Export of internal Abseil changes
-- a3e58c1870a9626039f4d178d2d599319bd9f8a8 by Matt Kulukundis <kfm@google.com>: Allow MakeCordFromExternal to take a zero arg releaser. PiperOrigin-RevId: 298650274 -- 01897c4a9bb99f3dc329a794019498ad345ddebd by Samuel Benzaquen <sbenza@google.com>: Reduce library bloat for absl::Flag by moving the definition of base virtual functions to a .cc file. This removes the duplicate symbols in user translation units and has the side effect of moving the vtable definition too (re key function) PiperOrigin-RevId: 298617920 -- 190f0d3782c63aed01046886d7fbc1be5bca2de9 by Derek Mauro <dmauro@google.com>: Import GitHub #596: Unbreak stacktrace code for UWP apps PiperOrigin-RevId: 298600834 -- cd5cf6f8c87b35b85a9584e94da2a99057345b73 by Gennadiy Rozental <rogeeff@google.com>: Use union of heap allocated pointer, one word atomic and two word atomic to represent flags value. Any type T, which is trivially copy-able and with with sizeof(T) <= 8, will be stored in atomic int64_t. Any type T, which is trivially copy-able and with with 8 < sizeof(T) <= 16, will be stored in atomic AlignedTwoWords. We also introducing value storage type to distinguish these cases. PiperOrigin-RevId: 298497200 -- f8fe7bd53bfed601f002f521e34ab4bc083fc28b by Matthew Brown <matthewbr@google.com>: Ensure a deep copy and proper equality on absl::Status::ErasePayload PiperOrigin-RevId: 298482742 -- a5c9ccddf4b04f444e3f7e27dbc14faf1fcb5373 by Gennadiy Rozental <rogeeff@google.com>: Change ChunkIterator implementation to use fixed capacity collection of CordRep*. We can now assume that depth never exceeds 91. That makes comparison operator exception safe. I've tested that with this CL we do not observe an overhead of chunk_end. Compiler optimized this iterator completely. PiperOrigin-RevId: 298458472 -- 327ea5e8910bc388b03389c730763f9823abfce5 by Abseil Team <absl-team@google.com>: Minor cleanups in b-tree code: - Rename some variables: fix issues of different param names between definition/declaration, move away from `x` as a default meaningless variable name. - Make init_leaf/init_internal be non-static methods (they already take the node as the first parameter). - In internal_emplace/try_shrink, update root/rightmost the same way as in insert_unique/insert_multi. - Replace a TODO with a comment. PiperOrigin-RevId: 298432836 -- 8020ce9ec8558ee712d9733ae3d660ac1d3ffe1a by Abseil Team <absl-team@google.com>: Guard against unnecessary copy in case the buffer is empty. This is important in cases were the user is explicitly tuning their chunks to match PiecewiseChunkSize(). PiperOrigin-RevId: 298366044 -- 89324441d1c0c697c90ba7d8fc63639805fcaa9d by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 298219363 GitOrigin-RevId: a3e58c1870a9626039f4d178d2d599319bd9f8a8 Change-Id: I28dffc684b6fd0292b94807b88ec6664d5d0e183
This commit is contained in:
		
							parent
							
								
									06f0e767d1
								
							
						
					
					
						commit
						b19ba96766
					
				
					 24 changed files with 842 additions and 501 deletions
				
			
		| 
						 | 
				
			
			@ -53,7 +53,7 @@ TEST(StreamTest, Works) {
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
static_assert(
 | 
			
		||||
    absl::flags_internal::IsAtomicFlagTypeTrait<absl::LogSeverity>::value,
 | 
			
		||||
    absl::flags_internal::FlagUseOneWordStorage<absl::LogSeverity>::value,
 | 
			
		||||
    "Flags of type absl::LogSeverity ought to be lock-free.");
 | 
			
		||||
 | 
			
		||||
using ParseFlagFromOutOfRangeIntegerTest = TestWithParam<int64_t>;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -538,19 +538,19 @@ struct BigType {
 | 
			
		|||
  BigType() : BigType(0) {}
 | 
			
		||||
  explicit BigType(int x) { std::iota(values.begin(), values.end(), x); }
 | 
			
		||||
 | 
			
		||||
  void Copy(const BigType& x) {
 | 
			
		||||
    for (int i = 0; i < Size && i < Copies; ++i) values[i] = x.values[i];
 | 
			
		||||
  void Copy(const BigType& other) {
 | 
			
		||||
    for (int i = 0; i < Size && i < Copies; ++i) values[i] = other.values[i];
 | 
			
		||||
    // If Copies > Size, do extra copies.
 | 
			
		||||
    for (int i = Size, idx = 0; i < Copies; ++i) {
 | 
			
		||||
      int64_t tmp = x.values[idx];
 | 
			
		||||
      int64_t tmp = other.values[idx];
 | 
			
		||||
      benchmark::DoNotOptimize(tmp);
 | 
			
		||||
      idx = idx + 1 == Size ? 0 : idx + 1;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  BigType(const BigType& x) { Copy(x); }
 | 
			
		||||
  BigType& operator=(const BigType& x) {
 | 
			
		||||
    Copy(x);
 | 
			
		||||
  BigType(const BigType& other) { Copy(other); }
 | 
			
		||||
  BigType& operator=(const BigType& other) {
 | 
			
		||||
    Copy(other);
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -641,14 +641,14 @@ struct BigTypePtr {
 | 
			
		|||
  explicit BigTypePtr(int x) {
 | 
			
		||||
    ptr = absl::make_unique<BigType<Size, Size>>(x);
 | 
			
		||||
  }
 | 
			
		||||
  BigTypePtr(const BigTypePtr& x) {
 | 
			
		||||
    ptr = absl::make_unique<BigType<Size, Size>>(*x.ptr);
 | 
			
		||||
  BigTypePtr(const BigTypePtr& other) {
 | 
			
		||||
    ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr);
 | 
			
		||||
  }
 | 
			
		||||
  BigTypePtr(BigTypePtr&& x) noexcept = default;
 | 
			
		||||
  BigTypePtr& operator=(const BigTypePtr& x) {
 | 
			
		||||
    ptr = absl::make_unique<BigType<Size, Size>>(*x.ptr);
 | 
			
		||||
  BigTypePtr(BigTypePtr&& other) noexcept = default;
 | 
			
		||||
  BigTypePtr& operator=(const BigTypePtr& other) {
 | 
			
		||||
    ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr);
 | 
			
		||||
  }
 | 
			
		||||
  BigTypePtr& operator=(BigTypePtr&& x) noexcept = default;
 | 
			
		||||
  BigTypePtr& operator=(BigTypePtr&& other) noexcept = default;
 | 
			
		||||
 | 
			
		||||
  bool operator<(const BigTypePtr& other) const { return *ptr < *other.ptr; }
 | 
			
		||||
  bool operator==(const BigTypePtr& other) const { return *ptr == *other.ptr; }
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -318,7 +318,7 @@ class btree_map
 | 
			
		|||
  //   Extracts the element at the indicated position and returns a node handle
 | 
			
		||||
  //   owning that extracted data.
 | 
			
		||||
  //
 | 
			
		||||
  // template <typename K> node_type extract(const K& x):
 | 
			
		||||
  // template <typename K> node_type extract(const K& k):
 | 
			
		||||
  //
 | 
			
		||||
  //   Extracts the element with the key matching the passed key value and
 | 
			
		||||
  //   returns a node handle owning that extracted data. If the `btree_map`
 | 
			
		||||
| 
						 | 
				
			
			@ -645,7 +645,7 @@ class btree_multimap
 | 
			
		|||
  //   Extracts the element at the indicated position and returns a node handle
 | 
			
		||||
  //   owning that extracted data.
 | 
			
		||||
  //
 | 
			
		||||
  // template <typename K> node_type extract(const K& x):
 | 
			
		||||
  // template <typename K> node_type extract(const K& k):
 | 
			
		||||
  //
 | 
			
		||||
  //   Extracts the element with the key matching the passed key value and
 | 
			
		||||
  //   returns a node handle owning that extracted data. If the `btree_multimap`
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -263,7 +263,7 @@ class btree_set
 | 
			
		|||
  //   Extracts the element at the indicated position and returns a node handle
 | 
			
		||||
  //   owning that extracted data.
 | 
			
		||||
  //
 | 
			
		||||
  // template <typename K> node_type extract(const K& x):
 | 
			
		||||
  // template <typename K> node_type extract(const K& k):
 | 
			
		||||
  //
 | 
			
		||||
  //   Extracts the element with the key matching the passed key value and
 | 
			
		||||
  //   returns a node handle owning that extracted data. If the `btree_set`
 | 
			
		||||
| 
						 | 
				
			
			@ -567,7 +567,7 @@ class btree_multiset
 | 
			
		|||
  //   Extracts the element at the indicated position and returns a node handle
 | 
			
		||||
  //   owning that extracted data.
 | 
			
		||||
  //
 | 
			
		||||
  // template <typename K> node_type extract(const K& x):
 | 
			
		||||
  // template <typename K> node_type extract(const K& k):
 | 
			
		||||
  //
 | 
			
		||||
  //   Extracts the element with the key matching the passed key value and
 | 
			
		||||
  //   returns a node handle owning that extracted data. If the `btree_multiset`
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -89,8 +89,8 @@ class base_checker {
 | 
			
		|||
 | 
			
		||||
 public:
 | 
			
		||||
  base_checker() : const_tree_(tree_) {}
 | 
			
		||||
  base_checker(const base_checker &x)
 | 
			
		||||
      : tree_(x.tree_), const_tree_(tree_), checker_(x.checker_) {}
 | 
			
		||||
  base_checker(const base_checker &other)
 | 
			
		||||
      : tree_(other.tree_), const_tree_(tree_), checker_(other.checker_) {}
 | 
			
		||||
  template <typename InputIterator>
 | 
			
		||||
  base_checker(InputIterator b, InputIterator e)
 | 
			
		||||
      : tree_(b, e), const_tree_(tree_), checker_(b, e) {}
 | 
			
		||||
| 
						 | 
				
			
			@ -124,11 +124,11 @@ class base_checker {
 | 
			
		|||
    }
 | 
			
		||||
    return tree_iter;
 | 
			
		||||
  }
 | 
			
		||||
  void value_check(const value_type &x) {
 | 
			
		||||
  void value_check(const value_type &v) {
 | 
			
		||||
    typename KeyOfValue<typename TreeType::key_type,
 | 
			
		||||
                        typename TreeType::value_type>::type key_of_value;
 | 
			
		||||
    const key_type &key = key_of_value(x);
 | 
			
		||||
    CheckPairEquals(*find(key), x);
 | 
			
		||||
    const key_type &key = key_of_value(v);
 | 
			
		||||
    CheckPairEquals(*find(key), v);
 | 
			
		||||
    lower_bound(key);
 | 
			
		||||
    upper_bound(key);
 | 
			
		||||
    equal_range(key);
 | 
			
		||||
| 
						 | 
				
			
			@ -187,9 +187,9 @@ class base_checker {
 | 
			
		|||
    return res;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  base_checker &operator=(const base_checker &x) {
 | 
			
		||||
    tree_ = x.tree_;
 | 
			
		||||
    checker_ = x.checker_;
 | 
			
		||||
  base_checker &operator=(const base_checker &other) {
 | 
			
		||||
    tree_ = other.tree_;
 | 
			
		||||
    checker_ = other.checker_;
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -250,9 +250,9 @@ class base_checker {
 | 
			
		|||
    tree_.clear();
 | 
			
		||||
    checker_.clear();
 | 
			
		||||
  }
 | 
			
		||||
  void swap(base_checker &x) {
 | 
			
		||||
    tree_.swap(x.tree_);
 | 
			
		||||
    checker_.swap(x.checker_);
 | 
			
		||||
  void swap(base_checker &other) {
 | 
			
		||||
    tree_.swap(other.tree_);
 | 
			
		||||
    checker_.swap(other.checker_);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void verify() const {
 | 
			
		||||
| 
						 | 
				
			
			@ -323,28 +323,28 @@ class unique_checker : public base_checker<TreeType, CheckerType> {
 | 
			
		|||
 | 
			
		||||
 public:
 | 
			
		||||
  unique_checker() : super_type() {}
 | 
			
		||||
  unique_checker(const unique_checker &x) : super_type(x) {}
 | 
			
		||||
  unique_checker(const unique_checker &other) : super_type(other) {}
 | 
			
		||||
  template <class InputIterator>
 | 
			
		||||
  unique_checker(InputIterator b, InputIterator e) : super_type(b, e) {}
 | 
			
		||||
  unique_checker &operator=(const unique_checker &) = default;
 | 
			
		||||
 | 
			
		||||
  // Insertion routines.
 | 
			
		||||
  std::pair<iterator, bool> insert(const value_type &x) {
 | 
			
		||||
  std::pair<iterator, bool> insert(const value_type &v) {
 | 
			
		||||
    int size = this->tree_.size();
 | 
			
		||||
    std::pair<typename CheckerType::iterator, bool> checker_res =
 | 
			
		||||
        this->checker_.insert(x);
 | 
			
		||||
    std::pair<iterator, bool> tree_res = this->tree_.insert(x);
 | 
			
		||||
        this->checker_.insert(v);
 | 
			
		||||
    std::pair<iterator, bool> tree_res = this->tree_.insert(v);
 | 
			
		||||
    CheckPairEquals(*tree_res.first, *checker_res.first);
 | 
			
		||||
    EXPECT_EQ(tree_res.second, checker_res.second);
 | 
			
		||||
    EXPECT_EQ(this->tree_.size(), this->checker_.size());
 | 
			
		||||
    EXPECT_EQ(this->tree_.size(), size + tree_res.second);
 | 
			
		||||
    return tree_res;
 | 
			
		||||
  }
 | 
			
		||||
  iterator insert(iterator position, const value_type &x) {
 | 
			
		||||
  iterator insert(iterator position, const value_type &v) {
 | 
			
		||||
    int size = this->tree_.size();
 | 
			
		||||
    std::pair<typename CheckerType::iterator, bool> checker_res =
 | 
			
		||||
        this->checker_.insert(x);
 | 
			
		||||
    iterator tree_res = this->tree_.insert(position, x);
 | 
			
		||||
        this->checker_.insert(v);
 | 
			
		||||
    iterator tree_res = this->tree_.insert(position, v);
 | 
			
		||||
    CheckPairEquals(*tree_res, *checker_res.first);
 | 
			
		||||
    EXPECT_EQ(this->tree_.size(), this->checker_.size());
 | 
			
		||||
    EXPECT_EQ(this->tree_.size(), size + checker_res.second);
 | 
			
		||||
| 
						 | 
				
			
			@ -371,25 +371,25 @@ class multi_checker : public base_checker<TreeType, CheckerType> {
 | 
			
		|||
 | 
			
		||||
 public:
 | 
			
		||||
  multi_checker() : super_type() {}
 | 
			
		||||
  multi_checker(const multi_checker &x) : super_type(x) {}
 | 
			
		||||
  multi_checker(const multi_checker &other) : super_type(other) {}
 | 
			
		||||
  template <class InputIterator>
 | 
			
		||||
  multi_checker(InputIterator b, InputIterator e) : super_type(b, e) {}
 | 
			
		||||
  multi_checker &operator=(const multi_checker &) = default;
 | 
			
		||||
 | 
			
		||||
  // Insertion routines.
 | 
			
		||||
  iterator insert(const value_type &x) {
 | 
			
		||||
  iterator insert(const value_type &v) {
 | 
			
		||||
    int size = this->tree_.size();
 | 
			
		||||
    auto checker_res = this->checker_.insert(x);
 | 
			
		||||
    iterator tree_res = this->tree_.insert(x);
 | 
			
		||||
    auto checker_res = this->checker_.insert(v);
 | 
			
		||||
    iterator tree_res = this->tree_.insert(v);
 | 
			
		||||
    CheckPairEquals(*tree_res, *checker_res);
 | 
			
		||||
    EXPECT_EQ(this->tree_.size(), this->checker_.size());
 | 
			
		||||
    EXPECT_EQ(this->tree_.size(), size + 1);
 | 
			
		||||
    return tree_res;
 | 
			
		||||
  }
 | 
			
		||||
  iterator insert(iterator position, const value_type &x) {
 | 
			
		||||
  iterator insert(iterator position, const value_type &v) {
 | 
			
		||||
    int size = this->tree_.size();
 | 
			
		||||
    auto checker_res = this->checker_.insert(x);
 | 
			
		||||
    iterator tree_res = this->tree_.insert(position, x);
 | 
			
		||||
    auto checker_res = this->checker_.insert(v);
 | 
			
		||||
    iterator tree_res = this->tree_.insert(position, v);
 | 
			
		||||
    CheckPairEquals(*tree_res, *checker_res);
 | 
			
		||||
    EXPECT_EQ(this->tree_.size(), this->checker_.size());
 | 
			
		||||
    EXPECT_EQ(this->tree_.size(), size + 1);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -252,9 +252,9 @@ struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
 | 
			
		|||
  };
 | 
			
		||||
  using is_map_container = std::true_type;
 | 
			
		||||
 | 
			
		||||
  static const Key &key(const value_type &x) { return x.first; }
 | 
			
		||||
  static const Key &key(const init_type &x) { return x.first; }
 | 
			
		||||
  static const Key &key(const slot_type *x) { return slot_policy::key(x); }
 | 
			
		||||
  static const Key &key(const value_type &value) { return value.first; }
 | 
			
		||||
  static const Key &key(const init_type &init) { return init.first; }
 | 
			
		||||
  static const Key &key(const slot_type *s) { return slot_policy::key(s); }
 | 
			
		||||
  static mapped_type &value(value_type *value) { return value->second; }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -315,8 +315,8 @@ struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
 | 
			
		|||
  using value_compare = typename set_params::common_params::key_compare;
 | 
			
		||||
  using is_map_container = std::false_type;
 | 
			
		||||
 | 
			
		||||
  static const Key &key(const value_type &x) { return x; }
 | 
			
		||||
  static const Key &key(const slot_type *x) { return *x; }
 | 
			
		||||
  static const Key &key(const value_type &value) { return value; }
 | 
			
		||||
  static const Key &key(const slot_type *slot) { return *slot; }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// An adapter class that converts a lower-bound compare into an upper-bound
 | 
			
