Self::Error> {
Ok(())
}
fn visit_unary_operator(&mut self, _op: &mut UnaryOperator) -> Result<(), Self::Error> {
Ok(())
}
fn visit_binary_operator(&mut self, _op: &mut BinaryOperator) -> Result<(), Self::Error> {
Ok(())
}
fn visit_pattern(&mut self, _pat: &mut Pattern<'ast, T>) -> Result<(), Self::Error> {
Ok(())
}
fn visit_binding(&mut self, binding: &mut Binding<'ast, T>) -> Result<(), Self::Error> {
self.visit_pattern(&mut binding.pat)?;
self.visit_expr(&mut binding.body)?;
Ok(())
}
fn post_visit_call(
&mut self,
_fun: &mut Expr<'ast, T>,
_type_args: &mut HashMap<Ident<'ast>, T>,
_args: &mut Vec<Expr<'ast, T>>,
) -> Result<(), Self::Error> {
Ok(())
}
fn pre_visit_call(
&mut self,
_fun: &mut Expr<'ast, T>,
_type_args: &mut HashMap<Ident<'ast>, T>,
_args: &mut Vec<Expr<'ast, T>>,
) -> Result<(), Self::Error> {
Ok(())
}
fn visit_tuple(&mut self, members: &mut Vec<Expr<'ast, T>>) -> Result<(), Self::Error> {
for expr in members {
self.visit_expr(expr)?;
}
Ok(())
}
fn pre_visit_expr(&mut self, _expr: &mut Expr<'ast, T>) -> Result<(), Self::Error> {
Ok(())
}
fn visit_expr(&mut self, expr: &mut Expr<'ast, T>) -> Result<(), Self::Error> {
self.pre_visit_expr(expr)?;
match expr {
Expr::Ident(id, t) => {
self.visit_ident(id)?;
self.visit_type(t)?;
}
Expr::Literal(lit, t) => {
self.visit_literal(lit)?;
self.visit_type(t)?;
}
Expr::UnaryOp { op, rhs, type_ } => {
self.visit_unary_operator(op)?;
self.visit_expr(rhs)?;
self.visit_type(type_)?;
}
Expr::BinaryOp {
lhs,
op,
rhs,
type_,
} => {
self.visit_expr(lhs)?;
self.visit_binary_operator(op)?;
self.visit_expr(rhs)?;
self.visit_type(type_)?;
}
Expr::Let {
bindings,
body,
type_,
} => {
for binding in bindings.iter_mut() {
self.visit_binding(binding)?;
}
self.visit_expr(body)?;
self.visit_type(type_)?;
}
Expr::If {
condition,
then,
else_,
type_,
} => {
self.visit_expr(condition)?;
self.visit_expr(then)?;
self.visit_expr(else_)?;
self.visit_type(type_)?;
}
Expr::Fun {
args,
body,
type_args,
type_,
} => {
for (ident, t) in args {
self.visit_ident(ident)?;
self.visit_type(t)?;
}
for ta in type_args {
self.visit_ident(ta)?;
}
self.visit_expr(body)?;
self.visit_type(type_)?;
}
Expr::Call {
fun,
args,
type_args,
type_,
} => {
self.pre_visit_call(fun, type_args, args)?;
self.visit_expr(fun)?;
for arg in args.iter_mut() {
self.visit_expr(arg)?;
}
self.visit_type(type_)?;
self.post_visit_call(fun, type_args, args)?;
}
Expr::Tuple(tup, type_) => {
self.visit_tuple(tup)?;
self.visit_type(type_)?;
}
}
Ok(())
}
fn post_visit_decl(&mut self, _decl: &'a Decl<'ast, T>) -> Result<(), Self::Error> {
Ok(())
}
fn post_visit_fun_decl(
&mut self,
_name: &mut Ident<'ast>,
_type_args: &mut Vec<Ident>,
_args: &mut Vec<(Ident, T)>,
_body: &mut Box<Expr<T>>,
_type_: &mut T,
) -> Result<(), Self::Error> {
Ok(())
}
fn visit_decl(&mut self, decl: &'a mut Decl<'ast, T>) -> Result<(), Self::Error> {
match decl {
Decl::Fun {
name,
type_args,
args,
body,
type_,
} => {
self.visit_ident(name)?;
for type_arg in type_args.iter_mut() {
self.visit_ident(type_arg)?;
}
for (arg, t) in args.iter_mut() {
self.visit_ident(arg)?;
self.visit_type(t)?;
}
self.visit_expr(body)?;
self.visit_type(type_)?;
self.post_visit_fun_decl(name, type_args, args, body, type_)?;
}
Decl::Extern {
name,
arg_types,
ret_type,
} => {
self.visit_ident(name)?;
for arg_t in arg_types {
self.visit_type(arg_t)?;
}
self.visit_type(ret_type)?;
}
}
self.post_visit_decl(decl)?;
Ok(())
}
}

View file

@ -0,0 +1,139 @@
use std::cell::RefCell;
use std::collections::{HashMap, HashSet};
use std::convert::TryInto;
use std::mem;
use void::{ResultVoidExt, Void};
use crate::ast::hir::{Decl, Expr};
use crate::ast::{self, Ident};
use super::Visitor;
#[derive(Default)]
pub(crate) struct Monomorphize<'a, 'ast> {