		||||
| 
						 | 
				
			
			@ -326,8 +326,8 @@ struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
 | 
			
		|||
template <typename Compare>
 | 
			
		||||
struct upper_bound_adapter {
 | 
			
		||||
  explicit upper_bound_adapter(const Compare &c) : comp(c) {}
 | 
			
		||||
  template <typename K, typename LK>
 | 
			
		||||
  bool operator()(const K &a, const LK &b) const {
 | 
			
		||||
  template <typename K1, typename K2>
 | 
			
		||||
  bool operator()(const K1 &a, const K2 &b) const {
 | 
			
		||||
    // Returns true when a is not greater than b.
 | 
			
		||||
    return !compare_internal::compare_result_as_less_than(comp(b, a));
 | 
			
		||||
  }
 | 
			
		||||
| 
						 | 
				
			
			@ -736,32 +736,28 @@ class btree_node {
 | 
			
		|||
 | 
			
		||||
  // Merges a node with its right sibling, moving all of the values and the
 | 
			
		||||
  // delimiting key in the parent node onto itself.
 | 
			
		||||
  void merge(btree_node *sibling, allocator_type *alloc);
 | 
			
		||||
  void merge(btree_node *src, allocator_type *alloc);
 | 
			
		||||
 | 
			
		||||
  // Swap the contents of "this" and "src".
 | 
			
		||||
  void swap(btree_node *src, allocator_type *alloc);
 | 
			
		||||
  // Swaps the contents of `this` and `other`.
 | 
			
		||||
  void swap(btree_node *other, allocator_type *alloc);
 | 
			
		||||
 | 
			
		||||
  // Node allocation/deletion routines.
 | 
			
		||||
  static btree_node *init_leaf(btree_node *n, btree_node *parent,
 | 
			
		||||
                               int max_count) {
 | 
			
		||||
    n->set_parent(parent);
 | 
			
		||||
    n->set_position(0);
 | 
			
		||||
    n->set_start(0);
 | 
			
		||||
    n->set_finish(0);
 | 
			
		||||
    n->set_max_count(max_count);
 | 
			
		||||
  void init_leaf(btree_node *parent, int max_count) {
 | 
			
		||||
    set_parent(parent);
 | 
			
		||||
    set_position(0);
 | 
			
		||||
    set_start(0);
 | 
			
		||||
    set_finish(0);
 | 
			
		||||
    set_max_count(max_count);
 | 
			
		||||
    absl::container_internal::SanitizerPoisonMemoryRegion(
 | 
			
		||||
        n->start_slot(), max_count * sizeof(slot_type));
 | 
			
		||||
    return n;
 | 
			
		||||
        start_slot(), max_count * sizeof(slot_type));
 | 
			
		||||
  }
 | 
			
		||||
  static btree_node *init_internal(btree_node *n, btree_node *parent) {
 | 
			
		||||
    init_leaf(n, parent, kNodeValues);
 | 
			
		||||
  void init_internal(btree_node *parent) {
 | 
			
		||||
    init_leaf(parent, kNodeValues);
 | 
			
		||||
    // Set `max_count` to a sentinel value to indicate that this node is
 | 
			
		||||
    // internal.
 | 
			
		||||
    n->set_max_count(kInternalNodeMaxCount);
 | 
			
		||||
    set_max_count(kInternalNodeMaxCount);
 | 
			
		||||
    absl::container_internal::SanitizerPoisonMemoryRegion(
 | 
			
		||||
        &n->mutable_child(n->start()),
 | 
			
		||||
        (kNodeValues + 1) * sizeof(btree_node *));
 | 
			
		||||
    return n;
 | 
			
		||||
        &mutable_child(start()), (kNodeValues + 1) * sizeof(btree_node *));
 | 
			
		||||
  }
 | 
			
		||||
  void destroy(allocator_type *alloc) {
 | 
			
		||||
    for (int i = start(); i < finish(); ++i) {
 | 
			
		||||
| 
						 | 
				
			
			@ -787,13 +783,13 @@ class btree_node {
 | 
			
		|||
  }
 | 
			
		||||
 | 
			
		||||
  // Move n values starting at value i in this node into the values starting at
 | 
			
		||||
  // value j in node x.
 | 
			
		||||
  // value j in dest_node.
 | 
			
		||||
  void uninitialized_move_n(const size_type n, const size_type i,
 | 
			
		||||
                            const size_type j, btree_node *x,
 | 
			
		||||
                            const size_type j, btree_node *dest_node,
 | 
			
		||||
                            allocator_type *alloc) {
 | 
			
		||||
    absl::container_internal::SanitizerUnpoisonMemoryRegion(
 | 
			
		||||
        x->slot(j), n * sizeof(slot_type));
 | 
			
		||||
    for (slot_type *src = slot(i), *end = src + n, *dest = x->slot(j);
 | 
			
		||||
        dest_node->slot(j), n * sizeof(slot_type));
 | 
			
		||||
    for (slot_type *src = slot(i), *end = src + n, *dest = dest_node->slot(j);
 | 
			
		||||
         src != end; ++src, ++dest) {
 | 
			
		||||
      params_type::construct(alloc, dest, src);
 | 
			
		||||
    }
 | 
			
		||||
| 
						 | 
				
			
			@ -856,8 +852,8 @@ struct btree_iterator {
 | 
			
		|||
                std::is_same<btree_iterator<N, R, P>, iterator>::value &&
 | 
			
		||||
                    std::is_same<btree_iterator, const_iterator>::value,
 | 
			
		||||
                int> = 0>
 | 
			
		||||
  btree_iterator(const btree_iterator<N, R, P> &x)  // NOLINT
 | 
			
		||||
      : node(x.node), position(x.position) {}
 | 
			
		||||
  btree_iterator(const btree_iterator<N, R, P> &other)  // NOLINT
 | 
			
		||||
      : node(other.node), position(other.position) {}
 | 
			
		||||
 | 
			
		||||
 private:
 | 
			
		||||
  // This SFINAE allows explicit conversions from const_iterator to
 | 
			
		||||
| 
						 | 
				
			
			@ -869,8 +865,8 @@ struct btree_iterator {
 | 
			
		|||
                std::is_same<btree_iterator<N, R, P>, const_iterator>::value &&
 | 
			
		||||
                    std::is_same<btree_iterator, iterator>::value,
 | 
			
		||||
                int> = 0>
 | 
			
		||||
  explicit btree_iterator(const btree_iterator<N, R, P> &x)
 | 
			
		||||
      : node(const_cast<node_type *>(x.node)), position(x.position) {}
 | 
			
		||||
  explicit btree_iterator(const btree_iterator<N, R, P> &other)
 | 
			
		||||
      : node(const_cast<node_type *>(other.node)), position(other.position) {}
 | 
			
		||||
 | 
			
		||||
  // Increment/decrement the iterator.
 | 
			
		||||
  void increment() {
 | 
			
		||||
| 
						 | 
				
			
			@ -890,11 +886,11 @@ struct btree_iterator {
 | 
			
		|||
  void decrement_slow();
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
  bool operator==(const const_iterator &x) const {
 | 
			
		||||
    return node == x.node && position == x.position;
 | 
			
		||||
  bool operator==(const const_iterator &other) const {
 | 
			
		||||
    return node == other.node && position == other.position;
 | 
			
		||||
  }
 | 
			
		||||
  bool operator!=(const const_iterator &x) const {
 | 
			
		||||
    return node != x.node || position != x.position;
 | 
			
		||||
  bool operator!=(const const_iterator &other) const {
 | 
			
		||||
    return node != other.node || position != other.position;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Accessors for the key/value the iterator is pointing at.
 | 
			
		||||
| 
						 | 
				
			
			@ -942,7 +938,8 @@ struct btree_iterator {
 | 
			
		|||
  // The node in the tree the iterator is pointing at.
 | 
			
		||||
  Node *node;
 | 
			
		||||
  // The position within the node of the tree the iterator is pointing at.
 | 
			
		||||
  // TODO(ezb): make this a field_type
 | 
			
		||||
  // NOTE: this is an int rather than a field_type because iterators can point
 | 
			
		||||
  // to invalid positions (such as -1) in certain circumstances.
 | 
			
		||||
  int position;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -994,9 +991,9 @@ class btree {
 | 
			
		|||
 | 
			
		||||
    node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {}
 | 
			
		||||
 | 
			
		||||
    node_stats &operator+=(const node_stats &x) {
 | 
			
		||||
      leaf_nodes += x.leaf_nodes;
 | 
			
		||||
      internal_nodes += x.internal_nodes;
 | 
			
		||||
    node_stats &operator+=(const node_stats &other) {
 | 
			
		||||
      leaf_nodes += other.leaf_nodes;
 | 
			
		||||
      internal_nodes += other.internal_nodes;
 | 
			
		||||
      return *this;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1028,15 +1025,15 @@ class btree {
 | 
			
		|||
 | 
			
		||||
 private:
 | 
			
		||||
  // For use in copy_or_move_values_in_order.
 | 
			
		||||
  const value_type &maybe_move_from_iterator(const_iterator x) { return *x; }
 | 
			
		||||
  value_type &&maybe_move_from_iterator(iterator x) { return std::move(*x); }
 | 
			
		||||
  const value_type &maybe_move_from_iterator(const_iterator it) { return *it; }
 | 
			
		||||
  value_type &&maybe_move_from_iterator(iterator it) { return std::move(*it); }
 | 
			
		||||
 | 
			
		||||
  // Copies or moves (depending on the template parameter) the values in
 | 
			
		||||
  // x into this btree in their order in x. This btree must be empty before this
 | 
			
		||||
  // method is called. This method is used in copy construction, copy
 | 
			
		||||
  // assignment, and move assignment.
 | 
			
		||||
  // other into this btree in their order in other. This btree must be empty
 | 
			
		||||
  // before this method is called. This method is used in copy construction,
 | 
			
		||||
  // copy assignment, and move assignment.
 | 
			
		||||
  template <typename Btree>
 | 
			
		||||
  void copy_or_move_values_in_order(Btree *x);
 | 
			
		||||
  void copy_or_move_values_in_order(Btree *other);
 | 
			
		||||
 | 
			
		||||
  // Validates that various assumptions/requirements are true at compile time.
 | 
			
		||||
  constexpr static bool static_assert_validation();
 | 
			
		||||
| 
						 | 
				
			
			@ -1044,12 +1041,12 @@ class btree {
 | 
			
		|||
 public:
 | 
			
		||||
  btree(const key_compare &comp, const allocator_type &alloc);
 | 
			
		||||
 | 
			
		||||
  btree(const btree &x);
 | 
			
		||||
  btree(btree &&x) noexcept
 | 
			
		||||
      : root_(std::move(x.root_)),
 | 
			
		||||
        rightmost_(absl::exchange(x.rightmost_, EmptyNode())),
 | 
			
		||||
        size_(absl::exchange(x.size_, 0)) {
 | 
			
		||||
    x.mutable_root() = EmptyNode();
 | 
			
		||||
  btree(const btree &other);
 | 
			
		||||
  btree(btree &&other) noexcept
 | 
			
		||||
      : root_(std::move(other.root_)),
 | 
			
		||||
        rightmost_(absl::exchange(other.rightmost_, EmptyNode())),
 | 
			
		||||
        size_(absl::exchange(other.size_, 0)) {
 | 
			
		||||
    other.mutable_root() = EmptyNode();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ~btree() {
 | 
			
		||||
| 
						 | 
				
			
			@ -1059,9 +1056,9 @@ class btree {
 | 
			
		|||
    clear();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Assign the contents of x to *this.
 | 
			
		||||
  btree &operator=(const btree &x);
 | 
			
		||||
  btree &operator=(btree &&x) noexcept;
 | 
			
		||||
  // Assign the contents of other to *this.
 | 
			
		||||
  btree &operator=(const btree &other);
 | 
			
		||||
  btree &operator=(btree &&other) noexcept;
 | 
			
		||||
 | 
			
		||||
  iterator begin() { return iterator(leftmost()); }
 | 
			
		||||
  const_iterator begin() const { return const_iterator(leftmost()); }
 | 
			
		||||
| 
						 | 
				
			
			@ -1204,15 +1201,15 @@ class btree {
 | 
			
		|||
  // Clear the btree, deleting all of the values it contains.
 | 
			
		||||
  void clear();
 | 
			
		||||
 | 
			
		||||
  // Swap the contents of *this and x.
 | 
			
		||||
  void swap(btree &x);
 | 
			
		||||
  // Swaps the contents of `this` and `other`.
 | 
			
		||||
  void swap(btree &other);
 | 
			
		||||
 | 
			
		||||
  const key_compare &key_comp() const noexcept {
 | 
			
		||||
    return root_.template get<0>();
 | 
			
		||||
  }
 | 
			
		||||
  template <typename K, typename LK>
 | 
			
		||||
  bool compare_keys(const K &x, const LK &y) const {
 | 
			
		||||
    return compare_internal::compare_result_as_less_than(key_comp()(x, y));
 | 
			
		||||
  template <typename K1, typename K2>
 | 
			
		||||
  bool compare_keys(const K1 &a, const K2 &b) const {
 | 
			
		||||
    return compare_internal::compare_result_as_less_than(key_comp()(a, b));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  value_compare value_comp() const { return value_compare(key_comp()); }
 | 
			
		||||
| 
						 | 
				
			
			@ -1322,16 +1319,19 @@ class btree {
 | 
			
		|||
 | 
			
		||||
  // Node creation/deletion routines.
 | 
			
		||||
  node_type *new_internal_node(node_type *parent) {
 | 
			
		||||
    node_type *p = allocate(node_type::InternalSize());
 | 
			
		||||
    return node_type::init_internal(p, parent);
 | 
			
		||||
    node_type *n = allocate(node_type::InternalSize());
 | 
			
		||||
    n->init_internal(parent);
 | 
			
		||||
    return n;
 | 
			
		||||
  }
 | 
			
		||||
  node_type *new_leaf_node(node_type *parent) {
 | 
			
		||||
    node_type *p = allocate(node_type::LeafSize());
 | 
			
		||||
    return node_type::init_leaf(p, parent, kNodeValues);
 | 
			
		||||
    node_type *n = allocate(node_type::LeafSize());
 | 
			
		||||
    n->init_leaf(parent, kNodeValues);
 | 
			
		||||
    return n;
 | 
			
		||||
  }
 | 
			
		||||
  node_type *new_leaf_root_node(const int max_count) {
 | 
			
		||||
    node_type *p = allocate(node_type::LeafSize(max_count));
 | 
			
		||||
    return node_type::init_leaf(p, p, max_count);
 | 
			
		||||
    node_type *n = allocate(node_type::LeafSize(max_count));
 | 
			
		||||
    n->init_leaf(/*parent=*/n, max_count);
 | 
			
		||||
    return n;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Deletion helper routines.
 | 
			
		||||
| 
						 | 
				
			
			@ -1715,12 +1715,12 @@ void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
template <typename P>
 | 
			
		||||
void btree_node<P>::swap(btree_node *x, allocator_type *alloc) {
 | 
			
		||||
void btree_node<P>::swap(btree_node *other, allocator_type *alloc) {
 | 
			
		||||
  using std::swap;
 | 
			
		||||
  assert(leaf() == x->leaf());
 | 
			
		||||
  assert(leaf() == other->leaf());
 | 
			
		||||
 | 
			
		||||
  // Determine which is the smaller/larger node.
 | 
			
		||||
  btree_node *smaller = this, *larger = x;
 | 
			
		||||
  btree_node *smaller = this, *larger = other;
 | 
			
		||||
  if (smaller->count() > larger->count()) {
 | 
			
		||||
    swap(smaller, larger);
 | 
			
		||||
  }
 | 
			
		||||
| 
						 | 
				
			
			@ -1759,7 +1759,7 @@ void btree_node<P>::swap(btree_node *x, allocator_type *alloc) {
 | 
			
		|||
 | 
			
		||||
  // Swap the `finish`s.
 | 
			
		||||
  // TODO(ezb): with floating storage, will also need to swap starts.
 | 
			
		||||
  swap(mutable_finish(), x->mutable_finish());
 | 
			
		||||
  swap(mutable_finish(), other->mutable_finish());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////
 | 
			
		||||
| 
						 | 
				
			
			@ -1814,7 +1814,7 @@ void btree_iterator<N, R, P>::decrement_slow() {
 | 
			
		|||
// btree methods
 | 
			
		||||
template <typename P>
 | 
			
		||||
template <typename Btree>
 | 
			
		||||
void btree<P>::copy_or_move_values_in_order(Btree *x) {
 | 
			
		||||
void btree<P>::copy_or_move_values_in_order(Btree *other) {
 | 
			
		||||
  static_assert(std::is_same<btree, Btree>::value ||
 | 
			
		||||
                    std::is_same<const btree, Btree>::value,
 | 
			
		||||
                "Btree type must be same or const.");
 | 
			
		||||
| 
						 | 
				
			
			@ -1822,11 +1822,11 @@ void btree<P>::copy_or_move_values_in_order(Btree *x) {
 | 
			
		|||
 | 
			
		||||
  // We can avoid key comparisons because we know the order of the
 | 
			
		||||
  // values is the same order we'll store them in.
 | 
			
		||||
  auto iter = x->begin();
 | 
			
		||||
  if (iter == x->end()) return;
 | 
			
		||||
  auto iter = other->begin();
 | 
			
		||||
  if (iter == other->end()) return;
 | 
			
		||||
  insert_multi(maybe_move_from_iterator(iter));
 | 
			
		||||
  ++iter;
 | 
			
		||||
  for (; iter != x->end(); ++iter) {
 | 
			
		||||
  for (; iter != other->end(); ++iter) {
 | 
			
		||||
    // If the btree is not empty, we can just insert the new value at the end
 | 
			
		||||
    // of the tree.
 | 
			
		||||
    internal_emplace(end(), maybe_move_from_iterator(iter));
 | 
			
		||||
| 
						 | 
				
			
			@ -1869,8 +1869,9 @@ btree<P>::btree(const key_compare &comp, const allocator_type &alloc)
 | 
			
		|||
    : root_(comp, alloc, EmptyNode()), rightmost_(EmptyNode()), size_(0) {}
 | 
			
		||||
 | 
			
		||||
template <typename P>
 | 
			
		||||
btree<P>::btree(const btree &x) : btree(x.key_comp(), x.allocator()) {
 | 
			
		||||
  copy_or_move_values_in_order(&x);
 | 
			
		||||
btree<P>::btree(const btree &other)
 | 
			
		||||
    : btree(other.key_comp(), other.allocator()) {
 | 
			
		||||
  copy_or_move_values_in_order(&other);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename P>
 | 
			
		||||
| 
						 | 
				
			
			@ -1977,46 +1978,47 @@ void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) {
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
template <typename P>
 | 
			
		||||
auto btree<P>::operator=(const btree &x) -> btree & {
 | 
			
		||||
  if (this != &x) {
 | 
			
		||||
auto btree<P>::operator=(const btree &other) -> btree & {
 | 
			
		||||
  if (this != &other) {
 | 
			
		||||
    clear();
 | 
			
		||||
 | 
			
		||||
    *mutable_key_comp() = x.key_comp();
 | 
			
		||||
    *mutable_key_comp() = other.key_comp();
 | 
			
		||||
    if (absl::allocator_traits<
 | 
			
		||||
            allocator_type>::propagate_on_container_copy_assignment::value) {
 | 
			
		||||
      *mutable_allocator() = x.allocator();
 | 
			
		||||
      *mutable_allocator() = other.allocator();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    copy_or_move_values_in_order(&x);
 | 
			
		||||
    copy_or_move_values_in_order(&other);
 | 
			
		||||
  }
 | 
			
		||||
  return *this;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename P>
 | 
			
		||||
auto btree<P>::operator=(btree &&x) noexcept -> btree & {
 | 
			
		||||
  if (this != &x) {
 | 
			
		||||
auto btree<P>::operator=(btree &&other) noexcept -> btree & {
 | 
			
		||||
  if (this != &other) {
 | 
			
		||||
    clear();
 | 
			
		||||
 | 
			
		||||
    using std::swap;
 | 
			
		||||
    if (absl::allocator_traits<
 | 
			
		||||
            allocator_type>::propagate_on_container_copy_assignment::value) {
 | 
			
		||||
      // Note: `root_` also contains the allocator and the key comparator.
 | 
			
		||||
      swap(root_, x.root_);
 | 
			
		||||
      swap(rightmost_, x.rightmost_);
 | 
			
		||||
      swap(size_, x.size_);
 | 
			
		||||
      swap(root_, other.root_);
 | 
			
		||||
      swap(rightmost_, other.rightmost_);
 | 
			
		||||
      swap(size_, other.size_);
 | 
			
		||||
    } else {
 | 
			
		||||
      if (allocator() == x.allocator()) {
 | 
			
		||||
        swap(mutable_root(), x.mutable_root());
 | 
			
		||||
        swap(*mutable_key_comp(), *x.mutable_key_comp());
 | 
			
		||||
        swap(rightmost_, x.rightmost_);
 | 
			
		||||
        swap(size_, x.size_);
 | 
			
		||||
      if (allocator() == other.allocator()) {
 | 
			
		||||
        swap(mutable_root(), other.mutable_root());
 | 
			
		||||
        swap(*mutable_key_comp(), *other.mutable_key_comp());
 | 
			
		||||
        swap(rightmost_, other.rightmost_);
 | 
			
		||||
        swap(size_, other.size_);
 | 
			
		||||
      } else {
 | 
			
		||||
        // We aren't allowed to propagate the allocator and the allocator is
 | 
			
		||||
        // different so we can't take over its memory. We must move each element
 | 
			
		||||
        // individually. We need both `x` and `this` to have `x`s key comparator
 | 
			
		||||
        // while moving the values so we can't swap the key comparators.
 | 
			
		||||
        *mutable_key_comp() = x.key_comp();
 | 
			
		||||
        copy_or_move_values_in_order(&x);
 | 
			
		||||
        // individually. We need both `other` and `this` to have `other`s key
 | 
			
		||||
        // comparator while moving the values so we can't swap the key
 | 
			
		||||
        // comparators.
 | 
			
		||||
        *mutable_key_comp() = other.key_comp();
 | 
			
		||||
        copy_or_move_values_in_order(&other);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
| 
						 | 
				
			
			@ -2215,20 +2217,20 @@ void btree<P>::clear() {
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
template <typename P>
 | 
			
		||||
void btree<P>::swap(btree &x) {
 | 
			
		||||
void btree<P>::swap(btree &other) {
 | 
			
		||||
  using std::swap;
 | 
			
		||||
  if (absl::allocator_traits<
 | 
			
		||||
          allocator_type>::propagate_on_container_swap::value) {
 | 
			
		||||
    // Note: `root_` also contains the allocator and the key comparator.
 | 
			
		||||
    swap(root_, x.root_);
 | 
			
		||||
    swap(root_, other.root_);
 | 
			
		||||
  } else {
 | 
			
		||||
    // It's undefined behavior if the allocators are unequal here.
 | 
			
		||||
    assert(allocator() == x.allocator());
 | 
			
		||||
    swap(mutable_root(), x.mutable_root());
 | 
			
		||||
    swap(*mutable_key_comp(), *x.mutable_key_comp());
 | 
			
		||||
    assert(allocator() == other.allocator());
 | 
			
		||||
    swap(mutable_root(), other.mutable_root());
 | 
			
		||||
    swap(*mutable_key_comp(), *other.mutable_key_comp());
 | 
			
		||||
  }
 | 
			
		||||
  swap(rightmost_, x.rightmost_);
 | 
			
		||||
  swap(size_, x.size_);
 | 
			
		||||
  swap(rightmost_, other.rightmost_);
 | 
			
		||||
  swap(size_, other.size_);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename P>
 | 
			
		||||
| 
						 | 
				
			
			@ -2417,8 +2419,7 @@ void btree<P>::try_shrink() {
 | 
			
		|||
  if (root()->leaf()) {
 | 
			
		||||
    assert(size() == 0);
 | 
			
		||||
    delete_leaf_node(root());
 | 
			
		||||
    mutable_root() = EmptyNode();
 | 
			
		||||
    rightmost_ = EmptyNode();
 | 
			
		||||
    mutable_root() = rightmost_ = EmptyNode();
 | 
			
		||||
  } else {
 | 
			
		||||
    node_type *child = root()->start_child();
 | 
			
		||||
    child->make_root();
 | 
			
		||||
| 
						 | 
				
			
			@ -2463,8 +2464,7 @@ inline auto btree<P>::internal_emplace(iterator iter, Args &&... args)
 | 
			
		|||
          new_leaf_root_node((std::min<int>)(kNodeValues, 2 * max_count));
 | 
			
		||||
      iter.node->swap(root(), mutable_allocator());
 | 
			
		||||
      delete_leaf_node(root());
 | 
			
		||||
      mutable_root() = iter.node;
 | 
			
		||||
      rightmost_ = iter.node;
 | 
			
		||||
      mutable_root() = rightmost_ = iter.node;
 | 
			
		||||
    } else {
 | 
			
		||||
      rebalance_or_split(&iter);
 | 
			
		||||
    }
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -68,10 +68,10 @@ class btree_container {
 | 
			
		|||
  explicit btree_container(const key_compare &comp,
 | 
			
		||||
                           const allocator_type &alloc = allocator_type())
 | 
			
		||||
      : tree_(comp, alloc) {}
 | 
			
		||||
  btree_container(const btree_container &x) = default;
 | 
			
		||||
  btree_container(btree_container &&x) noexcept = default;
 | 
			
		||||
  btree_container &operator=(const btree_container &x) = default;
 | 
			
		||||
  btree_container &operator=(btree_container &&x) noexcept(
 | 
			
		||||
  btree_container(const btree_container &other) = default;
 | 
			
		||||
  btree_container(btree_container &&other) noexcept = default;
 | 
			
		||||
  btree_container &operator=(const btree_container &other) = default;
 | 
			
		||||
  btree_container &operator=(btree_container &&other) noexcept(
 | 
			
		||||
      std::is_nothrow_move_assignable<Tree>::value) = default;
 | 
			
		||||
 | 
			
		||||
  // Iterator routines.
 | 
			
		||||
| 
						 | 
				
			
			@ -154,7 +154,7 @@ class btree_container {
 | 
			
		|||
 public:
 | 
			
		||||
  // Utility routines.
 | 
			
		||||
  void clear() { tree_.clear(); }
 | 
			
		||||
  void swap(btree_container &x) { tree_.swap(x.tree_); }
 | 
			
		||||
  void swap(btree_container &other) { tree_.swap(other.tree_); }
 | 
			
		||||
  void verify() const { tree_.verify(); }
 | 
			
		||||
 | 
			
		||||
  // Size routines.
 | 
			
		||||
| 
						 | 
				
			
			@ -257,26 +257,26 @@ class btree_set_container : public btree_container<Tree> {
 | 
			
		|||
  }
 | 
			
		||||
 | 
			
		||||
  // Insertion routines.
 | 
			
		||||
  std::pair<iterator, bool> insert(const value_type &x) {
 | 
			
		||||
    return this->tree_.insert_unique(params_type::key(x), x);
 | 
			
		||||
  std::pair<iterator, bool> insert(const value_type &v) {
 | 
			
		||||
    return this->tree_.insert_unique(params_type::key(v), v);
 | 
			
		||||
  }
 | 
			
		||||
  std::pair<iterator, bool> insert(value_type &&x) {
 | 
			
		||||
    return this->tree_.insert_unique(params_type::key(x), std::move(x));
 | 
			
		||||
  std::pair<iterator, bool> insert(value_type &&v) {
 | 
			
		||||
    return this->tree_.insert_unique(params_type::key(v), std::move(v));
 | 
			
		||||
  }
 | 
			
		||||
  template <typename... Args>
 | 
			
		||||
  std::pair<iterator, bool> emplace(Args &&... args) {
 | 
			
		||||
    init_type v(std::forward<Args>(args)...);
 | 
			
		||||
    return this->tree_.insert_unique(params_type::key(v), std::move(v));
 | 
			
		||||
  }
 | 
			
		||||
  iterator insert(const_iterator position, const value_type &x) {
 | 
			
		||||
  iterator insert(const_iterator position, const value_type &v) {
 | 
			
		||||
    return this->tree_
 | 
			
		||||
        .insert_hint_unique(iterator(position), params_type::key(x), x)
 | 
			
		||||
        .insert_hint_unique(iterator(position), params_type::key(v), v)
 | 
			
		||||
        .first;
 | 
			
		||||
  }
 | 
			
		||||
  iterator insert(const_iterator position, value_type &&x) {
 | 
			
		||||
  iterator insert(const_iterator position, value_type &&v) {
 | 
			
		||||
    return this->tree_
 | 
			
		||||
        .insert_hint_unique(iterator(position), params_type::key(x),
 | 
			
		||||
                            std::move(x))
 | 
			
		||||
        .insert_hint_unique(iterator(position), params_type::key(v),
 | 
			
		||||
                            std::move(v))
 | 
			
		||||
        .first;
 | 
			
		||||
  }
 | 
			
		||||
  template <typename... Args>
 | 
			
		||||
| 
						 | 
				
			
			@ -562,15 +562,15 @@ class btree_multiset_container : public btree_container<Tree> {
 | 
			
		|||
  }
 | 
			
		||||
 | 
			
		||||
  // Insertion routines.
 | 
			
		||||
  iterator insert(const value_type &x) { return this->tree_.insert_multi(x); }
 | 
			
		||||
  iterator insert(value_type &&x) {
 | 
			
		||||
    return this->tree_.insert_multi(std::move(x));
 | 
			
		||||
  iterator insert(const value_type &v) { return this->tree_.insert_multi(v); }
 | 
			
		||||
  iterator insert(value_type &&v) {
 | 
			
		||||
    return this->tree_.insert_multi(std::move(v));
 | 
			
		||||
  }
 | 
			
		||||
  iterator insert(const_iterator position, const value_type &x) {
 | 
			
		||||
    return this->tree_.insert_hint_multi(iterator(position), x);
 | 
			
		||||
  iterator insert(const_iterator position, const value_type &v) {
 | 
			
		||||
    return this->tree_.insert_hint_multi(iterator(position), v);
 | 
			
		||||
  }
 | 
			
		||||
  iterator insert(const_iterator position, value_type &&x) {
 | 
			
		||||
    return this->tree_.insert_hint_multi(iterator(position), std::move(x));
 | 
			
		||||
  iterator insert(const_iterator position, value_type &&v) {
 | 
			
		||||
    return this->tree_.insert_hint_multi(iterator(position), std::move(v));
 | 
			
		||||
  }
 | 
			
		||||
  template <typename InputIterator>
 | 
			
		||||
  void insert(InputIterator b, InputIterator e) {
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -56,9 +56,9 @@ static RtlCaptureStackBackTrace_Function* const RtlCaptureStackBackTrace_fn =
 | 
			
		|||
// Load the function we need at static init time, where we don't have
 | 
			
		||||
// to worry about someone else holding the loader's lock.
 | 
			
		||||
static RtlCaptureStackBackTrace_Function* const RtlCaptureStackBackTrace_fn =
 | 
			
		||||
   (RtlCaptureStackBackTrace_Function*)
 | 
			
		||||
   GetProcAddress(GetModuleHandleA("ntdll.dll"), "RtlCaptureStackBackTrace");
 | 
			
		||||
#endif // WINAPI_PARTITION_APP && !WINAPI_PARTITION_DESKTOP
 | 
			
		||||
    (RtlCaptureStackBackTrace_Function*)GetProcAddress(
 | 
			
		||||
        GetModuleHandleA("ntdll.dll"), "RtlCaptureStackBackTrace");
 | 
			
		||||
#endif  // WINAPI_PARTITION_APP && !WINAPI_PARTITION_DESKTOP
 | 
			
		||||
 | 
			
		||||
template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>
 | 
			
		||||
static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -45,6 +45,7 @@ cc_library(
 | 
			
		|||
        "//absl/base:config",
 | 
			
		||||
        "//absl/base:core_headers",
 | 
			
		||||
        "//absl/memory",
 | 
			
		||||
        "//absl/meta:type_traits",
 | 
			
		||||
        "//absl/strings",
 | 
			
		||||
        "//absl/synchronization",
 | 
			
		||||
    ],
 | 
			
		||||
| 
						 | 
				
			
			@ -130,6 +131,9 @@ cc_library(
 | 
			
		|||
 | 
			
		||||
cc_library(
 | 
			
		||||
    name = "handle",
 | 
			
		||||
    srcs = [
 | 
			
		||||
        "internal/commandlineflag.cc",
 | 
			
		||||
    ],
 | 
			
		||||
    hdrs = [
 | 
			
		||||
        "internal/commandlineflag.h",
 | 
			
		||||
    ],
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -33,6 +33,7 @@ absl_cc_library(
 | 
			
		|||
    absl::flags_handle
 | 
			
		||||
    absl::flags_registry
 | 
			
		||||
    absl::synchronization
 | 
			
		||||
    absl::meta
 | 
			
		||||
  PUBLIC
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -117,6 +118,8 @@ absl_cc_library(
 | 
			
		|||
absl_cc_library(
 | 
			
		||||
  NAME
 | 
			
		||||
    flags_handle
 | 
			
		||||
  SRCS
 | 
			
		||||
    "internal/commandlineflag.cc"
 | 
			
		||||
  HDRS
 | 
			
		||||
    "internal/commandlineflag.h"
 | 
			
		||||
  COPTS
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -148,7 +148,6 @@ class Flag {
 | 
			
		|||
    return GetImpl()->template IsOfType<U>();
 | 
			
		||||
  }
 | 
			
		||||
  T Get() const { return GetImpl()->Get(); }
 | 
			
		||||
  bool AtomicGet(T* v) const { return GetImpl()->AtomicGet(v); }
 | 
			
		||||
  void Set(const T& v) { GetImpl()->Set(v); }
 | 
			
		||||
  void SetCallback(const flags_internal::FlagCallbackFunc mutation_callback) {
 | 
			
		||||
    GetImpl()->SetCallback(mutation_callback);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -109,3 +109,11 @@ namespace {
 | 
			
		|||
BENCHMARKED_TYPES(BM_GetFlag)
 | 
			
		||||
 | 
			
		||||
}  // namespace
 | 
			
		||||
 | 
			
		||||
#define InvokeGetFlag(T)                                               \
 | 
			
		||||
  T AbslInvokeGetFlag##T() { return absl::GetFlag(FLAGS_##T##_flag); } \
 | 
			
		||||
  int odr##T = (benchmark::DoNotOptimize(AbslInvokeGetFlag##T), 1);
 | 
			
		||||
 | 
			
		||||
BENCHMARKED_TYPES(InvokeGetFlag)
 | 
			
		||||
 | 
			
		||||
// To veiw disassembly use: gdb ${BINARY}  -batch -ex "disassemble /s $FUNC"
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -49,28 +49,6 @@ void* TestMakeDflt() {
 | 
			
		|||
}
 | 
			
		||||
void TestCallback() {}
 | 
			
		||||
 | 
			
		||||
template <typename T>
 | 
			
		||||
bool TestConstructionFor() {
 | 
			
		||||
  constexpr flags::FlagHelpArg help_arg{flags::FlagHelpMsg("literal help"),
 | 
			
		||||
                                        flags::FlagHelpKind::kLiteral};
 | 
			
		||||
  constexpr flags::Flag<T> f1("f1", "file", help_arg, &TestMakeDflt<T>);
 | 
			
		||||
  EXPECT_EQ(f1.Name(), "f1");
 | 
			
		||||
  EXPECT_EQ(f1.Help(), "literal help");
 | 
			
		||||
  EXPECT_EQ(f1.Filename(), "file");
 | 
			
		||||
 | 
			
		||||
  ABSL_CONST_INIT static flags::Flag<T> f2(
 | 
			
		||||
      "f2", "file",
 | 
			
		||||
      {flags::FlagHelpMsg(&TestHelpMsg), flags::FlagHelpKind::kGenFunc},
 | 
			
		||||
      &TestMakeDflt<T>);
 | 
			
		||||
  flags::FlagRegistrar<T, false>(&f2).OnUpdate(TestCallback);
 | 
			
		||||
 | 
			
		||||
  EXPECT_EQ(f2.Name(), "f2");
 | 
			
		||||
  EXPECT_EQ(f2.Help(), "dynamic help");
 | 
			
		||||
  EXPECT_EQ(f2.Filename(), "file");
 | 
			
		||||
 | 
			
		||||
  return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
struct UDT {
 | 
			