decls: HashMap<&'a Ident<'ast>, &'a Decl<'ast, ast::Type<'ast>>>,
extra_decls: Vec<Decl<'ast, ast::Type<'ast>>>,
remove_decls: HashSet<Ident<'ast>>,
}
impl<'a, 'ast> Monomorphize<'a, 'ast> {
pub(crate) fn new() -> Self {
Default::default()
}
}
impl<'a, 'ast> Visitor<'a, 'ast, ast::Type<'ast>> for Monomorphize<'a, 'ast> {
type Error = Void;
fn post_visit_call(
&mut self,
fun: &mut Expr<'ast, ast::Type<'ast>>,
type_args: &mut HashMap<Ident<'ast>, ast::Type<'ast>>,
args: &mut Vec<Expr<'ast, ast::Type<'ast>>>,
) -> Result<(), Self::Error> {
let new_fun = match fun {
Expr::Ident(id, _) => {
let decl: Decl<_> = (**self.decls.get(id).unwrap()).clone();
let name = RefCell::new(id.to_string());
let type_args = mem::take(type_args);
let mut monomorphized = decl
.traverse_type(|ty| -> Result<_, Void> {
Ok(ty.clone().traverse_type_vars(|v| {
let concrete = type_args.get(&v).unwrap();
name.borrow_mut().push_str(&concrete.to_string());
concrete.clone()
}))
})
.void_unwrap();
let name: Ident = name.into_inner().try_into().unwrap();
if name != *id {
self.remove_decls.insert(id.clone());
monomorphized.set_name(name.clone());
let type_ = monomorphized.type_().unwrap().clone();
self.extra_decls.push(monomorphized);
Some(Expr::Ident(name, type_))
} else {
None
}
}
_ => todo!(),
};
if let Some(new_fun) = new_fun {
*fun = new_fun;
}
Ok(())
}
fn post_visit_decl(
&mut self,
decl: &'a Decl<'ast, ast::Type<'ast>>,
) -> Result<(), Self::Error> {
self.decls.insert(decl.name(), decl);
Ok(())
}
}
pub(crate) fn run_toplevel<'a>(toplevel: &mut Vec<Decl<'a, ast::Type<'a>>>) {
let mut pass = Monomorphize::new();
for decl in toplevel.iter_mut() {
pass.visit_decl(decl).void_unwrap();
}
let remove_decls = mem::take(&mut pass.remove_decls);
let mut extra_decls = mem::take(&mut pass.extra_decls);
toplevel.retain(|decl| !remove_decls.contains(decl.name()));
extra_decls.append(toplevel);
*toplevel = extra_decls;
}
#[cfg(test)]
mod tests {
use std::convert::TryFrom;
use super::*;
use crate::parser::toplevel;
use crate::tc::typecheck_toplevel;
#[test]
fn call_id_decl() {
let (_, program) = toplevel(
"ty id : fn a -> a
fn id x = x
ty main : fn -> int
fn main = id 0",
)
.unwrap();
let mut program = typecheck_toplevel(program).unwrap();
run_toplevel(&mut program);
let find_decl = |ident: &str| {
program.iter().find(|decl| {
matches!(decl, Decl::Fun {name, ..} if name == &Ident::try_from(ident).unwrap())
}).unwrap()
};
let main = find_decl("main");
let body = match main {
Decl::Fun { body, .. } => body,
_ => unreachable!(),
};
let expected_type = ast::Type::Function(ast::FunctionType {
args: vec![ast::Type::Int],
ret: Box::new(ast::Type::Int),
});
match &**body {
Expr::Call { fun, .. } => {
let fun = match &**fun {
Expr::Ident(fun, _) => fun,
_ => unreachable!(),
};
let called_decl = find_decl(fun.into());
assert_eq!(called_decl.type_().unwrap(), &expected_type);
}
_ => unreachable!(),
}
}
}

View file

@ -0,0 +1,191 @@
use std::collections::HashMap;
use std::mem;
use ast::hir::{Binding, Pattern};
use ast::Literal;
use void::{ResultVoidExt, Void};
use crate::ast::hir::{Decl, Expr};
use crate::ast::{self, Ident};
use super::Visitor;
/// Strip all values with a unit type in positive (non-return) position
pub(crate) struct StripPositiveUnits {}
impl<'a, 'ast> Visitor<'a, 'ast, ast::Type<'ast>> for StripPositiveUnits {
type Error = Void;
fn pre_visit_expr(
&mut self,
expr: &mut Expr<'ast, ast::Type<'ast>>,
) -> Result<(), Self::Error> {
let mut extracted = vec![];
if let Expr::Call { args, .. } = expr {
// TODO(grfn): replace with drain_filter once it's stabilized
let mut i = 0;
while i != args.len() {
if args[i].type_() == &ast::Type::Unit {
let expr = args.remove(i);
if !matches!(expr, Expr::Literal(Literal::Unit, _)) {
extracted.push(expr)
};
} else {
i += 1
}
}
}