		||||
  UDT() = default;
 | 
			
		||||
  UDT(const UDT&) = default;
 | 
			
		||||
| 
						 | 
				
			
			@ -98,19 +76,103 @@ class FlagTest : public testing::Test {
 | 
			
		|||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
TEST_F(FlagTest, TestConstruction) {
 | 
			
		||||
  TestConstructionFor<bool>();
 | 
			
		||||
  TestConstructionFor<int16_t>();
 | 
			
		||||
  TestConstructionFor<uint16_t>();
 | 
			
		||||
  TestConstructionFor<int32_t>();
 | 
			
		||||
  TestConstructionFor<uint32_t>();
 | 
			
		||||
  TestConstructionFor<int64_t>();
 | 
			
		||||
  TestConstructionFor<uint64_t>();
 | 
			
		||||
  TestConstructionFor<double>();
 | 
			
		||||
  TestConstructionFor<float>();
 | 
			
		||||
  TestConstructionFor<std::string>();
 | 
			
		||||
struct S1 {
 | 
			
		||||
  S1() = default;
 | 
			
		||||
  S1(const S1&) = default;
 | 
			
		||||
  int32_t f1;
 | 
			
		||||
  int64_t f2;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
  TestConstructionFor<UDT>();
 | 
			
		||||
struct S2 {
 | 
			
		||||
  S2() = default;
 | 
			
		||||
  S2(const S2&) = default;
 | 
			
		||||
  int64_t f1;
 | 
			
		||||
  double f2;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
TEST_F(FlagTest, Traits) {
 | 
			
		||||
  EXPECT_EQ(flags::FlagValue::Kind<int>(),
 | 
			
		||||
            flags::FlagValueStorageKind::kOneWordAtomic);
 | 
			
		||||
  EXPECT_EQ(flags::FlagValue::Kind<bool>(),
 | 
			
		||||
            flags::FlagValueStorageKind::kOneWordAtomic);
 | 
			
		||||
  EXPECT_EQ(flags::FlagValue::Kind<double>(),
 | 
			
		||||
            flags::FlagValueStorageKind::kOneWordAtomic);
 | 
			
		||||
  EXPECT_EQ(flags::FlagValue::Kind<int64_t>(),
 | 
			
		||||
            flags::FlagValueStorageKind::kOneWordAtomic);
 | 
			
		||||
 | 
			
		||||
#if defined(ABSL_FLAGS_INTERNAL_ATOMIC_DOUBLE_WORD)
 | 
			
		||||
  EXPECT_EQ(flags::FlagValue::Kind<S1>(),
 | 
			
		||||
            flags::FlagValueStorageKind::kTwoWordsAtomic);
 | 
			
		||||
  EXPECT_EQ(flags::FlagValue::Kind<S2>(),
 | 
			
		||||
            flags::FlagValueStorageKind::kTwoWordsAtomic);
 | 
			
		||||
#else
 | 
			
		||||
  EXPECT_EQ(flags::FlagValue::Kind<S1>(),
 | 
			
		||||
            flags::FlagValueStorageKind::kHeapAllocated);
 | 
			
		||||
  EXPECT_EQ(flags::FlagValue::Kind<S2>(),
 | 
			
		||||
            flags::FlagValueStorageKind::kHeapAllocated);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  EXPECT_EQ(flags::FlagValue::Kind<std::string>(),
 | 
			
		||||
            flags::FlagValueStorageKind::kHeapAllocated);
 | 
			
		||||
  EXPECT_EQ(flags::FlagValue::Kind<std::vector<std::string>>(),
 | 
			
		||||
            flags::FlagValueStorageKind::kHeapAllocated);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// --------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
constexpr flags::FlagHelpArg help_arg{flags::FlagHelpMsg("literal help"),
 | 
			
		||||
                                      flags::FlagHelpKind::kLiteral};
 | 
			
		||||
 | 
			
		||||
using String = std::string;
 | 
			
		||||
 | 
			
		||||
#define DEFINE_CONSTRUCTED_FLAG(T)                                          \
 | 
			
		||||
  constexpr flags::Flag<T> f1##T("f1", "file", help_arg, &TestMakeDflt<T>); \
 | 
			
		||||
  ABSL_CONST_INIT flags::Flag<T> f2##T(                                     \
 | 
			
		||||
      "f2", "file",                                                         \
 | 
			
		||||
      {flags::FlagHelpMsg(&TestHelpMsg), flags::FlagHelpKind::kGenFunc},    \
 | 
			
		||||
      &TestMakeDflt<T>)
 | 
			
		||||
 | 
			
		||||
#define TEST_CONSTRUCTED_FLAG(T) TestConstructionFor(f1##T, &f2##T);
 | 
			
		||||
 | 
			
		||||
DEFINE_CONSTRUCTED_FLAG(bool);
 | 
			
		||||
DEFINE_CONSTRUCTED_FLAG(int16_t);
 | 
			
		||||
DEFINE_CONSTRUCTED_FLAG(uint16_t);
 | 
			
		||||
DEFINE_CONSTRUCTED_FLAG(int32_t);
 | 
			
		||||
DEFINE_CONSTRUCTED_FLAG(uint32_t);
 | 
			
		||||
DEFINE_CONSTRUCTED_FLAG(int64_t);
 | 
			
		||||
DEFINE_CONSTRUCTED_FLAG(uint64_t);
 | 
			
		||||
DEFINE_CONSTRUCTED_FLAG(float);
 | 
			
		||||
DEFINE_CONSTRUCTED_FLAG(double);
 | 
			
		||||
DEFINE_CONSTRUCTED_FLAG(String);
 | 
			
		||||
DEFINE_CONSTRUCTED_FLAG(UDT);
 | 
			
		||||
 | 
			
		||||
template <typename T>
 | 
			
		||||
bool TestConstructionFor(const flags::Flag<T>& f1, flags::Flag<T>* f2) {
 | 
			
		||||
  EXPECT_EQ(f1.Name(), "f1");
 | 
			
		||||
  EXPECT_EQ(f1.Help(), "literal help");
 | 
			
		||||
  EXPECT_EQ(f1.Filename(), "file");
 | 
			
		||||
 | 
			
		||||
  flags::FlagRegistrar<T, false>(f2).OnUpdate(TestCallback);
 | 
			
		||||
 | 
			
		||||
  EXPECT_EQ(f2->Name(), "f2");
 | 
			
		||||
  EXPECT_EQ(f2->Help(), "dynamic help");
 | 
			
		||||
  EXPECT_EQ(f2->Filename(), "file");
 | 
			
		||||
 | 
			
		||||
  return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(FlagTest, TestConstruction) {
 | 
			
		||||
  TEST_CONSTRUCTED_FLAG(bool);
 | 
			
		||||
  TEST_CONSTRUCTED_FLAG(int16_t);
 | 
			
		||||
  TEST_CONSTRUCTED_FLAG(uint16_t);
 | 
			
		||||
  TEST_CONSTRUCTED_FLAG(int32_t);
 | 
			
		||||
  TEST_CONSTRUCTED_FLAG(uint32_t);
 | 
			
		||||
  TEST_CONSTRUCTED_FLAG(int64_t);
 | 
			
		||||
  TEST_CONSTRUCTED_FLAG(uint64_t);
 | 
			
		||||
  TEST_CONSTRUCTED_FLAG(float);
 | 
			
		||||
  TEST_CONSTRUCTED_FLAG(double);
 | 
			
		||||
  TEST_CONSTRUCTED_FLAG(String);
 | 
			
		||||
  TEST_CONSTRUCTED_FLAG(UDT);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// --------------------------------------------------------------------
 | 
			
		||||
| 
						 | 
				
			
			@ -391,17 +453,18 @@ TEST_F(FlagTest, TestCustomUDT) {
 | 
			
		|||
using FlagDeathTest = FlagTest;
 | 
			
		||||
 | 
			
		||||
TEST_F(FlagDeathTest, TestTypeMismatchValidations) {
 | 
			
		||||
  EXPECT_DEBUG_DEATH(
 | 
			
		||||
      static_cast<void>(absl::GetFlag(FLAGS_mistyped_int_flag)),
 | 
			
		||||
      "Flag 'mistyped_int_flag' is defined as one type and declared "
 | 
			
		||||
      "as another");
 | 
			
		||||
  EXPECT_DEATH(absl::SetFlag(&FLAGS_mistyped_int_flag, 1),
 | 
			
		||||
#if !defined(NDEBUG)
 | 
			
		||||
  EXPECT_DEATH(static_cast<void>(absl::GetFlag(FLAGS_mistyped_int_flag)),
 | 
			
		||||
               "Flag 'mistyped_int_flag' is defined as one type and declared "
 | 
			
		||||
               "as another");
 | 
			
		||||
 | 
			
		||||
  EXPECT_DEATH(static_cast<void>(absl::GetFlag(FLAGS_mistyped_string_flag)),
 | 
			
		||||
               "Flag 'mistyped_string_flag' is defined as one type and "
 | 
			
		||||
               "declared as another");
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  EXPECT_DEATH(absl::SetFlag(&FLAGS_mistyped_int_flag, 1),
 | 
			
		||||
               "Flag 'mistyped_int_flag' is defined as one type and declared "
 | 
			
		||||
               "as another");
 | 
			
		||||
  EXPECT_DEATH(
 | 
			
		||||
      absl::SetFlag(&FLAGS_mistyped_string_flag, std::vector<std::string>{}),
 | 
			
		||||
      "Flag 'mistyped_string_flag' is defined as one type and declared as "
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										30
									
								
								absl/flags/internal/commandlineflag.cc
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										30
									
								
								absl/flags/internal/commandlineflag.cc
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,30 @@
 | 
			
		|||
//
 | 
			
		||||
// Copyright 2020 The Abseil Authors.
 | 
			
		||||
//
 | 
			
		||||
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
// you may not use this file except in compliance with the License.
 | 
			
		||||
// You may obtain a copy of the License at
 | 
			
		||||
//
 | 
			
		||||
//      https://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
//
 | 
			
		||||
// Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
// See the License for the specific language governing permissions and
 | 
			
		||||
// limitations under the License.
 | 
			
		||||
 | 
			
		||||
#include "absl/flags/internal/commandlineflag.h"
 | 
			
		||||
 | 
			
		||||
namespace absl {
 | 
			
		||||
ABSL_NAMESPACE_BEGIN
 | 
			
		||||
namespace flags_internal {
 | 
			
		||||
 | 
			
		||||
FlagStateInterface::~FlagStateInterface() {}
 | 
			
		||||
 | 
			
		||||
bool CommandLineFlag::IsRetired() const { return false; }
 | 
			
		||||
bool CommandLineFlag::IsAbseilFlag() const { return true; }
 | 
			
		||||
 | 
			
		||||
}  // namespace flags_internal
 | 
			
		||||
ABSL_NAMESPACE_END
 | 
			
		||||
}  // namespace absl
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -77,7 +77,7 @@ enum ValueSource {
 | 
			
		|||
// of a flag produced this flag state from method CommandLineFlag::SaveState().
 | 
			
		||||
class FlagStateInterface {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual ~FlagStateInterface() {}
 | 
			
		||||
  virtual ~FlagStateInterface();
 | 
			
		||||
 | 
			
		||||
  // Restores the flag originated this object to the saved state.
 | 
			
		||||
  virtual void Restore() const = 0;
 | 
			
		||||
| 
						 | 
				
			
			@ -146,9 +146,9 @@ class CommandLineFlag {
 | 
			
		|||
  // Returns help message associated with this flag.
 | 
			
		||||
  virtual std::string Help() const = 0;
 | 
			
		||||
  // Returns true iff this object corresponds to retired flag.
 | 
			
		||||
  virtual bool IsRetired() const { return false; }
 | 
			
		||||
  virtual bool IsRetired() const;
 | 
			
		||||
  // Returns true iff this is a handle to an Abseil Flag.
 | 
			
		||||
  virtual bool IsAbseilFlag() const { return true; }
 | 
			
		||||
  virtual bool IsAbseilFlag() const;
 | 
			
		||||
  // Returns id of the flag's value type.
 | 
			
		||||
  virtual FlagStaticTypeId TypeId() const = 0;
 | 
			
		||||
  virtual bool IsModified() const = 0;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -77,19 +77,33 @@ class MutexRelock {
 | 
			
		|||
void FlagImpl::Init() {
 | 
			
		||||
  new (&data_guard_) absl::Mutex;
 | 
			
		||||
 | 
			
		||||
  absl::MutexLock lock(reinterpret_cast<absl::Mutex*>(&data_guard_));
 | 
			
		||||
 | 
			
		||||
  value_.dynamic = MakeInitValue().release();
 | 
			
		||||
  StoreAtomic();
 | 
			
		||||
  // At this point the default_value_ always points to gen_func.
 | 
			
		||||
  std::unique_ptr<void, DynValueDeleter> init_value(
 | 
			
		||||
      (*default_value_.gen_func)(), DynValueDeleter{op_});
 | 
			
		||||
  switch (ValueStorageKind()) {
 | 
			
		||||
    case FlagValueStorageKind::kHeapAllocated:
 | 
			
		||||
      value_.dynamic = init_value.release();
 | 
			
		||||
      break;
 | 
			
		||||
    case FlagValueStorageKind::kOneWordAtomic: {
 | 
			
		||||
      int64_t atomic_value;
 | 
			
		||||
      std::memcpy(&atomic_value, init_value.get(), Sizeof(op_));
 | 
			
		||||
      value_.one_word_atomic.store(atomic_value, std::memory_order_release);
 | 
			
		||||
      break;
 | 
			
		||||
    }
 | 
			
		||||
    case FlagValueStorageKind::kTwoWordsAtomic: {
 | 
			
		||||
      AlignedTwoWords atomic_value{0, 0};
 | 
			
		||||
      std::memcpy(&atomic_value, init_value.get(), Sizeof(op_));
 | 
			
		||||
      value_.two_words_atomic.store(atomic_value, std::memory_order_release);
 | 
			
		||||
      break;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Ensures that the lazily initialized data is initialized,
 | 
			
		||||
// and returns pointer to the mutex guarding flags data.
 | 
			
		||||
absl::Mutex* FlagImpl::DataGuard() const {
 | 
			
		||||
  absl::call_once(const_cast<FlagImpl*>(this)->init_control_, &FlagImpl::Init,
 | 
			
		||||
                  const_cast<FlagImpl*>(this));
 | 
			
		||||
 | 
			
		||||
  // data_guard_ is initialized.
 | 
			
		||||
  // data_guard_ is initialized inside Init.
 | 
			
		||||
  return reinterpret_cast<absl::Mutex*>(&data_guard_);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -129,8 +143,24 @@ std::unique_ptr<void, DynValueDeleter> FlagImpl::MakeInitValue() const {
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
void FlagImpl::StoreValue(const void* src) {
 | 
			
		||||
  flags_internal::Copy(op_, src, value_.dynamic);
 | 
			
		||||
  StoreAtomic();
 | 
			
		||||
  switch (ValueStorageKind()) {
 | 
			
		||||
    case FlagValueStorageKind::kHeapAllocated:
 | 
			
		||||
      Copy(op_, src, value_.dynamic);
 | 
			
		||||
      break;
 | 
			
		||||
    case FlagValueStorageKind::kOneWordAtomic: {
 | 
			
		||||
      int64_t one_word_val;
 | 
			
		||||
      std::memcpy(&one_word_val, src, Sizeof(op_));
 | 
			
		||||
      value_.one_word_atomic.store(one_word_val, std::memory_order_release);
 | 
			
		||||
      break;
 | 
			
		||||
    }
 | 
			
		||||
    case FlagValueStorageKind::kTwoWordsAtomic: {
 | 
			
		||||
      AlignedTwoWords two_words_val{0, 0};
 | 
			
		||||
      std::memcpy(&two_words_val, src, Sizeof(op_));
 | 
			
		||||
      value_.two_words_atomic.store(two_words_val, std::memory_order_release);
 | 
			
		||||
      break;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  modified_ = true;
 | 
			
		||||
  ++counter_;
 | 
			
		||||
  InvokeCallback();
 | 
			
		||||
| 
						 | 
				
			
			@ -165,9 +195,25 @@ std::string FlagImpl::DefaultValue() const {
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
std::string FlagImpl::CurrentValue() const {
 | 
			
		||||
  absl::MutexLock l(DataGuard());
 | 
			
		||||
  DataGuard();  // Make sure flag initialized
 | 
			
		||||
  switch (ValueStorageKind()) {
 | 
			
		||||
    case FlagValueStorageKind::kHeapAllocated: {
 | 
			
		||||
      absl::MutexLock l(DataGuard());
 | 
			
		||||
      return flags_internal::Unparse(op_, value_.dynamic);
 | 
			
		||||
    }
 | 
			
		||||
    case FlagValueStorageKind::kOneWordAtomic: {
 | 
			
		||||
      const auto one_word_val =
 | 
			
		||||
          value_.one_word_atomic.load(std::memory_order_acquire);
 | 
			
		||||
      return flags_internal::Unparse(op_, &one_word_val);
 | 
			
		||||
    }
 | 
			
		||||
    case FlagValueStorageKind::kTwoWordsAtomic: {
 | 
			
		||||
      const auto two_words_val =
 | 
			
		||||
          value_.two_words_atomic.load(std::memory_order_acquire);
 | 
			
		||||
      return flags_internal::Unparse(op_, &two_words_val);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return flags_internal::Unparse(op_, value_.dynamic);
 | 
			
		||||
  return "";
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void FlagImpl::SetCallback(const FlagCallbackFunc mutation_callback) {
 | 
			
		||||
| 
						 | 
				
			
			@ -244,26 +290,27 @@ std::unique_ptr<void, DynValueDeleter> FlagImpl::TryParse(
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
void FlagImpl::Read(void* dst) const {
 | 
			
		||||
  absl::ReaderMutexLock l(DataGuard());
 | 
			
		||||
  DataGuard();  // Make sure flag initialized
 | 
			
		||||
  switch (ValueStorageKind()) {
 | 
			
		||||
    case FlagValueStorageKind::kHeapAllocated: {
 | 
			
		||||
      absl::MutexLock l(DataGuard());
 | 
			
		||||
 | 
			
		||||
  flags_internal::CopyConstruct(op_, value_.dynamic, dst);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void FlagImpl::StoreAtomic() {
 | 
			
		||||
  size_t data_size = flags_internal::Sizeof(op_);
 | 
			
		||||
 | 
			
		||||
  if (data_size <= sizeof(int64_t)) {
 | 
			
		||||
    int64_t t = 0;
 | 
			
		||||
    std::memcpy(&t, value_.dynamic, data_size);
 | 
			
		||||
    value_.atomics.small_atomic.store(t, std::memory_order_release);
 | 
			
		||||
      flags_internal::CopyConstruct(op_, value_.dynamic, dst);
 | 
			
		||||
      break;
 | 
			
		||||
    }
 | 
			
		||||
    case FlagValueStorageKind::kOneWordAtomic: {
 | 
			
		||||
      const auto one_word_val =
 | 
			
		||||
          value_.one_word_atomic.load(std::memory_order_acquire);
 | 
			
		||||
      std::memcpy(dst, &one_word_val, Sizeof(op_));
 | 
			
		||||
      break;
 | 
			
		||||
    }
 | 
			
		||||
    case FlagValueStorageKind::kTwoWordsAtomic: {
 | 
			
		||||
      const auto two_words_val =
 | 
			
		||||
          value_.two_words_atomic.load(std::memory_order_acquire);
 | 
			
		||||
      std::memcpy(dst, &two_words_val, Sizeof(op_));
 | 
			
		||||
      break;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
#if defined(ABSL_FLAGS_INTERNAL_ATOMIC_DOUBLE_WORD)
 | 
			
		||||
  else if (data_size <= sizeof(FlagsInternalTwoWordsType)) {
 | 
			
		||||
    FlagsInternalTwoWordsType t{0, 0};
 | 
			
		||||
    std::memcpy(&t, value_.dynamic, data_size);
 | 
			
		||||
    value_.atomics.big_atomic.store(t, std::memory_order_release);
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void FlagImpl::Write(const void* src) {
 | 
			
		||||
| 
						 | 
				
			
			@ -339,7 +386,7 @@ bool FlagImpl::SetFromString(absl::string_view value, FlagSettingMode set_mode,
 | 
			
		|||
      }
 | 
			
		||||
 | 
			
		||||
      if (!modified_) {
 | 
			
		||||
        // Need to set both default value *and* current, in this case
 | 
			
		||||
        // Need to set both default value *and* current, in this case.
 | 
			
		||||
        StoreValue(default_value_.dynamic_value);
 | 
			
		||||
        modified_ = false;
 | 
			
		||||
      }
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -31,6 +31,7 @@
 | 
			
		|||
#include "absl/flags/internal/commandlineflag.h"
 | 
			
		||||
#include "absl/flags/internal/registry.h"
 | 
			
		||||
#include "absl/memory/memory.h"
 | 
			
		||||
#include "absl/meta/type_traits.h"
 | 
			
		||||
#include "absl/strings/str_cat.h"
 | 
			
		||||
#include "absl/strings/string_view.h"
 | 
			
		||||
#include "absl/synchronization/mutex.h"
 | 
			
		||||
| 
						 | 
				
			
			@ -249,95 +250,66 @@ enum class FlagDefaultKind : uint8_t { kDynamicValue = 0, kGenFunc = 1 };
 | 
			
		|||
///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Flag current value auxiliary structs.
 | 
			
		||||
 | 
			
		||||
// The minimum atomic size we believe to generate lock free code, i.e. all
 | 
			
		||||
// trivially copyable types not bigger this size generate lock free code.
 | 
			
		||||
static constexpr int kMinLockFreeAtomicSize = 8;
 | 
			
		||||
constexpr int64_t UninitializedFlagValue() { return 0xababababababababll; }
 | 
			
		||||
 | 
			
		||||
// The same as kMinLockFreeAtomicSize but maximum atomic size. As double words
 | 
			
		||||
// might use two registers, we want to dispatch the logic for them.
 | 
			
		||||
#if defined(ABSL_FLAGS_INTERNAL_ATOMIC_DOUBLE_WORD)
 | 
			
		||||
static constexpr int kMaxLockFreeAtomicSize = 16;
 | 
			
		||||
#else
 | 
			
		||||
static constexpr int kMaxLockFreeAtomicSize = 8;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// We can use atomic in cases when it fits in the register, trivially copyable
 | 
			
		||||
// in order to make memcpy operations.
 | 
			
		||||
template <typename T>
 | 
			
		||||
struct IsAtomicFlagTypeTrait {
 | 
			
		||||
  static constexpr bool value =
 | 
			
		||||
      (sizeof(T) <= kMaxLockFreeAtomicSize &&
 | 
			
		||||
       type_traits_internal::is_trivially_copyable<T>::value);
 | 
			
		||||
};
 | 
			
		||||
using FlagUseOneWordStorage = std::integral_constant<
 | 
			
		||||
    bool, absl::type_traits_internal::is_trivially_copyable<T>::value &&
 | 
			
		||||
              (sizeof(T) <= 8)>;
 | 
			
		||||
 | 
			
		||||
#if defined(ABSL_FLAGS_INTERNAL_ATOMIC_DOUBLE_WORD)
 | 
			
		||||
// Clang does not always produce cmpxchg16b instruction when alignment of a 16
 | 
			
		||||
// bytes type is not 16.
 | 
			
		||||
struct alignas(16) FlagsInternalTwoWordsType {
 | 
			
		||||
struct alignas(16) AlignedTwoWords {
 | 
			
		||||
  int64_t first;
 | 
			
		||||
  int64_t second;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
constexpr bool operator==(const FlagsInternalTwoWordsType& that,
 | 
			
		||||
                          const FlagsInternalTwoWordsType& other) {
 | 
			
		||||
  return that.first == other.first && that.second == other.second;
 | 
			
		||||
}
 | 
			
		||||
constexpr bool operator!=(const FlagsInternalTwoWordsType& that,
 | 
			
		||||
                          const FlagsInternalTwoWordsType& other) {
 | 
			
		||||
  return !(that == other);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
constexpr int64_t SmallAtomicInit() { return 0xababababababababll; }
 | 
			
		||||
 | 
			
		||||
template <typename T, typename S = void>
 | 
			
		||||
struct BestAtomicType {
 | 
			
		||||
  using type = int64_t;
 | 
			
		||||
  static constexpr int64_t AtomicInit() { return SmallAtomicInit(); }
 | 
			
		||||
template <typename T>
 | 
			
		||||
using FlagUseTwoWordsStorage = std::integral_constant<
 | 
			
		||||
    bool, absl::type_traits_internal::is_trivially_copyable<T>::value &&
 | 
			
		||||
              (sizeof(T) > 8) && (sizeof(T) <= 16)>;
 | 
			
		||||
#else
 | 
			
		||||
// This is actually unused and only here to avoid ifdefs in other palces.
 | 
			
		||||
struct AlignedTwoWords {
 | 
			
		||||
  constexpr AlignedTwoWords() = default;
 | 
			
		||||
  constexpr AlignedTwoWords(int64_t, int64_t) {}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// This trait should be type dependent, otherwise SFINAE below will fail
 | 
			
		||||
template <typename T>
 | 
			
		||||
using FlagUseTwoWordsStorage =
 | 
			
		||||
    std::integral_constant<bool, sizeof(T) != sizeof(T)>;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
template <typename T>
 | 
			
		||||
struct BestAtomicType<
 | 
			
		||||
    T, typename std::enable_if<(kMinLockFreeAtomicSize < sizeof(T) &&
 | 
			
		||||
                                sizeof(T) <= kMaxLockFreeAtomicSize),
 | 
			
		||||
                               void>::type> {
 | 
			
		||||
  using type = FlagsInternalTwoWordsType;
 | 
			
		||||
  static constexpr FlagsInternalTwoWordsType AtomicInit() {
 | 
			
		||||
    return {SmallAtomicInit(), SmallAtomicInit()};
 | 
			
		||||
  }
 | 
			
		||||
using FlagUseHeapStorage =
 | 
			
		||||
    std::integral_constant<bool, !FlagUseOneWordStorage<T>::value &&
 | 
			
		||||
                                     !FlagUseTwoWordsStorage<T>::value>;
 | 
			
		||||
 | 
			
		||||
enum class FlagValueStorageKind : uint8_t {
 | 
			
		||||
  kHeapAllocated = 0,
 | 
			
		||||
  kOneWordAtomic = 1,
 | 
			
		||||
  kTwoWordsAtomic = 2
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct FlagValue {
 | 
			
		||||
  // Heap allocated value.
 | 
			
		||||
  void* dynamic = nullptr;
 | 
			
		||||
  // For some types, a copy of the current value is kept in an atomically
 | 
			
		||||
  // accessible field.
 | 
			
		||||
  union Atomics {
 | 
			
		||||
    // Using small atomic for small types.
 | 
			
		||||
    std::atomic<int64_t> small_atomic;
 | 
			
		||||
    template <typename T,
 | 
			
		||||
              typename K = typename std::enable_if<
 | 
			
		||||
                  (sizeof(T) <= kMinLockFreeAtomicSize), void>::type>
 | 
			
		||||
    int64_t load() const {
 | 
			
		||||
      return small_atomic.load(std::memory_order_acquire);
 | 
			
		||||
    }
 | 
			
		||||
union FlagValue {
 | 
			
		||||
  constexpr explicit FlagValue(int64_t v) : one_word_atomic(v) {}
 | 
			
		||||
 | 
			
		||||
#if defined(ABSL_FLAGS_INTERNAL_ATOMIC_DOUBLE_WORD)
 | 
			
		||||
    // Using big atomics for big types.
 | 
			
		||||
    std::atomic<FlagsInternalTwoWordsType> big_atomic;
 | 
			
		||||
    template <typename T, typename K = typename std::enable_if<
 | 
			
		||||
                              (kMinLockFreeAtomicSize < sizeof(T) &&
 | 
			
		||||
                               sizeof(T) <= kMaxLockFreeAtomicSize),
 | 
			
		||||
                              void>::type>
 | 
			
		||||
    FlagsInternalTwoWordsType load() const {
 | 
			
		||||
      return big_atomic.load(std::memory_order_acquire);
 | 
			
		||||
    }
 | 
			
		||||
    constexpr Atomics()
 | 
			
		||||
        : big_atomic{FlagsInternalTwoWordsType{SmallAtomicInit(),
 | 
			
		||||
                                               SmallAtomicInit()}} {}
 | 
			
		||||
#else
 | 
			
		||||
    constexpr Atomics() : small_atomic{SmallAtomicInit()} {}
 | 
			
		||||
#endif
 | 
			
		||||
  };
 | 
			
		||||
  Atomics atomics{};
 | 
			
		||||
  template <typename T>
 | 
			
		||||
  static constexpr FlagValueStorageKind Kind() {
 | 
			
		||||
    return FlagUseHeapStorage<T>::value
 | 
			
		||||
               ? FlagValueStorageKind::kHeapAllocated
 | 
			
		||||
               : FlagUseOneWordStorage<T>::value
 | 
			
		||||
                     ? FlagValueStorageKind::kOneWordAtomic
 | 
			
		||||
                     : FlagUseTwoWordsStorage<T>::value
 | 
			
		||||
                           ? FlagValueStorageKind::kTwoWordsAtomic
 | 
			
		||||
                           : FlagValueStorageKind::kHeapAllocated;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void* dynamic;
 | 
			
		||||
  std::atomic<int64_t> one_word_atomic;
 | 
			
		||||
  std::atomic<flags_internal::AlignedTwoWords> two_words_atomic;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
| 
						 | 
				
			
			@ -369,18 +341,21 @@ struct DynValueDeleter {
 | 
			
		|||
class FlagImpl {
 | 
			
		||||
 public:
 | 
			
		||||
  constexpr FlagImpl(const char* name, const char* filename, FlagOpFn op,
 | 
			
		||||
                     FlagHelpArg help, FlagDfltGenFunc default_value_gen)
 | 
			
		||||
                     FlagHelpArg help, FlagValueStorageKind value_kind,
 | 
			
		||||
                     FlagDfltGenFunc default_value_gen)
 | 
			
		||||
      : name_(name),
 | 
			
		||||
        filename_(filename),
 | 
			
		||||
        op_(op),
 | 
			
		||||
        help_(help.source),
 | 
			
		||||
        help_source_kind_(static_cast<uint8_t>(help.kind)),
 | 
			
		||||
        value_storage_kind_(static_cast<uint8_t>(value_kind)),
 | 
			
		||||
        def_kind_(static_cast<uint8_t>(FlagDefaultKind::kGenFunc)),
 | 
			
		||||
        modified_(false),
 | 
			
		||||
        on_command_line_(false),
 | 
			
		||||
        counter_(0),
 | 
			
		||||
        callback_(nullptr),
 | 
			
		||||
        default_value_(default_value_gen),
 | 
			
		||||
        value_(flags_internal::UninitializedFlagValue()),
 | 
			
		||||
        data_guard_{} {}
 | 
			
		||||
 | 
			
		||||
  // Constant access methods
 | 
			
		||||
| 
						 | 
				
			
			@ -393,34 +368,29 @@ class FlagImpl {
 | 
			
		|||
  std::string CurrentValue() const ABSL_LOCKS_EXCLUDED(*DataGuard());
 | 
			
		||||
  void Read(void* dst) const ABSL_LOCKS_EXCLUDED(*DataGuard());
 | 
			
		||||
 | 
			
		||||
  template <typename T, typename std::enable_if<
 | 
			
		||||
                            !IsAtomicFlagTypeTrait<T>::value, int>::type = 0>
 | 
			
		||||
  void Get(T* dst) const {
 | 
			
		||||
    AssertValidType(&flags_internal::FlagStaticTypeIdGen<T>);
 | 
			
		||||
    Read(dst);
 | 
			
		||||
  }
 | 
			
		||||
  // Overload for `GetFlag()` for types that support lock-free reads.
 | 
			
		||||
  template <typename T, typename std::enable_if<IsAtomicFlagTypeTrait<T>::value,
 | 
			
		||||
  template <typename T, typename std::enable_if<FlagUseHeapStorage<T>::value,
 | 
			
		||||
                                                int>::type = 0>
 | 
			
		||||
  void Get(T* dst) const {
 | 
			
		||||
    // For flags of types which can be accessed "atomically" we want to avoid
 | 
			
		||||
    // slowing down flag value access due to type validation. That's why
 | 
			
		||||
    // this validation is hidden behind !NDEBUG
 | 
			
		||||
#ifndef NDEBUG
 | 
			
		||||
    AssertValidType(&flags_internal::FlagStaticTypeIdGen<T>);
 | 
			
		||||
#endif
 | 
			
		||||
    using U = flags_internal::BestAtomicType<T>;
 | 
			
		||||
    typename U::type r = value_.atomics.template load<T>();
 | 
			
		||||
    if (r != U::AtomicInit()) {
 | 
			
		||||
      std::memcpy(static_cast<void*>(dst), &r, sizeof(T));
 | 
			
		||||
    } else {
 | 
			
		||||
      Read(dst);
 | 
			
		||||
    }
 | 
			
		||||
    Read(dst);
 | 
			
		||||
  }
 | 
			
		||||
  template <typename T>
 | 
			
		||||
  void Set(const T& src) {
 | 
			
		||||
    AssertValidType(&flags_internal::FlagStaticTypeIdGen<T>);
 | 
			
		||||
    Write(&src);
 | 
			
		||||
  template <typename T, typename std::enable_if<FlagUseOneWordStorage<T>::value,
 | 
			
		||||
                                                int>::type = 0>
 | 
			
		||||
  void Get(T* dst) const {
 | 
			
		||||
    int64_t one_word_val =
 | 
			
		||||
        value_.one_word_atomic.load(std::memory_order_acquire);
 | 
			
		||||
    if (ABSL_PREDICT_FALSE(one_word_val == UninitializedFlagValue())) {
 | 
			
		||||
      DataGuard();  // Make sure flag initialized
 | 
			
		||||
      one_word_val = value_.one_word_atomic.load(std::memory_order_acquire);
 | 
			
		||||
    }
 | 
			
		||||
    std::memcpy(dst, static_cast<const void*>(&one_word_val), sizeof(T));
 | 
			
		||||
  }
 | 
			
		||||
  template <typename T, typename std::enable_if<
 | 
			
		||||
                            FlagUseTwoWordsStorage<T>::value, int>::type = 0>
 | 
			
		||||
  void Get(T* dst) const {
 | 
			
		||||
    DataGuard();  // Make sure flag initialized
 | 
			
		||||
    const auto two_words_val =
 | 
			
		||||
        value_.two_words_atomic.load(std::memory_order_acquire);
 | 
			
		||||
    std::memcpy(dst, &two_words_val, sizeof(T));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Mutating access methods
 | 
			
		||||
| 
						 | 
				
			
			@ -428,9 +398,6 @@ class FlagImpl {
 | 
			
		|||
  bool SetFromString(absl::string_view value, FlagSettingMode set_mode,
 | 
			
		||||
                     ValueSource source, std::string* err)
 | 
			
		||||
      ABSL_LOCKS_EXCLUDED(*DataGuard());
 | 
			
		||||
  // If possible, updates copy of the Flag's value that is stored in an
 | 
			
		||||
  // atomic word.
 | 
			
		||||
  void StoreAtomic() ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
 | 
			
		||||
 | 
			
		||||
  // Interfaces to operate on callbacks.
 | 
			
		||||
  void SetCallback(const FlagCallbackFunc mutation_callback)
 | 
			
		||||
| 
						 | 
				
			
			@ -456,6 +423,14 @@ class FlagImpl {
 | 
			
		|||
  bool ValidateInputValue(absl::string_view value) const
 | 
			
		||||
      ABSL_LOCKS_EXCLUDED(*DataGuard());
 | 
			
		||||
 | 
			
		||||
  // Used in read/write operations to validate source/target has correct type.
 | 
			