if !extracted.is_empty() {
let body = mem::replace(expr, Expr::Literal(Literal::Unit, ast::Type::Unit));
*expr = Expr::Let {
bindings: extracted
.into_iter()
.map(|expr| Binding {
pat: Pattern::Id(
Ident::from_str_unchecked("___discarded"),
expr.type_().clone(),
),
body: expr,
})
.collect(),
type_: body.type_().clone(),
body: Box::new(body),
};
}
Ok(())
}
fn post_visit_call(
&mut self,
_fun: &mut Expr<'ast, ast::Type<'ast>>,
_type_args: &mut HashMap<Ident<'ast>, ast::Type<'ast>>,
args: &mut Vec<Expr<'ast, ast::Type<'ast>>>,
) -> Result<(), Self::Error> {
args.retain(|arg| arg.type_() != &ast::Type::Unit);
Ok(())
}
fn visit_type(&mut self, type_: &mut ast::Type<'ast>) -> Result<(), Self::Error> {
if let ast::Type::Function(ft) = type_ {
ft.args.retain(|a| a != &ast::Type::Unit);
}
Ok(())
}
fn post_visit_fun_decl(
&mut self,
_name: &mut Ident<'ast>,
_type_args: &mut Vec<Ident>,
args: &mut Vec<(Ident, ast::Type<'ast>)>,
_body: &mut Box<Expr<ast::Type<'ast>>>,
_type_: &mut ast::Type<'ast>,
) -> Result<(), Self::Error> {
args.retain(|(_, ty)| ty != &ast::Type::Unit);
Ok(())
}
}
pub(crate) fn run_toplevel<'a>(toplevel: &mut Vec<Decl<'a, ast::Type<'a>>>) {
let mut pass = StripPositiveUnits {};
for decl in toplevel.iter_mut() {
pass.visit_decl(decl).void_unwrap();
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::parser::toplevel;
use crate::tc::typecheck_toplevel;
use pretty_assertions::assert_eq;
#[test]
fn unit_only_arg() {
let (_, program) = toplevel(
"ty f : fn () -> int
fn f _ = 1
ty main : fn -> int
fn main = f ()",
)
.unwrap();
let (_, expected) = toplevel(
"ty f : fn -> int
fn f = 1
ty main : fn -> int
fn main = f()",
)
.unwrap();
let expected = typecheck_toplevel(expected).unwrap();
let mut program = typecheck_toplevel(program).unwrap();
run_toplevel(&mut program);
assert_eq!(program, expected);
}
#[test]
fn unit_and_other_arg() {
let (_, program) = toplevel(
"ty f : fn (), int -> int
fn f _ x = x
ty main : fn -> int
fn main = f () 1",
)
.unwrap();
let (_, expected) = toplevel(
"ty f : fn int -> int
fn f x = x
ty main : fn -> int
fn main = f 1",
)
.unwrap();
let expected = typecheck_toplevel(expected).unwrap();
let mut program = typecheck_toplevel(program).unwrap();
run_toplevel(&mut program);
assert_eq!(program, expected);
}
#[test]
fn unit_expr_and_other_arg() {
let (_, program) = toplevel(
"ty f : fn (), int -> int
fn f _ x = x
ty g : fn int -> ()
fn g _ = ()
ty main : fn -> int
fn main = f (g 2) 1",
)
.unwrap();
let (_, expected) = toplevel(
"ty f : fn int -> int
fn f x = x
ty g : fn int -> ()
fn g _ = ()
ty main : fn -> int
fn main = let ___discarded = g 2 in f 1",
)
.unwrap();
assert_eq!(expected.len(), 6);
let expected = typecheck_toplevel(expected).unwrap();
let mut program = typecheck_toplevel(program).unwrap();
run_toplevel(&mut program);
assert_eq!(program, expected);
}
}

View file

@ -0,0 +1 @@
pub(crate) mod hir;

View file

@ -0,0 +1,808 @@
use bimap::BiMap;
use derive_more::From;
use itertools::Itertools;
use std::cell::RefCell;
use std::collections::HashMap;
use std::convert::{TryFrom, TryInto};
use std::fmt::{self, Display};
use std::{mem, result};
use thiserror::Error;
use crate::ast::{self, hir, Arg, BinaryOperator, Ident, Literal, Pattern};
use crate::common::env::Env;
use crate::common::{Namer, NamerOf};
#[derive(Debug, Error)]
pub enum Error {
#[error("Undefined variable {0}")]
UndefinedVariable(Ident<'static>),
#[error("Mismatched types: expected {expected}, but got {actual}")]
TypeMismatch { expected: Type, actual: Type },
#[error("Mismatched types, expected numeric type, but got {0}")]
NonNumeric(Type),
#[error("Ambiguous type {0}")]
AmbiguousType(TyVar),
}
pub type Result<T> = result::Result<T, Error>;
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)]