		||||
  // For example if flag is declared as absl::Flag<int> FLAGS_foo, a call to
 | 
			
		||||
  // absl::GetFlag(FLAGS_foo) validates that the type of FLAGS_foo is indeed
 | 
			
		||||
  // int. To do that we pass the "assumed" type id (which is deduced from type
 | 
			
		||||
  // int) as an argument `op`, which is in turn is validated against the type id
 | 
			
		||||
  // stored in flag object by flag definition statement.
 | 
			
		||||
  void AssertValidType(FlagStaticTypeId type_id) const;
 | 
			
		||||
 | 
			
		||||
 private:
 | 
			
		||||
  // Ensures that `data_guard_` is initialized and returns it.
 | 
			
		||||
  absl::Mutex* DataGuard() const ABSL_LOCK_RETURNED((absl::Mutex*)&data_guard_);
 | 
			
		||||
| 
						 | 
				
			
			@ -475,17 +450,13 @@ class FlagImpl {
 | 
			
		|||
  FlagHelpKind HelpSourceKind() const {
 | 
			
		||||
    return static_cast<FlagHelpKind>(help_source_kind_);
 | 
			
		||||
  }
 | 
			
		||||
  FlagValueStorageKind ValueStorageKind() const {
 | 
			
		||||
    return static_cast<FlagValueStorageKind>(value_storage_kind_);
 | 
			
		||||
  }
 | 
			
		||||
  FlagDefaultKind DefaultKind() const
 | 
			
		||||
      ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()) {
 | 
			
		||||
    return static_cast<FlagDefaultKind>(def_kind_);
 | 
			
		||||
  }
 | 
			
		||||
  // Used in read/write operations to validate source/target has correct type.
 | 
			
		||||
  // For example if flag is declared as absl::Flag<int> FLAGS_foo, a call to
 | 
			
		||||
  // absl::GetFlag(FLAGS_foo) validates that the type of FLAGS_foo is indeed
 | 
			
		||||
  // int. To do that we pass the "assumed" type id (which is deduced from type
 | 
			
		||||
  // int) as an argument `op`, which is in turn is validated against the type id
 | 
			
		||||
  // stored in flag object by flag definition statement.
 | 
			
		||||
  void AssertValidType(FlagStaticTypeId type_id) const;
 | 
			
		||||
 | 
			
		||||
  // Immutable flag's state.
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -499,6 +470,8 @@ class FlagImpl {
 | 
			
		|||
  const FlagHelpMsg help_;
 | 
			
		||||
  // Indicates if help message was supplied as literal or generator func.
 | 
			
		||||
  const uint8_t help_source_kind_ : 1;
 | 
			
		||||
  // Kind of storage this flag is using for the flag's value.
 | 
			
		||||
  const uint8_t value_storage_kind_ : 2;
 | 
			
		||||
 | 
			
		||||
  // ------------------------------------------------------------------------
 | 
			
		||||
  // The bytes containing the const bitfields must not be shared with bytes
 | 
			
		||||
| 
						 | 
				
			
			@ -530,8 +503,13 @@ class FlagImpl {
 | 
			
		|||
  // value specified in ABSL_FLAG or pointer to the dynamically set default
 | 
			
		||||
  // value via SetCommandLineOptionWithMode. def_kind_ is used to distinguish
 | 
			
		||||
  // these two cases.
 | 
			
		||||
  FlagDefaultSrc default_value_ ABSL_GUARDED_BY(*DataGuard());
 | 
			
		||||
  // Current Flag Value
 | 
			
		||||
  FlagDefaultSrc default_value_;
 | 
			
		||||
 | 
			
		||||
  // Atomically mutable flag's state
 | 
			
		||||
 | 
			
		||||
  // Flag's value. This can be either the atomically stored small value or
 | 
			
		||||
  // pointer to the heap allocated dynamic value. value_storage_kind_ is used
 | 
			
		||||
  // to distinguish these cases.
 | 
			
		||||
  FlagValue value_;
 | 
			
		||||
 | 
			
		||||
  // This is reserved space for an absl::Mutex to guard flag data. It will be
 | 
			
		||||
| 
						 | 
				
			
			@ -553,7 +531,8 @@ class Flag final : public flags_internal::CommandLineFlag {
 | 
			
		|||
 public:
 | 
			
		||||
  constexpr Flag(const char* name, const char* filename, const FlagHelpArg help,
 | 
			
		||||
                 const FlagDfltGenFunc default_value_gen)
 | 
			
		||||
      : impl_(name, filename, &FlagOps<T>, help, default_value_gen) {}
 | 
			
		||||
      : impl_(name, filename, &FlagOps<T>, help, FlagValue::Kind<T>(),
 | 
			
		||||
              default_value_gen) {}
 | 
			
		||||
 | 
			
		||||
  T Get() const {
 | 
			
		||||
    // See implementation notes in CommandLineFlag::Get().
 | 
			
		||||
| 
						 | 
				
			
			@ -564,10 +543,17 @@ class Flag final : public flags_internal::CommandLineFlag {
 | 
			
		|||
    };
 | 
			
		||||
    U u;
 | 
			
		||||
 | 
			
		||||
#if !defined(NDEBUG)
 | 
			
		||||
    impl_.AssertValidType(&flags_internal::FlagStaticTypeIdGen<T>);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    impl_.Get(&u.value);
 | 
			
		||||
    return std::move(u.value);
 | 
			
		||||
  }
 | 
			
		||||
  void Set(const T& v) { impl_.Set(v); }
 | 
			
		||||
  void Set(const T& v) {
 | 
			
		||||
    impl_.AssertValidType(&flags_internal::FlagStaticTypeIdGen<T>);
 | 
			
		||||
    impl_.Write(&v);
 | 
			
		||||
  }
 | 
			
		||||
  void SetCallback(const FlagCallbackFunc mutation_callback) {
 | 
			
		||||
    impl_.SetCallback(mutation_callback);
 | 
			
		||||
  }
 | 
			
		||||
| 
						 | 
				
			
			@ -619,7 +605,7 @@ class Flag final : public flags_internal::CommandLineFlag {
 | 
			
		|||
};
 | 
			
		||||
 | 
			
		||||
template <typename T>
 | 
			
		||||
inline void FlagState<T>::Restore() const {
 | 
			
		||||
void FlagState<T>::Restore() const {
 | 
			
		||||
  if (flag_->RestoreState(*this)) {
 | 
			
		||||
    ABSL_INTERNAL_LOG(INFO,
 | 
			
		||||
                      absl::StrCat("Restore saved value of ", flag_->Name(),
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -955,12 +955,15 @@ H PiecewiseCombiner::add_buffer(H state, const unsigned char* data,
 | 
			
		|||
    return state;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Complete the buffer and hash it
 | 
			
		||||
  const size_t bytes_needed = PiecewiseChunkSize() - position_;
 | 
			
		||||
  memcpy(buf_ + position_, data, bytes_needed);
 | 
			
		||||
  state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize());
 | 
			
		||||
  data += bytes_needed;
 | 
			
		||||
  size -= bytes_needed;
 | 
			
		||||
  // If the buffer is partially filled we need to complete the buffer
 | 
			
		||||
  // and hash it.
 | 
			
		||||
  if (position_ != 0) {
 | 
			
		||||
    const size_t bytes_needed = PiecewiseChunkSize() - position_;
 | 
			
		||||
    memcpy(buf_ + position_, data, bytes_needed);
 | 
			
		||||
    state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize());
 | 
			
		||||
    data += bytes_needed;
 | 
			
		||||
    size -= bytes_needed;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Hash whatever chunks we can without copying
 | 
			
		||||
  while (size >= PiecewiseChunkSize()) {
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -705,6 +705,7 @@ cc_test(
 | 
			
		|||
cc_test(
 | 
			
		||||
    name = "randen_benchmarks",
 | 
			
		||||
    size = "medium",
 | 
			
		||||
    timeout = "long",
 | 
			
		||||
    srcs = ["randen_benchmarks.cc"],
 | 
			
		||||
    copts = ABSL_TEST_COPTS + ABSL_RANDOM_RANDEN_COPTS,
 | 
			
		||||
    flaky = 1,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -147,7 +147,15 @@ void Status::SetPayload(absl::string_view type_url, absl::Cord payload) {
 | 
			
		|||
bool Status::ErasePayload(absl::string_view type_url) {
 | 
			
		||||
  int index = status_internal::FindPayloadIndexByUrl(GetPayloads(), type_url);
 | 
			
		||||
  if (index != -1) {
 | 
			
		||||
    PrepareToModify();
 | 
			
		||||
    GetPayloads()->erase(GetPayloads()->begin() + index);
 | 
			
		||||
    if (GetPayloads()->empty() && message().empty()) {
 | 
			
		||||
      // Special case: If this can be represented inlined, it MUST be
 | 
			
		||||
      // inlined (EqualsSlow depends on this behavior).
 | 
			
		||||
      StatusCode c = static_cast<StatusCode>(raw_code());
 | 
			
		||||
      Unref(rep_);
 | 
			
		||||
      rep_ = CodeToInlinedRep(c);
 | 
			
		||||
    }
 | 
			
		||||
    return true;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -204,6 +204,25 @@ TEST(Status, TestComparePayloads) {
 | 
			
		|||
  EXPECT_EQ(bad_status1, bad_status2);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(Status, TestComparePayloadsAfterErase) {
 | 
			
		||||
  absl::Status payload_status(absl::StatusCode::kInternal, "");
 | 
			
		||||
  payload_status.SetPayload(kUrl1, absl::Cord(kPayload1));
 | 
			
		||||
  payload_status.SetPayload(kUrl2, absl::Cord(kPayload2));
 | 
			
		||||
 | 
			
		||||
  absl::Status empty_status(absl::StatusCode::kInternal, "");
 | 
			
		||||
 | 
			
		||||
  // Different payloads, not equal
 | 
			
		||||
  EXPECT_NE(payload_status, empty_status);
 | 
			
		||||
  EXPECT_TRUE(payload_status.ErasePayload(kUrl1));
 | 
			
		||||
 | 
			
		||||
  // Still Different payloads, still not equal.
 | 
			
		||||
  EXPECT_NE(payload_status, empty_status);
 | 
			
		||||
  EXPECT_TRUE(payload_status.ErasePayload(kUrl2));
 | 
			
		||||
 | 
			
		||||
  // Both empty payloads, should be equal
 | 
			
		||||
  EXPECT_EQ(payload_status, empty_status);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
PayloadsVec AllVisitedPayloads(const absl::Status& s) {
 | 
			
		||||
  PayloadsVec result;
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -261,6 +280,36 @@ TEST(Status, ToString) {
 | 
			
		|||
                    HasSubstr("[bar='\\xff']")));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
absl::Status EraseAndReturn(const absl::Status& base) {
 | 
			
		||||
  absl::Status copy = base;
 | 
			
		||||
  EXPECT_TRUE(copy.ErasePayload(kUrl1));
 | 
			
		||||
  return copy;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(Status, CopyOnWriteForErasePayload) {
 | 
			
		||||
  {
 | 
			
		||||
    absl::Status base(absl::StatusCode::kInvalidArgument, "fail");
 | 
			
		||||
    base.SetPayload(kUrl1, absl::Cord(kPayload1));
 | 
			
		||||
    EXPECT_TRUE(base.GetPayload(kUrl1).has_value());
 | 
			
		||||
    absl::Status copy = EraseAndReturn(base);
 | 
			
		||||
    EXPECT_TRUE(base.GetPayload(kUrl1).has_value());
 | 
			
		||||
    EXPECT_FALSE(copy.GetPayload(kUrl1).has_value());
 | 
			
		||||
  }
 | 
			
		||||
  {
 | 
			
		||||
    absl::Status base(absl::StatusCode::kInvalidArgument, "fail");
 | 
			
		||||
    base.SetPayload(kUrl1, absl::Cord(kPayload1));
 | 
			
		||||
    absl::Status copy = base;
 | 
			
		||||
 | 
			
		||||
    EXPECT_TRUE(base.GetPayload(kUrl1).has_value());
 | 
			
		||||
    EXPECT_TRUE(copy.GetPayload(kUrl1).has_value());
 | 
			
		||||
 | 
			
		||||
    EXPECT_TRUE(base.ErasePayload(kUrl1));
 | 
			
		||||
 | 
			
		||||
    EXPECT_FALSE(base.GetPayload(kUrl1).has_value());
 | 
			
		||||
    EXPECT_TRUE(copy.GetPayload(kUrl1).has_value());
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(Status, CopyConstructor) {
 | 
			
		||||
  {
 | 
			
		||||
    absl::Status status;
 | 
			
		||||
| 
						 | 
				
			
			@ -300,6 +349,14 @@ TEST(Status, CopyAssignment) {
 | 
			
		|||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(Status, CopyAssignmentIsNotRef) {
 | 
			
		||||
  const absl::Status status_orig(absl::StatusCode::kInvalidArgument, "message");
 | 
			
		||||
  absl::Status status_copy = status_orig;
 | 
			
		||||
  EXPECT_EQ(status_orig, status_copy);
 | 
			
		||||
  status_copy.SetPayload(kUrl1, absl::Cord(kPayload1));
 | 
			
		||||
  EXPECT_NE(status_orig, status_copy);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(Status, MoveConstructor) {
 | 
			
		||||
  {
 | 
			
		||||
    absl::Status status;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -30,7 +30,6 @@
 | 
			
		|||
#include "absl/base/internal/raw_logging.h"
 | 
			
		||||
#include "absl/base/port.h"
 | 
			
		||||
#include "absl/container/fixed_array.h"
 | 
			
		||||
#include "absl/container/inlined_vector.h"
 | 
			
		||||
#include "absl/strings/escaping.h"
 | 
			
		||||
#include "absl/strings/internal/cord_internal.h"
 | 
			
		||||
#include "absl/strings/internal/resize_uninitialized.h"
 | 
			
		||||
| 
						 | 
				
			
			@ -132,6 +131,14 @@ inline const CordRepExternal* CordRep::external() const {
 | 
			
		|||
  return static_cast<const CordRepExternal*>(this);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
using CordTreeConstPath = CordTreePath<const CordRep*, MaxCordDepth()>;
 | 
			
		||||
 | 
			
		||||
// This type is used to store the list of pending nodes during re-balancing.
 | 
			
		||||
// Its maximum size is 2 * MaxCordDepth() because the tree has a maximum
 | 
			
		||||
// possible depth of MaxCordDepth() and every concat node along a tree path
 | 
			
		||||
// could theoretically be split during rebalancing.
 | 
			
		||||
using RebalancingStack = CordTreePath<CordRep*, 2 * MaxCordDepth()>;
 | 
			
		||||
 | 
			
		||||
}  // namespace cord_internal
 | 
			
		||||
 | 
			
		||||
static const size_t kFlatOverhead = offsetof(CordRep, data);
 | 
			
		||||
| 
						 | 
				
			
			@ -180,8 +187,8 @@ static constexpr size_t TagToLength(uint8_t tag) {
 | 
			
		|||
// Enforce that kMaxFlatSize maps to a well-known exact tag value.
 | 
			
		||||
static_assert(TagToAllocatedSize(224) == kMaxFlatSize, "Bad tag logic");
 | 
			
		||||
 | 
			
		||||
constexpr uint64_t Fibonacci(unsigned char n, uint64_t a = 0, uint64_t b = 1) {
 | 
			
		||||
  return n == 0 ? a : Fibonacci(n - 1, b, a + b);
 | 
			
		||||
constexpr uint64_t Fibonacci(uint8_t n, uint64_t a = 0, uint64_t b = 1) {
 | 
			
		||||
  return n == 0 ? a : n == 1 ? b : Fibonacci(n - 1, b, a + b);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static_assert(Fibonacci(63) == 6557470319842,
 | 
			
		||||
| 
						 | 
				
			
			@ -189,89 +196,68 @@ static_assert(Fibonacci(63) == 6557470319842,
 | 
			
		|||
 | 
			
		||||
// Minimum length required for a given depth tree -- a tree is considered
 | 
			
		||||
// balanced if
 | 
			
		||||
//      length(t) >= min_length[depth(t)]
 | 
			
		||||
// The root node depth is allowed to become twice as large to reduce rebalancing
 | 
			
		||||
// for larger strings (see IsRootBalanced).
 | 
			
		||||
static constexpr uint64_t min_length[] = {
 | 
			
		||||
    Fibonacci(2),
 | 
			
		||||
    Fibonacci(3),
 | 
			
		||||
    Fibonacci(4),
 | 
			
		||||
    Fibonacci(5),
 | 
			
		||||
    Fibonacci(6),
 | 
			
		||||
    Fibonacci(7),
 | 
			
		||||
    Fibonacci(8),
 | 
			
		||||
    Fibonacci(9),
 | 
			
		||||
    Fibonacci(10),
 | 
			
		||||
    Fibonacci(11),
 | 
			
		||||
    Fibonacci(12),
 | 
			
		||||
    Fibonacci(13),
 | 
			
		||||
    Fibonacci(14),
 | 
			
		||||
    Fibonacci(15),
 | 
			
		||||
    Fibonacci(16),
 | 
			
		||||
    Fibonacci(17),
 | 
			
		||||
    Fibonacci(18),
 | 
			
		||||
    Fibonacci(19),
 | 
			
		||||
    Fibonacci(20),
 | 
			
		||||
    Fibonacci(21),
 | 
			
		||||
    Fibonacci(22),
 | 
			
		||||
    Fibonacci(23),
 | 
			
		||||
    Fibonacci(24),
 | 
			
		||||
    Fibonacci(25),
 | 
			
		||||
    Fibonacci(26),
 | 
			
		||||
    Fibonacci(27),
 | 
			
		||||
    Fibonacci(28),
 | 
			
		||||
    Fibonacci(29),
 | 
			
		||||
    Fibonacci(30),
 | 
			
		||||
    Fibonacci(31),
 | 
			
		||||
    Fibonacci(32),
 | 
			
		||||
    Fibonacci(33),
 | 
			
		||||
    Fibonacci(34),
 | 
			
		||||
    Fibonacci(35),
 | 
			
		||||
    Fibonacci(36),
 | 
			
		||||
    Fibonacci(37),
 | 
			
		||||
    Fibonacci(38),
 | 
			
		||||
    Fibonacci(39),
 | 
			
		||||
    Fibonacci(40),
 | 
			
		||||
    Fibonacci(41),
 | 
			
		||||
    Fibonacci(42),
 | 
			
		||||
    Fibonacci(43),
 | 
			
		||||
    Fibonacci(44),
 | 
			
		||||
    Fibonacci(45),
 | 
			
		||||
    Fibonacci(46),
 | 
			
		||||
    Fibonacci(47),
 | 
			
		||||
    0xffffffffffffffffull,  // Avoid overflow
 | 
			
		||||
};
 | 
			
		||||
//      length(t) >= kMinLength[depth(t)]
 | 
			
		||||
// The node depth is allowed to become larger to reduce rebalancing
 | 
			
		||||
// for larger strings (see ShouldRebalance).
 | 
			
		||||
constexpr uint64_t kMinLength[] = {
 | 
			
		||||
    Fibonacci(2),  Fibonacci(3),  Fibonacci(4),  Fibonacci(5),  Fibonacci(6),
 | 
			
		||||
    Fibonacci(7),  Fibonacci(8),  Fibonacci(9),  Fibonacci(10), Fibonacci(11),
 | 
			
		||||
    Fibonacci(12), Fibonacci(13), Fibonacci(14), Fibonacci(15), Fibonacci(16),
 | 
			
		||||
    Fibonacci(17), Fibonacci(18), Fibonacci(19), Fibonacci(20), Fibonacci(21),
 | 
			
		||||
    Fibonacci(22), Fibonacci(23), Fibonacci(24), Fibonacci(25), Fibonacci(26),
 | 
			
		||||
    Fibonacci(27), Fibonacci(28), Fibonacci(29), Fibonacci(30), Fibonacci(31),
 | 
			
		||||
    Fibonacci(32), Fibonacci(33), Fibonacci(34), Fibonacci(35), Fibonacci(36),
 | 
			
		||||
    Fibonacci(37), Fibonacci(38), Fibonacci(39), Fibonacci(40), Fibonacci(41),
 | 
			
		||||
    Fibonacci(42), Fibonacci(43), Fibonacci(44), Fibonacci(45), Fibonacci(46),
 | 
			
		||||
    Fibonacci(47), Fibonacci(48), Fibonacci(49), Fibonacci(50), Fibonacci(51),
 | 
			
		||||
    Fibonacci(52), Fibonacci(53), Fibonacci(54), Fibonacci(55), Fibonacci(56),
 | 
			
		||||
    Fibonacci(57), Fibonacci(58), Fibonacci(59), Fibonacci(60), Fibonacci(61),
 | 
			
		||||
    Fibonacci(62), Fibonacci(63), Fibonacci(64), Fibonacci(65), Fibonacci(66),
 | 
			
		||||
    Fibonacci(67), Fibonacci(68), Fibonacci(69), Fibonacci(70), Fibonacci(71),
 | 
			
		||||
    Fibonacci(72), Fibonacci(73), Fibonacci(74), Fibonacci(75), Fibonacci(76),
 | 
			
		||||
    Fibonacci(77), Fibonacci(78), Fibonacci(79), Fibonacci(80), Fibonacci(81),
 | 
			
		||||
    Fibonacci(82), Fibonacci(83), Fibonacci(84), Fibonacci(85), Fibonacci(86),
 | 
			
		||||
    Fibonacci(87), Fibonacci(88), Fibonacci(89), Fibonacci(90), Fibonacci(91),
 | 
			
		||||
    Fibonacci(92), Fibonacci(93)};
 | 
			
		||||
 | 
			
		||||
static const int kMinLengthSize = ABSL_ARRAYSIZE(min_length);
 | 
			
		||||
static_assert(sizeof(kMinLength) / sizeof(uint64_t) ==
 | 
			
		||||
                  (cord_internal::MaxCordDepth() + 1),
 | 
			
		||||
              "Not enough elements in kMinLength array to cover all the "
 | 
			
		||||
              "supported Cord depth(s)");
 | 
			
		||||
 | 
			
		||||
// The inlined size to use with absl::InlinedVector.
 | 
			
		||||
//
 | 
			
		||||
// Note: The InlinedVectors in this file (and in cord.h) do not need to use
 | 
			
		||||
// the same value for their inlined size. The fact that they do is historical.
 | 
			
		||||
// It may be desirable for each to use a different inlined size optimized for
 | 
			
		||||
// that InlinedVector's usage.
 | 
			
		||||
//
 | 
			
		||||
// TODO(jgm): Benchmark to see if there's a more optimal value than 47 for
 | 
			
		||||
// the inlined vector size (47 exists for backward compatibility).
 | 
			
		||||
static const int kInlinedVectorSize = 47;
 | 
			
		||||
inline bool ShouldRebalance(const CordRep* node) {
 | 
			
		||||
  if (node->tag != CONCAT) return false;
 | 
			
		||||
 | 
			
		||||
static inline bool IsRootBalanced(CordRep* node) {
 | 
			
		||||
  if (node->tag != CONCAT) {
 | 
			
		||||
    return true;
 | 
			
		||||
  } else if (node->concat()->depth() <= 15) {
 | 
			
		||||
    return true;
 | 
			
		||||
  } else if (node->concat()->depth() > kMinLengthSize) {
 | 
			
		||||
    return false;
 | 
			
		||||
  } else {
 | 
			
		||||
    // Allow depth to become twice as large as implied by fibonacci rule to
 | 
			
		||||
    // reduce rebalancing for larger strings.
 | 
			
		||||
    return (node->length >= min_length[node->concat()->depth() / 2]);
 | 
			
		||||
  }
 | 
			
		||||
  size_t node_depth = node->concat()->depth();
 | 
			
		||||
 | 
			
		||||
  if (node_depth <= 15) return false;
 | 
			
		||||
 | 
			
		||||
  // Rebalancing Cords is expensive, so we reduce how often rebalancing occurs
 | 
			
		||||
  // by allowing shallow Cords to have twice the depth that the Fibonacci rule
 | 
			
		||||
  // would otherwise imply. Deep Cords need to follow the rule more closely,
 | 
			
		||||
  // however to ensure algorithm correctness. We implement this with linear
 | 
			
		||||
  // interpolation. Cords of depth 16 are treated as though they have a depth
 | 
			
		||||
  // of 16 * 1/2, and Cords of depth MaxCordDepth() interpolate to
 | 
			
		||||
  // MaxCordDepth() * 1.
 | 
			
		||||
  return node->length <
 | 
			
		||||
         kMinLength[(node_depth * (cord_internal::MaxCordDepth() - 16)) /
 | 
			
		||||
                    (2 * cord_internal::MaxCordDepth() - 16 - node_depth)];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Unlike root balancing condition this one is part of the re-balancing
 | 
			
		||||
// algorithm and has to be always matching against right depth for
 | 
			
		||||
// algorithm to be correct.
 | 
			
		||||
inline bool IsNodeBalanced(const CordRep* node) {
 | 
			
		||||
  if (node->tag != CONCAT) return true;
 | 
			
		||||
 | 
			
		||||
  size_t node_depth = node->concat()->depth();
 | 
			
		||||
 | 
			
		||||
  return node->length >= kMinLength[node_depth];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static CordRep* Rebalance(CordRep* node);
 | 
			
		||||
static void DumpNode(CordRep* rep, bool include_data, std::ostream* os);
 | 
			
		||||
static bool VerifyNode(CordRep* root, CordRep* start_node,
 | 
			
		||||
static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os);
 | 
			
		||||
static bool VerifyNode(const CordRep* root, const CordRep* start_node,
 | 
			
		||||
                       bool full_validation);
 | 
			
		||||
 | 
			
		||||
static inline CordRep* VerifyTree(CordRep* node) {
 | 
			
		||||
| 
						 | 
				
			
			@ -318,7 +304,8 @@ __attribute__((preserve_most))
 | 
			
		|||
static void UnrefInternal(CordRep* rep) {
 | 
			
		||||
  assert(rep != nullptr);
 | 
			
		||||
 | 
			
		||||
  absl::InlinedVector<CordRep*, kInlinedVectorSize> pending;
 | 
			
		||||
  cord_internal::RebalancingStack pending;
 | 
			
		||||
 | 
			
		||||
  while (true) {
 | 
			
		||||
    if (rep->tag == CONCAT) {
 | 
			
		||||
      CordRepConcat* rep_concat = rep->concat();
 | 
			
		||||
| 
						 | 
				
			
			@ -400,6 +387,11 @@ static void SetConcatChildren(CordRepConcat* concat, CordRep* left,
 | 
			
		|||
 | 
			
		||||
  concat->length = left->length + right->length;
 | 
			
		||||
  concat->set_depth(1 + std::max(Depth(left), Depth(right)));
 | 
			
		||||
 | 
			
		||||
  ABSL_INTERNAL_CHECK(concat->depth() <= cord_internal::MaxCordDepth(),
 | 
			
		||||
                      "Cord depth exceeds max");
 | 
			
		||||
  ABSL_INTERNAL_CHECK(concat->length >= left->length, "Cord is too long");
 | 
			
		||||
  ABSL_INTERNAL_CHECK(concat->length >= right->length, "Cord is too long");
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Create a concatenation of the specified nodes.
 | 
			
		||||
| 
						 | 
				
			
			@ -425,7 +417,7 @@ static CordRep* RawConcat(CordRep* left, CordRep* right) {
 | 
			
		|||
 | 
			
		||||
static CordRep* Concat(CordRep* left, CordRep* right) {
 | 
			
		||||
  CordRep* rep = RawConcat(left, right);
 | 
			
		||||
  if (rep != nullptr && !IsRootBalanced(rep)) {
 | 
			
		||||
  if (rep != nullptr && ShouldRebalance(rep)) {
 | 
			
		||||
    rep = Rebalance(rep);
 | 
			
		||||
  }
 | 
			
		||||
  return VerifyTree(rep);
 | 
			
		||||
| 
						 | 
				
			
			@ -916,7 +908,7 @@ void Cord::Prepend(absl::string_view src) {
 | 
			
		|||
static CordRep* RemovePrefixFrom(CordRep* node, size_t n) {
 | 
			
		||||
  if (n >= node->length) return nullptr;
 | 
			
		||||
  if (n == 0) return Ref(node);
 | 
			
		||||
  absl::InlinedVector<CordRep*, kInlinedVectorSize> rhs_stack;
 | 
			
		||||
  cord_internal::CordTreeMutablePath rhs_stack;
 | 
			
		||||
 | 
			
		||||
  while (node->tag == CONCAT) {
 | 
			
		||||
    assert(n <= node->length);
 | 
			
		||||
| 
						 | 
				
			
			@ -957,7 +949,7 @@ static CordRep* RemovePrefixFrom(CordRep* node, size_t n) {
 | 
			
		|||
static CordRep* RemoveSuffixFrom(CordRep* node, size_t n) {
 | 
			
		||||
  if (n >= node->length) return nullptr;
 | 
			
		||||
  if (n == 0) return Ref(node);
 | 
			
		||||
  absl::InlinedVector<CordRep*, kInlinedVectorSize> lhs_stack;
 | 
			
		||||
  absl::cord_internal::CordTreeMutablePath lhs_stack;
 | 
			
		||||
  bool inplace_ok = node->refcount.IsOne();
 | 
			
		||||
 | 
			
		||||
  while (node->tag == CONCAT) {
 | 
			
		||||
| 
						 | 
				
			
			@ -1028,6 +1020,7 @@ void Cord::RemoveSuffix(size_t n) {
 | 
			
		|||
 | 
			
		||||
// Work item for NewSubRange().
 | 
			
		||||
struct SubRange {
 | 
			
		||||
  SubRange() = default;
 | 
			
		||||
  SubRange(CordRep* a_node, size_t a_pos, size_t a_n)
 | 
			
		||||
      : node(a_node), pos(a_pos), n(a_n) {}
 | 
			
		||||
  CordRep* node;  // nullptr means concat last 2 results.
 | 
			
		||||
| 
						 | 
				
			
			@ -1036,8 +1029,11 @@ struct SubRange {
 | 
			
		|||
};
 | 
			
		||||
 | 
			
		||||
static CordRep* NewSubRange(CordRep* node, size_t pos, size_t n) {
 | 
			
		||||
  absl::InlinedVector<CordRep*, kInlinedVectorSize> results;
 | 
			
		||||
  absl::InlinedVector<SubRange, kInlinedVectorSize> todo;
 | 
			
		||||
  cord_internal::CordTreeMutablePath results;
 | 
			
		||||
  // The algorithm below in worst case scenario adds up to 3 nodes to the `todo`
 | 
			
		||||
  // list, but we also pop one out on every cycle. If original tree has depth d
 | 
			
		||||
  // todo list can grew up to 2*d in size.
 | 
			
		||||
  cord_internal::CordTreePath<SubRange, 2 * cord_internal::MaxCordDepth()> todo;
 | 
			
		||||
  todo.push_back(SubRange(node, pos, n));
 | 
			
		||||
  do {
 | 
			
		||||
    const SubRange& sr = todo.back();
 | 
			
		||||
| 
						 | 
				
			
			@ -1074,7 +1070,7 @@ static CordRep* NewSubRange(CordRep* node, size_t pos, size_t n) {
 | 
			
		|||
    }
 | 
			
		||||
  } while (!todo.empty());
 | 
			
		||||
  assert(results.size() == 1);
 | 
			
		||||
  return results[0];
 | 
			
		||||
  return results.back();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Cord Cord::Subcord(size_t pos, size_t new_size) const {
 | 
			
		||||
| 
						 | 
				
			
			@ -1113,11 +1109,12 @@ Cord Cord::Subcord(size_t pos, size_t new_size) const {
 | 
			
		|||
 | 
			
		||||
class CordForest {
 | 
			
		||||
 public:
 | 
			
		||||
  explicit CordForest(size_t length)
 | 
			
		||||
      : root_length_(length), trees_(kMinLengthSize, nullptr) {}
 | 
			
		||||
  explicit CordForest(size_t length) : root_length_(length), trees_({}) {}
 | 
			
		||||
 | 
			
		||||
  void Build(CordRep* cord_root) {
 | 
			
		||||
    std::vector<CordRep*> pending = {cord_root};
 | 
			
		||||
    // We are adding up to two nodes to the `pending` list, but we also popping
 | 
			
		||||
    // one, so the size of `pending` will never exceed `MaxCordDepth()`.
 | 
			
		||||
    cord_internal::CordTreeMutablePath pending(cord_root);
 | 
			
		||||
 | 
			
		||||
    while (!pending.empty()) {
 | 
			
		||||
      CordRep* node = pending.back();
 | 
			
		||||
| 
						 | 
				
			
			@ -1129,21 +1126,20 @@ class CordForest {
 | 
			
		|||
      }
 | 
			
		||||
 | 
			
		||||
      CordRepConcat* concat_node = node->concat();
 | 
			
		||||
      if (concat_node->depth() >= kMinLengthSize ||
 | 
			
		||||
          concat_node->length < min_length[concat_node->depth()]) {
 | 
			
		||||
        pending.push_back(concat_node->right);
 | 
			
		||||
        pending.push_back(concat_node->left);
 | 
			
		||||
 | 
			
		||||
        if (concat_node->refcount.IsOne()) {
 | 
			
		||||
          concat_node->left = concat_freelist_;
 | 
			
		||||
          concat_freelist_ = concat_node;
 | 
			
		||||
        } else {
 | 
			
		||||
          Ref(concat_node->right);
 | 
			
		||||
          Ref(concat_node->left);
 | 
			
		||||
          Unref(concat_node);
 | 
			
		||||
        }
 | 
			
		||||
      } else {
 | 
			
		||||
      if (IsNodeBalanced(concat_node)) {
 | 
			
		||||
        AddNode(node);
 | 
			
		||||
        continue;
 | 
			
		||||
      }
 | 
			
		||||
      pending.push_back(concat_node->right);
 | 
			
		||||
      pending.push_back(concat_node->left);
 | 
			
		||||
 | 
			
		||||
      if (concat_node->refcount.IsOne()) {
 | 
			
		||||
        concat_node->left = concat_freelist_;
 | 
			
		||||
        concat_freelist_ = concat_node;
 | 
			
		||||
      } else {
 | 
			
		||||
        Ref(concat_node->right);
 | 
			
		||||
        Ref(concat_node->left);
 | 
			
		||||
        Unref(concat_node);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
| 
						 | 
				