pub struct TyVar(u64);
impl Display for TyVar {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "t{}", self.0)
}
}
#[derive(Debug, PartialEq, Eq, Clone, Hash)]
pub struct NullaryType(String);
impl Display for NullaryType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.0)
}
}
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum PrimType {
Int,
Float,
Bool,
CString,
}
impl<'a> From<PrimType> for ast::Type<'a> {
fn from(pr: PrimType) -> Self {
match pr {
PrimType::Int => ast::Type::Int,
PrimType::Float => ast::Type::Float,
PrimType::Bool => ast::Type::Bool,
PrimType::CString => ast::Type::CString,
}
}
}
impl Display for PrimType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
PrimType::Int => f.write_str("int"),
PrimType::Float => f.write_str("float"),
PrimType::Bool => f.write_str("bool"),
PrimType::CString => f.write_str("cstring"),
}
}
}
#[derive(Debug, PartialEq, Eq, Clone, From)]
pub enum Type {
#[from(ignore)]
Univ(TyVar),
#[from(ignore)]
Exist(TyVar),
Nullary(NullaryType),
Prim(PrimType),
Tuple(Vec<Type>),
Unit,
Fun {
args: Vec<Type>,
ret: Box<Type>,
},
}
impl<'a> TryFrom<Type> for ast::Type<'a> {
type Error = Type;
fn try_from(value: Type) -> result::Result<Self, Self::Error> {
match value {
Type::Unit => Ok(ast::Type::Unit),
Type::Univ(_) => todo!(),
Type::Exist(_) => Err(value),
Type::Nullary(_) => todo!(),
Type::Prim(p) => Ok(p.into()),
Type::Tuple(members) => Ok(ast::Type::Tuple(
members.into_iter().map(|ty| ty.try_into()).try_collect()?,
)),
Type::Fun { ref args, ref ret } => Ok(ast::Type::Function(ast::FunctionType {
args: args
.clone()
.into_iter()
.map(Self::try_from)
.try_collect()
.map_err(|_| value.clone())?,
ret: Box::new((*ret.clone()).try_into().map_err(|_| value.clone())?),
})),
}
}
}
const INT: Type = Type::Prim(PrimType::Int);
const FLOAT: Type = Type::Prim(PrimType::Float);
const BOOL: Type = Type::Prim(PrimType::Bool);
const CSTRING: Type = Type::Prim(PrimType::CString);
impl Display for Type {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Type::Nullary(nt) => nt.fmt(f),
Type::Prim(p) => p.fmt(f),
Type::Univ(TyVar(n)) => write!(f, "∀{}", n),
Type::Exist(TyVar(n)) => write!(f, "∃{}", n),
Type::Fun { args, ret } => write!(f, "fn {} -> {}", args.iter().join(", "), ret),
Type::Tuple(members) => write!(f, "({})", members.iter().join(", ")),
Type::Unit => write!(f, "()"),
}
}
}
struct Typechecker<'ast> {
ty_var_namer: NamerOf<TyVar>,
ctx: HashMap<TyVar, Type>,
env: Env<Ident<'ast>, Type>,
/// AST type var -> type
instantiations: Env<Ident<'ast>, Type>,
/// AST type-var -> universal TyVar
type_vars: RefCell<(BiMap<Ident<'ast>, TyVar>, NamerOf<Ident<'static>>)>,
}
impl<'ast> Typechecker<'ast> {
fn new() -> Self {
Self {
ty_var_namer: Namer::new(TyVar).boxed(),
type_vars: RefCell::new((
Default::default(),
Namer::alphabetic().map(|n| Ident::try_from(n).unwrap()),
)),
ctx: Default::default(),
env: Default::default(),
instantiations: Default::default(),
}
}
fn bind_pattern(
&mut self,
pat: Pattern<'ast>,
type_: Type,
) -> Result<hir::Pattern<'ast, Type>> {
match pat {
Pattern::Id(ident) => {
self.env.set(ident.clone(), type_.clone());
Ok(hir::Pattern::Id(ident, type_))
}
Pattern::Tuple(members) => {
let mut tys = Vec::with_capacity(members.len());
let mut hir_members = Vec::with_capacity(members.len());
for pat in members {
let ty = self.fresh_ex();
hir_members.push(self.bind_pattern(pat, ty.clone())?);
tys.push(ty);
}
let tuple_type = Type::Tuple(tys);
self.unify(&tuple_type, &type_)?;
Ok(hir::Pattern::Tuple(hir_members))
}
}
}
pub(crate) fn tc_expr(&mut self, expr: ast::Expr<'ast>) -> Result<hir::Expr<'ast, Type>> {
match expr {
ast::Expr::Ident(ident) => {
let type_ = self
.env
.resolve(&ident)
.ok_or_else(|| Error::UndefinedVariable(ident.to_owned()))?
.clone();
Ok(hir::Expr::Ident(ident, type_))
}
ast::Expr::Literal(lit) => {
let type_ = match lit {
Literal::Int(_) => Type::Prim(PrimType::Int),
Literal::Bool(_) => Type::Prim(PrimType::Bool),
Literal::String(_) => Type::Prim(PrimType::CString),
Literal::Unit => Type::Unit,
};
Ok(hir::Expr::Literal(lit.to_owned(), type_))
}
ast::Expr::Tuple(members) => {
let members = members
.into_iter()
.map(|expr| self.tc_expr(expr))
.collect::<Result<Vec<_>>>()?;
let type_ = Type::Tuple(members.iter().map(|expr| expr.type_().clone()).collect());
Ok(hir::Expr::Tuple(members, type_))
}
ast::Expr::UnaryOp { op, rhs } => todo!(),
ast::Expr::BinaryOp { lhs, op, rhs } => {
let lhs = self.tc_expr(*lhs)?;
let rhs = self.tc_expr(*rhs)?;
let type_ = match op {
BinaryOperator::Equ | BinaryOperator::Neq => {
self.unify(lhs.type_(), rhs.type_())?;
Type::Prim(PrimType::Bool)
}
BinaryOperator::Add | BinaryOperator::Sub | BinaryOperator::Mul => {
let ty = self.unify(lhs.type_(), rhs.type_())?;
// if !matches!(ty, Type::Int | Type::Float) {
// return Err(Error::NonNumeric(ty));
// }
ty
}
BinaryOperator::Div => todo!(),
BinaryOperator::Pow => todo!(),
};
Ok(hir::Expr::BinaryOp {
lhs: Box::new(lhs),
op,
rhs: Box::new(rhs),
type_,
})
}
ast::Expr::Let { bindings, body } => {
self.env.push();
let bindings = bindings
.into_iter()
.map(
|ast::Binding { pat, type_, body }| -> Result<hir::Binding<Type>> {
let body = self.tc_expr(body)?;
if let Some(type_) = type_ {
let type_ = self.type_from_ast_type(type_);
self.unify(body.type_(), &type_)?;
}
let pat = self.bind_pattern(pat, body.type_().clone())?;
Ok(hir::Binding { pat, body })
},
)
.collect::<Result<Vec<hir::Binding<Type>>>>()?;
let body = self.tc_expr(*body)?;
self.env.pop();
Ok(hir::Expr::Let {
bindings,
type_: body.type_().clone(),
body: Box::new(body),
})
}
ast::Expr::If {
condition,
then,
else_,
} => {
let condition = self.tc_expr(*condition)?;
self.unify(&Type::Prim(PrimType::Bool), condition.type_())?;
let then = self.tc_expr(*then)?;
let else_ = self.tc_expr(*else_)?;
let type_ = self.unify(then.type_(), else_.type_())?;
Ok(hir::Expr::If {
condition: Box::new(condition),
then: Box::new(then),
else_: Box::new(else_),
type_,
})
}
ast::Expr::Fun(f) => {
let ast::Fun { args, body } = *f;
self.env.push();
let args: Vec<_> = args
.into_iter()
.map(|Arg { ident, type_ }| {
let ty = match type_ {
Some(t) => self.type_from_ast_type(t),
None => self.fresh_ex(),
};
self.env.set(ident.clone(), ty.clone());
(ident, ty)
})
.collect();
let body = self.tc_expr(body)?;
self.env.pop();
Ok(hir::Expr::Fun {
type_: Type::Fun {
args: args.iter().map(|(_, ty)| ty.clone()).collect(),
ret: Box::new(body.type_().clone()),
},
type_args: vec![], // TODO fill in once we do let generalization
args,
body: Box::new(body),
})
}
ast::Expr::Call { fun, args } => {
let ret_ty = self.fresh_ex();
let arg_tys = args.iter().map(|_| self.fresh_ex()).collect::<Vec<_>>();
let ft = Type::Fun {
args: arg_tys.clone(),
ret: Box::new(ret_ty.clone()),
};
let fun = self.tc_expr(*fun)?;
self.instantiations.push();
self.unify(&ft, fun.type_())?;
let args = args
.into_iter()
.zip(arg_tys)
.map(|(arg, ty)| {
let arg = self.tc_expr(arg)?;
self.unify(&ty, arg.type_())?;
Ok(arg)
})
.try_collect()?;
let type_args = self.commit_instantiations();
Ok(hir::Expr::Call {
fun: Box::new(fun),
type_args,
args,
type_: ret_ty,
})
}
ast::Expr::Ascription { expr, type_ } => {
let expr = self.tc_expr(*expr)?;
let type_ = self.type_from_ast_type(type_);
self.unify(expr.type_(), &type_)?;
Ok(expr)
}
}
}
pub(crate) fn tc_decl(
&mut self,
decl: ast::Decl<'ast>,
) -> Result<Option<hir::Decl<'ast, Type>>> {
match decl {
ast::Decl::Fun { name, body } => {
let mut expr = ast::Expr::Fun(Box::new(body));
if let Some(type_) = self.env.resolve(&name) {
expr = ast::Expr::Ascription {
expr: Box::new(expr),
type_: self.finalize_type(type_.clone())?,
};
}
self.env.push();
let body = self.tc_expr(expr)?;
let type_ = body.type_().clone();
self.env.set(name.clone(), type_);
self.env.pop();
match body {
hir::Expr::Fun {
type_args,
args,
body,
type_,
} => Ok(Some(hir::Decl::Fun {
name,
type_args,
args,
body,
type_,
})),
_ => unreachable!(),
}
}
ast::Decl::Ascription { name, type_ } => {
let type_ = self.type_from_ast_type(type_);
self.env.set(name.clone(), type_);
Ok(None)
}
ast::Decl::Extern { name, type_ } => {
let type_ = self.type_from_ast_type(ast::Type::Function(type_));
self.env.set(name.clone(), type_.clone());
let (arg_types, ret_type) = match type_ {
Type::Fun { args, ret } => (args, *ret),
_ => unreachable!(),
};
Ok(Some(hir::Decl::Extern {
name,
arg_types,
ret_type,
}))
}
}
}
fn fresh_tv(&mut self) -> TyVar {
self.ty_var_namer.make_name()
}
fn fresh_ex(&mut self) -> Type {
Type::Exist(self.fresh_tv())
}
fn fresh_univ(&mut self) -> Type {
Type::Univ(self.fresh_tv())
}
fn unify(&mut self, ty1: &Type, ty2: &Type) -> Result<Type> {
match (ty1, ty2) {
(Type::Unit, Type::Unit) => Ok(Type::Unit),
(Type::Exist(tv), ty) | (ty, Type::Exist(tv)) => match self.resolve_tv(*tv)? {
Some(existing_ty) if self.types_match(ty, &existing_ty) => Ok(ty.clone()),
Some(var @ ast::Type::Var(_)) => {
let var = self.type_from_ast_type(var);
self.unify(&var, ty)
}
Some(existing_ty) => match ty {
Type::Exist(_) => {
let rhs = self.type_from_ast_type(existing_ty);
self.unify(ty, &rhs)
}
_ => Err(Error::TypeMismatch {
expected: ty.clone(),
actual: self.type_from_ast_type(existing_ty),
}),
},
None => match self.ctx.insert(*tv, ty.clone()) {
Some(existing) => self.unify(&existing, ty),
None => Ok(ty.clone()),
},
},
(Type::Univ(u1), Type::Univ(u2)) if u1 == u2 => Ok(ty2.clone()),
(Type::Univ(u), ty) | (ty, Type::Univ(u)) => {
let ident = self.name_univ(*u);
match self.instantiations.resolve(&ident) {
Some(existing_ty) if ty == existing_ty => Ok(ty.clone()),
Some(existing_ty) => Err(Error::TypeMismatch {
expected: ty.clone(),
actual: existing_ty.clone(),
}),
None => {
self.instantiations.set(ident, ty.clone());
Ok(ty.clone())
}
}
}
(Type::Prim(p1), Type::Prim(p2)) if p1 == p2 => Ok(ty2.clone()),
(Type::Tuple(t1), Type::Tuple(t2)) if t1.len() == t2.len() => {
let ts = t1
.iter()
.zip(t2.iter())
.map(|(t1, t2)| self.unify(t1, t2))
.try_collect()?;
Ok(Type::Tuple(ts))
}
(
Type::Fun {
args: args1,
ret: ret1,
},
Type::Fun {
args: args2,
ret: ret2,
},
) => {
let args = args1
.iter()
.zip(args2)
.map(|(t1, t2)| self.unify(t1, t2))
.try_collect()?;
let ret = self.unify(ret1, ret2)?;
Ok(Type::Fun {
args,
ret: Box::new(ret),
})
}
(Type::Nullary(_), _) | (_, Type::Nullary(_)) => todo!(),
_ => Err(Error::TypeMismatch {
expected: ty1.clone(),
actual: ty2.clone(),
}),
}
}
fn finalize_expr(
&self,
expr: hir::Expr<'ast, Type>,
) -> Result<hir::Expr<'ast, ast::Type<'ast>>> {
expr.traverse_type(|ty| self.finalize_type(ty))
}
fn finalize_decl(
&mut self,
decl: hir::Decl<'ast, Type>,
) -> Result<hir::Decl<'ast, ast::Type<'ast>>> {
let res = decl.traverse_type(|ty| self.finalize_type(ty))?;
if let Some(type_) = res.type_() {
let ty = self.type_from_ast_type(type_.clone());
self.env.set(res.name().clone(), ty);
}
Ok(res)
}
fn finalize_type(&self, ty: Type) -> Result<ast::Type<'static>> {
let ret = match ty {
Type::Exist(tv) => self.resolve_tv(tv)?.ok_or(Error::AmbiguousType(tv)),
Type::Univ(tv) => Ok(ast::Type::Var(self.name_univ(tv))),
Type::Unit => Ok(ast::Type::Unit),
Type::Nullary(_) => todo!(),
Type::Prim(pr) => Ok(pr.into()),
Type::Tuple(members) => Ok(ast::Type::Tuple(
members
.into_iter()
.map(|ty| self.finalize_type(ty))
.try_collect()?,
)),
Type::Fun { args, ret } => Ok(ast::Type::Function(ast::FunctionType {
args: args
.into_iter()
.map(|ty| self.finalize_type(ty))
.try_collect()?,
ret: Box::new(self.finalize_type(*ret)?),
})),
};
ret
}
fn resolve_tv(&self, tv: TyVar) -> Result<Option<ast::Type<'static>>> {
let mut res = &Type::Exist(tv);
Ok(loop {
match res {
Type::Exist(tv) => {
res = match self.ctx.get(tv) {
Some(r) => r,
None => return Ok(None),
};
}
Type::Univ(tv) => {
let ident = self.name_univ(*tv);
if let Some(r) = self.instantiations.resolve(&ident) {
res = r;
} else {
break Some(ast::Type::Var(ident));
}
}
Type::Nullary(_) => todo!(),
Type::Prim(pr) => break Some((*pr).into()),
Type::Unit => break Some(ast::Type::Unit),
Type::Fun { args, ret } => todo!(),
Type::Tuple(_) => break Some(self.finalize_type(res.clone())?),
}
})
}
fn type_from_ast_type(&mut self, ast_type: ast::Type<'ast>) -> Type {
match ast_type {
ast::Type::Unit => Type::Unit,
ast::Type::Int => INT,
ast::Type::Float => FLOAT,
ast::Type::Bool => BOOL,
ast::Type::CString => CSTRING,
ast::Type::Tuple(members) => Type::Tuple(
members
.into_iter()
.map(|ty| self.type_from_ast_type(ty))
.collect(),
),
ast::Type::Function(ast::FunctionType { args, ret }) => Type::Fun {
args: args
.into_iter()
.map(|t| self.type_from_ast_type(t))
.collect(),
ret: Box::new(self.type_from_ast_type(*ret)),
},
ast::Type::Var(id) => Type::Univ({
let opt_tv = { self.type_vars.borrow_mut().0.get_by_left(&id).copied() };
opt_tv.unwrap_or_else(|| {
let tv = self.fresh_tv();
self.type_vars
.borrow_mut()
.0
.insert_no_overwrite(id, tv)
.unwrap();
tv
})
}),
}
}
fn name_univ(&self, tv: TyVar) -> Ident<'static> {
let mut vars = self.type_vars.borrow_mut();
vars.0
.get_by_right(&tv)
.map(Ident::to_owned)
.unwrap_or_else(|| {
let name = loop {
let name = vars.1.make_name();
if !vars.0.contains_left(&name) {
break name;
}
};
vars.0.insert_no_overwrite(name.clone(), tv).unwrap();
name
})
}
fn commit_instantiations(&mut self) -> HashMap<Ident<'ast>, Type> {
let mut res = HashMap::new();
let mut ctx = mem::take(&mut self.ctx);
for (_, v) in ctx.iter_mut() {
if let Type::Univ(tv) = v {
let tv_name = self.name_univ(*tv);
if let Some(concrete) = self.instantiations.resolve(&tv_name) {
res.insert(tv_name, concrete.clone());
*v = concrete.clone();
}
}
}
self.ctx = ctx;
self.instantiations.pop();
res
}
fn types_match(&self, type_: &Type, ast_type: &ast::Type<'ast>) -> bool {
match (type_, ast_type) {
(Type::Univ(u), ast::Type::Var(v)) => {
Some(u) == self.type_vars.borrow().0.get_by_left(v)
}
(Type::Univ(_), _) => false,
(Type::Exist(_), _) => false,
(Type::Unit, ast::Type::Unit) => true,
(Type::Unit, _) => false,
(Type::Nullary(_), _) => todo!(),
(Type::Prim(pr), ty) => ast::Type::from(*pr) == *ty,
(Type::Tuple(members), ast::Type::Tuple(members2)) => members
.iter()
.zip(members2.iter())
.all(|(t1, t2)| self.types_match(t1, t2)),
(Type::Tuple(members), _) => false,
(Type::Fun { args, ret }, ast::Type::Function(ft)) => {
args.len() == ft.args.len()
&& args
.iter()
.zip(&ft.args)
.all(|(a1, a2)| self.types_match(a1, &a2))
&& self.types_match(&*ret, &*ft.ret)
}
(Type::Fun { .. }, _) => false,
}
}
}
pub fn typecheck_expr(expr: ast::Expr) -> Result<hir::Expr<ast::Type>> {
let mut typechecker = Typechecker::new();
let typechecked = typechecker.tc_expr(expr)?;
typechecker.finalize_expr(typechecked)
}
pub fn typecheck_toplevel(decls: Vec<ast::Decl>) -> Result<Vec<hir::Decl<ast::Type>>> {
let mut typechecker = Typechecker::new();
let mut res = Vec::with_capacity(decls.len());
for decl in decls {
if let Some(hir_decl) = typechecker.tc_decl(decl)? {
let hir_decl = typechecker.finalize_decl(hir_decl)?;
res.push(hir_decl);
}
typechecker.ctx.clear();
}
Ok(res)
}
#[cfg(test)]
mod tests {
use super::*;
macro_rules! assert_type {
($expr: expr, $type: expr) => {
use crate::parser::{expr, type_};
let parsed_expr = test_parse!(expr, $expr);
let parsed_type = test_parse!(type_, $type);
let res = typecheck_expr(parsed_expr).unwrap_or_else(|e| panic!("{}", e));
assert!(
res.type_().alpha_equiv(&parsed_type),
"{} inferred type {}, but expected {}",
$expr,
res.type_(),
$type
);
};
(toplevel($program: expr), $($decl: ident => $type: expr),+ $(,)?) => {{
use crate::parser::{toplevel, type_};
let program = test_parse!(toplevel, $program);
let res = typecheck_toplevel(program).unwrap_or_else(|e| panic!("{}", e));
$(
let parsed_type = test_parse!(type_, $type);
let ident = Ident::try_from(::std::stringify!($decl)).unwrap();
let decl = res.iter().find(|decl| {
matches!(decl, crate::ast::hir::Decl::Fun { name, .. } if name == &ident)
}).unwrap_or_else(|| panic!("Could not find declaration for {}", ident));
assert!(
decl.type_().unwrap().alpha_equiv(&parsed_type),
"inferred type {} for {}, but expected {}",
decl.type_().unwrap(),
ident,
$type
);
)+
}};
}
macro_rules! assert_type_error {
($expr: expr) => {
use crate::parser::expr;
let parsed_expr = test_parse!(expr, $expr);
let res = typecheck_expr(parsed_expr);
assert!(
res.is_err(),
"Expected type error, but got type: {}",
res.unwrap().type_()
);
};
}
#[test]
fn literal_int() {
assert_type!("1", "int");
}
#[test]
fn conditional() {
assert_type!("if 1 == 2 then 3 else 4", "int");
}
#[test]
#[ignore]
fn add_bools() {
assert_type_error!("true + false");
}
#[test]
fn call_generic_function() {
assert_type!("(fn x = x) 1", "int");
}
#[test]
fn call_let_bound_generic() {
assert_type!("let id = fn x = x in id 1", "int");
}
#[test]
fn universal_ascripted_let() {
assert_type!("let id: fn a -> a = fn x = x in id 1", "int");
}
#[test]
fn call_generic_function_toplevel() {
assert_type!(
toplevel(
"ty id : fn a -> a
fn id x = x
fn main = id 0"
),
main => "fn -> int",
id => "fn a -> a",
);
}
#[test]
#[ignore]
fn let_generalization() {
assert_type!("let id = fn x = x in if id true then id 1 else 2", "int");
}
#[test]
fn concrete_function() {
assert_type!("fn x = x + 1", "fn int -> int");
}
#[test]
fn arg_ascriptions() {
assert_type!("fn (x: int) = x", "fn int -> int");
}
#[test]
fn call_concrete_function() {
assert_type!("(fn x = x + 1) 2", "int");
}
#[test]
fn conditional_non_bool() {
assert_type_error!("if 3 then true else false");
}
#[test]
fn let_int() {
assert_type!("let x = 1 in x", "int");
}
}