			
			@ -1175,7 +1171,7 @@ class CordForest {
 | 
			
		|||
 | 
			
		||||
    // Collect together everything with which we will merge node
 | 
			
		||||
    int i = 0;
 | 
			
		||||
    for (; node->length > min_length[i + 1]; ++i) {
 | 
			
		||||
    for (; node->length > kMinLength[i + 1]; ++i) {
 | 
			
		||||
      auto& tree_at_i = trees_[i];
 | 
			
		||||
 | 
			
		||||
      if (tree_at_i == nullptr) continue;
 | 
			
		||||
| 
						 | 
				
			
			@ -1186,7 +1182,7 @@ class CordForest {
 | 
			
		|||
    sum = AppendNode(node, sum);
 | 
			
		||||
 | 
			
		||||
    // Insert sum into appropriate place in the forest
 | 
			
		||||
    for (; sum->length >= min_length[i]; ++i) {
 | 
			
		||||
    for (; sum->length >= kMinLength[i]; ++i) {
 | 
			
		||||
      auto& tree_at_i = trees_[i];
 | 
			
		||||
      if (tree_at_i == nullptr) continue;
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1194,7 +1190,7 @@ class CordForest {
 | 
			
		|||
      tree_at_i = nullptr;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // min_length[0] == 1, which means sum->length >= min_length[0]
 | 
			
		||||
    // kMinLength[0] == 1, which means sum->length >= kMinLength[0]
 | 
			
		||||
    assert(i > 0);
 | 
			
		||||
    trees_[i - 1] = sum;
 | 
			
		||||
  }
 | 
			
		||||
| 
						 | 
				
			
			@ -1227,9 +1223,7 @@ class CordForest {
 | 
			
		|||
  }
 | 
			
		||||
 | 
			
		||||
  size_t root_length_;
 | 
			
		||||
 | 
			
		||||
  // use an inlined vector instead of a flat array to get bounds checking
 | 
			
		||||
  absl::InlinedVector<CordRep*, kInlinedVectorSize> trees_;
 | 
			
		||||
  std::array<cord_internal::CordRep*, cord_internal::MaxCordDepth()> trees_;
 | 
			
		||||
 | 
			
		||||
  // List of concat nodes we can re-use for Cord balancing.
 | 
			
		||||
  CordRepConcat* concat_freelist_ = nullptr;
 | 
			
		||||
| 
						 | 
				
			
			@ -1841,18 +1835,18 @@ absl::string_view Cord::FlattenSlowPath() {
 | 
			
		|||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void DumpNode(CordRep* rep, bool include_data, std::ostream* os) {
 | 
			
		||||
static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os) {
 | 
			
		||||
  const int kIndentStep = 1;
 | 
			
		||||
  int indent = 0;
 | 
			
		||||
  absl::InlinedVector<CordRep*, kInlinedVectorSize> stack;
 | 
			
		||||
  absl::InlinedVector<int, kInlinedVectorSize> indents;
 | 
			
		||||
  cord_internal::CordTreeConstPath stack;
 | 
			
		||||
  cord_internal::CordTreePath<int, cord_internal::MaxCordDepth()> indents;
 | 
			
		||||
  for (;;) {
 | 
			
		||||
    *os << std::setw(3) << rep->refcount.Get();
 | 
			
		||||
    *os << " " << std::setw(7) << rep->length;
 | 
			
		||||
    *os << " [";
 | 
			
		||||
    if (include_data) *os << static_cast<void*>(rep);
 | 
			
		||||
    if (include_data) *os << static_cast<const void*>(rep);
 | 
			
		||||
    *os << "]";
 | 
			
		||||
    *os << " " << (IsRootBalanced(rep) ? 'b' : 'u');
 | 
			
		||||
    *os << " " << (IsNodeBalanced(rep) ? 'b' : 'u');
 | 
			
		||||
    *os << " " << std::setw(indent) << "";
 | 
			
		||||
    if (rep->tag == CONCAT) {
 | 
			
		||||
      *os << "CONCAT depth=" << Depth(rep) << "\n";
 | 
			
		||||
| 
						 | 
				
			
			@ -1873,7 +1867,7 @@ static void DumpNode(CordRep* rep, bool include_data, std::ostream* os) {
 | 
			
		|||
      } else {
 | 
			
		||||
        *os << "FLAT cap=" << TagToLength(rep->tag) << " [";
 | 
			
		||||
        if (include_data)
 | 
			
		||||
          *os << absl::CEscape(std::string(rep->data, rep->length));
 | 
			
		||||
          *os << absl::CEscape(absl::string_view(rep->data, rep->length));
 | 
			
		||||
        *os << "]\n";
 | 
			
		||||
      }
 | 
			
		||||
      if (stack.empty()) break;
 | 
			
		||||
| 
						 | 
				
			
			@ -1886,19 +1880,19 @@ static void DumpNode(CordRep* rep, bool include_data, std::ostream* os) {
 | 
			
		|||
  ABSL_INTERNAL_CHECK(indents.empty(), "");
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static std::string ReportError(CordRep* root, CordRep* node) {
 | 
			
		||||
static std::string ReportError(const CordRep* root, const CordRep* node) {
 | 
			
		||||
  std::ostringstream buf;
 | 
			
		||||
  buf << "Error at node " << node << " in:";
 | 
			
		||||
  DumpNode(root, true, &buf);
 | 
			
		||||
  return buf.str();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static bool VerifyNode(CordRep* root, CordRep* start_node,
 | 
			
		||||
static bool VerifyNode(const CordRep* root, const CordRep* start_node,
 | 
			
		||||
                       bool full_validation) {
 | 
			
		||||
  absl::InlinedVector<CordRep*, 2> worklist;
 | 
			
		||||
  cord_internal::CordTreeConstPath worklist;
 | 
			
		||||
  worklist.push_back(start_node);
 | 
			
		||||
  do {
 | 
			
		||||
    CordRep* node = worklist.back();
 | 
			
		||||
    const CordRep* node = worklist.back();
 | 
			
		||||
    worklist.pop_back();
 | 
			
		||||
 | 
			
		||||
    ABSL_INTERNAL_CHECK(node != nullptr, ReportError(root, node));
 | 
			
		||||
| 
						 | 
				
			
			@ -1948,7 +1942,7 @@ static bool VerifyNode(CordRep* root, CordRep* start_node,
 | 
			
		|||
  // Iterate over the tree. cur_node is never a leaf node and leaf nodes will
 | 
			
		||||
  // never be appended to tree_stack. This reduces overhead from manipulating
 | 
			
		||||
  // tree_stack.
 | 
			
		||||
  absl::InlinedVector<const CordRep*, kInlinedVectorSize> tree_stack;
 | 
			
		||||
  cord_internal::CordTreeConstPath tree_stack;
 | 
			
		||||
  const CordRep* cur_node = rep;
 | 
			
		||||
  while (true) {
 | 
			
		||||
    const CordRep* next_node = nullptr;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -41,13 +41,13 @@
 | 
			
		|||
#include <iostream>
 | 
			
		||||
#include <iterator>
 | 
			
		||||
#include <string>
 | 
			
		||||
#include <type_traits>
 | 
			
		||||
 | 
			
		||||
#include "absl/base/internal/endian.h"
 | 
			
		||||
#include "absl/base/internal/invoke.h"
 | 
			
		||||
#include "absl/base/internal/per_thread_tls.h"
 | 
			
		||||
#include "absl/base/macros.h"
 | 
			
		||||
#include "absl/base/port.h"
 | 
			
		||||
#include "absl/container/inlined_vector.h"
 | 
			
		||||
#include "absl/functional/function_ref.h"
 | 
			
		||||
#include "absl/meta/type_traits.h"
 | 
			
		||||
#include "absl/strings/internal/cord_internal.h"
 | 
			
		||||
| 
						 | 
				
			
			@ -66,6 +66,73 @@ template <typename H>
 | 
			
		|||
H HashFragmentedCord(H, const Cord&);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
namespace cord_internal {
 | 
			
		||||
 | 
			
		||||
// It's expensive to keep a tree perfectly balanced, so instead we keep trees
 | 
			
		||||
// approximately balanced.  A tree node N of depth D(N) that contains a string
 | 
			
		||||
// of L(N) characters is considered balanced if L >= Fibonacci(D + 2).
 | 
			
		||||
// The "+ 2" is used to ensure that every leaf node contains at least one
 | 
			
		||||
// character. Here we presume that
 | 
			
		||||
//   Fibonacci(0) = 0
 | 
			
		||||
//   Fibonacci(1) = 1
 | 
			
		||||
//   Fibonacci(2) = 1
 | 
			
		||||
//   Fibonacci(3) = 2
 | 
			
		||||
//   ...
 | 
			
		||||
//
 | 
			
		||||
// Fibonacci numbers are convenient because it means when two balanced trees of
 | 
			
		||||
// the same depth are made the children of a new node, the resulting tree is
 | 
			
		||||
// guaranteed to also be balanced:
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
//   L(left)  >= Fibonacci(D(left) + 2)
 | 
			
		||||
//   L(right) >= Fibonacci(D(right) + 2)
 | 
			
		||||
//
 | 
			
		||||
//   L(left) + L(right) >= Fibonacci(D(left) + 2) + Fibonacci(D(right) + 2)
 | 
			
		||||
//   L(left) + L(right) == L(new_tree)
 | 
			
		||||
//
 | 
			
		||||
//   L(new_tree) >= 2 * Fibonacci(D(child) + 2)
 | 
			
		||||
//   D(child) == D(new_tree) - 1
 | 
			
		||||
//
 | 
			
		||||
//   L(new_tree) >= 2 * Fibonacci(D(new_tree) + 1)
 | 
			
		||||
//   2 * Fibonacci(N) >= Fibonacci(N + 1)
 | 
			
		||||
//
 | 
			
		||||
//   L(new_tree) >= Fibonacci(D(new_tree) + 2)
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
// The 93rd Fibonacci number is the largest Fibonacci number that can be
 | 
			
		||||
// represented in 64 bits, so the size of a balanced Cord of depth 92 is too big
 | 
			
		||||
// for an unsigned 64 bit integer to hold.  Therefore we can safely assume that
 | 
			
		||||
// the maximum depth of a Cord is 91.
 | 
			
		||||
constexpr size_t MaxCordDepth() { return 91; }
 | 
			
		||||
 | 
			
		||||
// This class models fixed max size stack of CordRep pointers.
 | 
			
		||||
// The elements are being pushed back and popped from the back.
 | 
			
		||||
template <typename CordRepPtr, size_t N>
 | 
			
		||||
class CordTreePath {
 | 
			
		||||
 public:
 | 
			
		||||
  CordTreePath() {}
 | 
			
		||||
  explicit CordTreePath(CordRepPtr root) { push_back(root); }
 | 
			
		||||
 | 
			
		||||
  bool empty() const { return size_ == 0; }
 | 
			
		||||
  size_t size() const { return size_; }
 | 
			
		||||
  void clear() { size_ = 0; }
 | 
			
		||||
 | 
			
		||||
  CordRepPtr back() { return data_[size_ - 1]; }
 | 
			
		||||
 | 
			
		||||
  void pop_back() {
 | 
			
		||||
    --size_;
 | 
			
		||||
    assert(size_ < N);
 | 
			
		||||
  }
 | 
			
		||||
  void push_back(CordRepPtr elem) { data_[size_++] = elem; }
 | 
			
		||||
 | 
			
		||||
 private:
 | 
			
		||||
  CordRepPtr data_[N];
 | 
			
		||||
  size_t size_ = 0;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
using CordTreeMutablePath = CordTreePath<CordRep*, MaxCordDepth()>;
 | 
			
		||||
}  // namespace cord_internal
 | 
			
		||||
 | 
			
		||||
// A Cord is a sequence of characters.
 | 
			
		||||
class Cord {
 | 
			
		||||
 private:
 | 
			
		||||
| 
						 | 
				
			
			@ -114,7 +181,8 @@ class Cord {
 | 
			
		|||
  // finished with `data`. The data must remain live and unchanging until the
 | 
			
		||||
  // releaser is called. The requirements for the releaser are that it:
 | 
			
		||||
  //   * is move constructible,
 | 
			
		||||
  //   * supports `void operator()(absl::string_view) const`,
 | 
			
		||||
  //   * supports `void operator()(absl::string_view) const` or
 | 
			
		||||
  //     `void operator()() const`,
 | 
			
		||||
  //   * does not have alignment requirement greater than what is guaranteed by
 | 
			
		||||
  //     ::operator new. This is dictated by alignof(std::max_align_t) before
 | 
			
		||||
  //     C++17 and __STDCPP_DEFAULT_NEW_ALIGNMENT__ if compiling with C++17 or
 | 
			
		||||
| 
						 | 
				
			
			@ -127,8 +195,8 @@ class Cord {
 | 
			
		|||
  //   FillBlock(block);
 | 
			
		||||
  //   return absl::MakeCordFromExternal(
 | 
			
		||||
  //       block->ToStringView(),
 | 
			
		||||
  //       [pool, block](absl::string_view /*ignored*/) {
 | 
			
		||||
  //         pool->FreeBlock(block);
 | 
			
		||||
  //       [pool, block](absl::string_view v) {
 | 
			
		||||
  //         pool->FreeBlock(block, v);
 | 
			
		||||
  //       });
 | 
			
		||||
  // }
 | 
			
		||||
  //
 | 
			
		||||
| 
						 | 
				
			
			@ -282,8 +350,7 @@ class Cord {
 | 
			
		|||
    absl::cord_internal::CordRep* current_leaf_ = nullptr;
 | 
			
		||||
    // The number of bytes left in the `Cord` over which we are iterating.
 | 
			
		||||
    size_t bytes_remaining_ = 0;
 | 
			
		||||
    absl::InlinedVector<absl::cord_internal::CordRep*, 4>
 | 
			
		||||
        stack_of_right_children_;
 | 
			
		||||
    absl::cord_internal::CordTreeMutablePath stack_of_right_children_;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // Returns an iterator to the first chunk of the `Cord`.
 | 
			
		||||
| 
						 | 
				
			
			@ -667,6 +734,21 @@ ExternalRepReleaserPair NewExternalWithUninitializedReleaser(
 | 
			
		|||
    absl::string_view data, ExternalReleaserInvoker invoker,
 | 
			
		||||
    size_t releaser_size);
 | 
			
		||||
 | 
			
		||||
struct Rank1 {};
 | 
			
		||||
struct Rank0 : Rank1 {};
 | 
			
		||||
 | 
			
		||||
template <typename Releaser, typename = ::absl::base_internal::InvokeT<
 | 
			
		||||
                                 Releaser, absl::string_view>>
 | 
			
		||||
void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view data) {
 | 
			
		||||
  ::absl::base_internal::Invoke(std::forward<Releaser>(releaser), data);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename Releaser,
 | 
			
		||||
          typename = ::absl::base_internal::InvokeT<Releaser>>
 | 
			
		||||
void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view) {
 | 
			
		||||
  ::absl::base_internal::Invoke(std::forward<Releaser>(releaser));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Creates a new `CordRep` that owns `data` and `releaser` and returns a pointer
 | 
			
		||||
// to it, or `nullptr` if `data` was empty.
 | 
			
		||||
template <typename Releaser>
 | 
			
		||||
| 
						 | 
				
			
			@ -684,14 +766,14 @@ CordRep* NewExternalRep(absl::string_view data, Releaser&& releaser) {
 | 
			
		|||
  using ReleaserType = absl::decay_t<Releaser>;
 | 
			
		||||
  if (data.empty()) {
 | 
			
		||||
    // Never create empty external nodes.
 | 
			
		||||
    ::absl::base_internal::Invoke(
 | 
			
		||||
        ReleaserType(std::forward<Releaser>(releaser)), data);
 | 
			
		||||
    InvokeReleaser(Rank0{}, ReleaserType(std::forward<Releaser>(releaser)),
 | 
			
		||||
                   data);
 | 
			
		||||
    return nullptr;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  auto releaser_invoker = [](void* type_erased_releaser, absl::string_view d) {
 | 
			
		||||
    auto* my_releaser = static_cast<ReleaserType*>(type_erased_releaser);
 | 
			
		||||
    ::absl::base_internal::Invoke(std::move(*my_releaser), d);
 | 
			
		||||
    InvokeReleaser(Rank0{}, std::move(*my_releaser), d);
 | 
			
		||||
    my_releaser->~ReleaserType();
 | 
			
		||||
    return sizeof(Releaser);
 | 
			
		||||
  };
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1032,6 +1032,19 @@ TEST(ConstructFromExternal, MoveOnlyReleaser) {
 | 
			
		|||
  EXPECT_TRUE(invoked);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(ConstructFromExternal, NoArgLambda) {
 | 
			
		||||
  bool invoked = false;
 | 
			
		||||
  (void)absl::MakeCordFromExternal("dummy", [&invoked]() { invoked = true; });
 | 
			
		||||
  EXPECT_TRUE(invoked);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(ConstructFromExternal, StringViewArgLambda) {
 | 
			
		||||
  bool invoked = false;
 | 
			
		||||
  (void)absl::MakeCordFromExternal(
 | 
			
		||||
      "dummy", [&invoked](absl::string_view) { invoked = true; });
 | 
			
		||||
  EXPECT_TRUE(invoked);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(ConstructFromExternal, NonTrivialReleaserDestructor) {
 | 
			
		||||
  struct Releaser {
 | 
			
		||||
    explicit Releaser(bool* destroyed) : destroyed(destroyed) {}
 | 
			
		||||
| 
						 | 
				
			
			@ -1346,6 +1359,49 @@ TEST(CordChunkIterator, Operations) {
 | 
			
		|||
  VerifyChunkIterator(subcords, 128);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(CordChunkIterator, MaxLengthFullTree) {
 | 
			
		||||
  absl::Cord cord;
 | 
			
		||||
  size_t size = 1;
 | 
			
		||||
  AddExternalMemory("x", &cord);
 | 
			
		||||
  EXPECT_EQ(cord.size(), size);
 | 
			
		||||
 | 
			
		||||
  for (int i = 0; i < 63; ++i) {
 | 
			
		||||
    cord.Prepend(absl::Cord(cord));
 | 
			
		||||
    size <<= 1;
 | 
			
		||||
 | 
			
		||||
    EXPECT_EQ(cord.size(), size);
 | 
			
		||||
 | 
			
		||||
    auto chunk_it = cord.chunk_begin();
 | 
			
		||||
    EXPECT_EQ(*chunk_it, "x");
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  EXPECT_DEATH_IF_SUPPORTED(
 | 
			
		||||
      (cord.Prepend(absl::Cord(cord)), *cord.chunk_begin()),
 | 
			
		||||
      "Cord is too long");
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(CordChunkIterator, MaxDepth) {
 | 
			
		||||
  // By reusing nodes, it's possible in pathological cases to build a Cord that
 | 
			
		||||
  // exceeds both the maximum permissible length and depth.  In this case, the
 | 
			
		||||
  // violation of the maximum depth is reported.
 | 
			
		||||
  absl::Cord left_child;
 | 
			
		||||
  AddExternalMemory("x", &left_child);
 | 
			
		||||
  absl::Cord root = left_child;
 | 
			
		||||
 | 
			
		||||
  for (int i = 0; i < 91; ++i) {
 | 
			
		||||
    size_t new_size = left_child.size() + root.size();
 | 
			
		||||
    root.Prepend(left_child);
 | 
			
		||||
    EXPECT_EQ(root.size(), new_size);
 | 
			
		||||
 | 
			
		||||
    auto chunk_it = root.chunk_begin();
 | 
			
		||||
    EXPECT_EQ(*chunk_it, "x");
 | 
			
		||||
 | 
			
		||||
    std::swap(left_child, root);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  EXPECT_DEATH_IF_SUPPORTED(root.Prepend(left_child), "Cord depth exceeds max");
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(CordCharIterator, Traits) {
 | 
			
		||||
  static_assert(std::is_copy_constructible<absl::Cord::CharIterator>::value,
 | 
			
		||||
                "");
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue