Initial Commit

This commit is contained in:
misterg 2017-09-19 16:54:40 -04:00
commit c2e7548296
238 changed files with 65475 additions and 0 deletions

369
absl/base/BUILD.bazel Normal file
View file

@ -0,0 +1,369 @@
#
# Copyright 2017 The Abseil Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
load(
"//absl:copts.bzl",
"ABSL_DEFAULT_COPTS",
"ABSL_TEST_COPTS",
"ABSL_EXCEPTIONS_FLAG",
)
load(
"//absl:test_dependencies.bzl",
"GUNIT_MAIN_DEPS_SELECTOR",
"GUNIT_MAIN_NO_LEAK_CHECK_DEPS_SELECTOR",
)
package(default_visibility = ["//visibility:public"])
licenses(["notice"]) # Apache 2.0
# Some header files in //base are directly exported for unusual use cases,
# and the ABSL versions must also be exported for those users.
exports_files(["thread_annotations.h"])
cc_library(
name = "spinlock_wait",
srcs = [
"internal/spinlock_posix.inc",
"internal/spinlock_wait.cc",
"internal/spinlock_win32.inc",
],
hdrs = [
"internal/scheduling_mode.h",
"internal/spinlock_wait.h",
],
copts = ABSL_DEFAULT_COPTS,
deps = [":core_headers"],
)
cc_library(
name = "config",
hdrs = [
"config.h",
"policy_checks.h",
],
copts = ABSL_DEFAULT_COPTS,
)
cc_library(
name = "dynamic_annotations",
srcs = ["dynamic_annotations.cc"],
hdrs = ["dynamic_annotations.h"],
copts = ABSL_DEFAULT_COPTS,
defines = ["__CLANG_SUPPORT_DYN_ANNOTATION__"],
)
cc_library(
name = "core_headers",
hdrs = [
"attributes.h",
"macros.h",
"optimization.h",
"port.h",
"thread_annotations.h",
],
copts = ABSL_DEFAULT_COPTS,
deps = [
":config",
":dynamic_annotations",
],
)
cc_library(
name = "malloc_extension",
srcs = ["internal/malloc_extension.cc"],
hdrs = [
"internal/malloc_extension.h",
"internal/malloc_extension_c.h",
],
copts = ABSL_DEFAULT_COPTS,
deps = [
":core_headers",
":dynamic_annotations",
],
)
# malloc_extension feels like it wants to be folded into this target, but
# malloc_internal gets special build treatment to compile at -O3, so these
# need to stay separate.
cc_library(
name = "malloc_internal",
srcs = [
"internal/low_level_alloc.cc",
"internal/malloc_hook.cc",
"internal/malloc_hook_mmap_linux.inc",
],
hdrs = [
"internal/low_level_alloc.h",
"internal/malloc_hook.h",
"internal/malloc_hook_c.h",
],
copts = ABSL_DEFAULT_COPTS,
textual_hdrs = [
"internal/malloc_hook_invoke.h",
],
deps = [
":base",
":config",
":core_headers",
":dynamic_annotations",
],
)
cc_library(
name = "base_internal",
hdrs = [
"internal/identity.h",
"internal/invoke.h",
],
copts = ABSL_DEFAULT_COPTS,
)
cc_library(
name = "base",
srcs = [
"internal/cycleclock.cc",
"internal/raw_logging.cc",
"internal/spinlock.cc",
"internal/sysinfo.cc",
"internal/thread_identity.cc",
"internal/unscaledcycleclock.cc",
],
hdrs = [
"call_once.h",
"casts.h",
"internal/atomic_hook.h",
"internal/cycleclock.h",
"internal/log_severity.h",
"internal/low_level_scheduling.h",
"internal/per_thread_tls.h",
"internal/raw_logging.h",
"internal/spinlock.h",
"internal/sysinfo.h",
"internal/thread_identity.h",
"internal/tsan_mutex_interface.h",
"internal/unscaledcycleclock.h",
],
copts = ABSL_DEFAULT_COPTS,
deps = [
":base_internal",
":config",
":core_headers",
":dynamic_annotations",
":spinlock_wait",
],
)
cc_test(
name = "bit_cast_test",
size = "small",
srcs = [
"bit_cast_test.cc",
],
copts = ABSL_TEST_COPTS,
deps = [
":base",
":core_headers",
] + select(GUNIT_MAIN_DEPS_SELECTOR),
)
cc_library(
name = "throw_delegate",
srcs = ["internal/throw_delegate.cc"],
hdrs = ["internal/throw_delegate.h"],
copts = ABSL_DEFAULT_COPTS + ABSL_EXCEPTIONS_FLAG,
features = [
"-use_header_modules", # b/33207452
],
deps = [
":base",
":config",
],
)
cc_test(
name = "throw_delegate_test",
srcs = ["throw_delegate_test.cc"],
copts = ABSL_TEST_COPTS + ABSL_EXCEPTIONS_FLAG,
deps = [
":throw_delegate",
] + select(GUNIT_MAIN_DEPS_SELECTOR),
)
cc_library(
name = "exception_testing",
testonly = 1,
hdrs = ["internal/exception_testing.h"],
copts = ABSL_TEST_COPTS,
deps = [
":config",
"@com_google_googletest//:gtest",
],
)
cc_test(
name = "invoke_test",
size = "small",
srcs = ["invoke_test.cc"],
copts = ABSL_TEST_COPTS,
deps = [
":base_internal",
"//absl/strings",
"//absl/memory",
] + select(GUNIT_MAIN_DEPS_SELECTOR),
)
# Common test library made available for use in non-absl code that overrides
# AbslInternalSpinLockDelay and AbslInternalSpinLockWake.
cc_library(
name = "spinlock_test_common",
testonly = 1,
srcs = ["spinlock_test_common.cc"],
copts = ABSL_TEST_COPTS,
deps = [
":base",
"//absl/synchronization",
"@com_google_googletest//:gtest",
],
alwayslink = 1,
)
cc_test(
name = "spinlock_test",
size = "medium",
srcs = ["spinlock_test_common.cc"],
copts = ABSL_TEST_COPTS,
deps = [
":base",
"//absl/synchronization",
"@com_google_googletest//:gtest_main",
],
)
cc_library(
name = "endian",
hdrs = [
"internal/endian.h",
"internal/unaligned_access.h",
],
copts = ABSL_DEFAULT_COPTS,
deps = [
":config",
":core_headers",
],
)
cc_test(
name = "endian_test",
srcs = ["internal/endian_test.cc"],
copts = ABSL_TEST_COPTS,
deps = [
":base",
":config",
":endian",
] + select(GUNIT_MAIN_DEPS_SELECTOR),
)
cc_test(
name = "config_test",
srcs = ["config_test.cc"],
copts = ABSL_TEST_COPTS,
deps = [
":config",
] + select(GUNIT_MAIN_DEPS_SELECTOR),
)
cc_test(
name = "call_once_test",
srcs = ["call_once_test.cc"],
copts = ABSL_TEST_COPTS,
deps = [
":base",
":core_headers",
"//absl/synchronization",
] + select(GUNIT_MAIN_DEPS_SELECTOR),
)
cc_test(
name = "raw_logging_test",
srcs = ["raw_logging_test.cc"],
copts = ABSL_TEST_COPTS,
deps = [
":base",
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "sysinfo_test",
size = "small",
srcs = ["internal/sysinfo_test.cc"],
copts = ABSL_TEST_COPTS,
deps = [
":base",
"//absl/synchronization",
] + select(GUNIT_MAIN_DEPS_SELECTOR),
)
cc_test(
name = "low_level_alloc_test",
size = "small",
srcs = ["internal/low_level_alloc_test.cc"],
copts = ABSL_TEST_COPTS,
linkopts = select({
"//absl:windows": [],
"//conditions:default": ["-pthread"],
}),
deps = [":malloc_internal"],
)
cc_test(
name = "thread_identity_test",
size = "small",
srcs = ["internal/thread_identity_test.cc"],
copts = ABSL_TEST_COPTS,
linkopts = select({
"//absl:windows": [],
"//conditions:default": ["-pthread"],
}),
deps = [
":base",
"//absl/synchronization",
] + select(GUNIT_MAIN_DEPS_SELECTOR),
)
cc_test(
name = "malloc_extension_system_malloc_test",
size = "small",
srcs = ["internal/malloc_extension_test.cc"],
copts = select({
"//absl:windows": [
"/DABSL_MALLOC_EXTENSION_TEST_ALLOW_MISSING_EXTENSION=1",
],
"//conditions:default": [
"-DABSL_MALLOC_EXTENSION_TEST_ALLOW_MISSING_EXTENSION=1",
],
}) + ABSL_TEST_COPTS,
features = [
# This test can't be run under lsan because the test requires system
# malloc, and lsan provides a competing malloc implementation.
"-leak_sanitize",
],
deps = [
":malloc_extension",
] + select(GUNIT_MAIN_NO_LEAK_CHECK_DEPS_SELECTOR),
)

469
absl/base/attributes.h Normal file
View file

@ -0,0 +1,469 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Various macros for C++ attributes
// This file is used for both C and C++!
//
// Most macros here are exposing GCC or Clang features, and are stubbed out for
// other compilers.
// GCC attributes documentation:
// https://gcc.gnu.org/onlinedocs/gcc-4.7.0/gcc/Function-Attributes.html
// https://gcc.gnu.org/onlinedocs/gcc-4.7.0/gcc/Variable-Attributes.html
// https://gcc.gnu.org/onlinedocs/gcc-4.7.0/gcc/Type-Attributes.html
//
// Most attributes in this file are already supported by GCC 4.7.
// However, some of them are not supported in older version of Clang.
// Thus, we check __has_attribute() first. If the check fails, we check if we
// are on GCC and assume the attribute exists on GCC (which is verified on GCC
// 4.7).
//
// For sanitizer-related attributes, define the following macros
// using -D along with the given value for -fsanitize:
// - ADDRESS_SANITIZER with -fsanitize=address (GCC 4.8+, Clang)
// - MEMORY_SANITIZER with -fsanitize=memory (Clang)
// - THREAD_SANITIZER with -fsanitize=thread (GCC 4.8+, Clang)
// - UNDEFINED_BEHAVIOR_SANITIZER with -fsanitize=undefined (GCC 4.9+, Clang)
// - CONTROL_FLOW_INTEGRITY with -fsanitize=cfi (Clang)
// Since these are only supported by GCC and Clang now, we only check for
// __GNUC__ (GCC or Clang) and the above macros.
#ifndef ABSL_BASE_ATTRIBUTES_H_
#define ABSL_BASE_ATTRIBUTES_H_
// ABSL_HAVE_ATTRIBUTE is a function-like feature checking macro.
// It's a wrapper around __has_attribute, which is defined by GCC 5+ and Clang.
// It evaluates to a nonzero constant integer if the attribute is supported
// or 0 if not.
// It evaluates to zero if __has_attribute is not defined by the compiler.
// GCC: https://gcc.gnu.org/gcc-5/changes.html
// Clang: https://clang.llvm.org/docs/LanguageExtensions.html
#ifdef __has_attribute
#define ABSL_HAVE_ATTRIBUTE(x) __has_attribute(x)
#else
#define ABSL_HAVE_ATTRIBUTE(x) 0
#endif
// ABSL_HAVE_CPP_ATTRIBUTE is a function-like feature checking macro that
// accepts C++11 style attributes. It's a wrapper around __has_cpp_attribute,
// defined by ISO C++ SD-6
// (http://en.cppreference.com/w/cpp/experimental/feature_test). If we don't
// find __has_cpp_attribute, will evaluate to 0.
#if defined(__cplusplus) && defined(__has_cpp_attribute)
// NOTE: requiring __cplusplus above should not be necessary, but
// works around https://bugs.llvm.org/show_bug.cgi?id=23435.
#define ABSL_HAVE_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
#define ABSL_HAVE_CPP_ATTRIBUTE(x) 0
#endif
// -----------------------------------------------------------------------------
// Function Attributes
// -----------------------------------------------------------------------------
// GCC: https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
// Clang: https://clang.llvm.org/docs/AttributeReference.html
// ABSL_PRINTF_ATTRIBUTE, ABSL_SCANF_ATTRIBUTE
// Tell the compiler to do printf format std::string checking if the
// compiler supports it; see the 'format' attribute in
// <http://gcc.gnu.org/onlinedocs/gcc-4.7.0/gcc/Function-Attributes.html>.
//
// N.B.: As the GCC manual states, "[s]ince non-static C++ methods
// have an implicit 'this' argument, the arguments of such methods
// should be counted from two, not one."
#if ABSL_HAVE_ATTRIBUTE(format) || (defined(__GNUC__) && !defined(__clang__))
#define ABSL_PRINTF_ATTRIBUTE(string_index, first_to_check) \
__attribute__((__format__(__printf__, string_index, first_to_check)))
#define ABSL_SCANF_ATTRIBUTE(string_index, first_to_check) \
__attribute__((__format__(__scanf__, string_index, first_to_check)))
#else
#define ABSL_PRINTF_ATTRIBUTE(string_index, first_to_check)
#define ABSL_SCANF_ATTRIBUTE(string_index, first_to_check)
#endif
// ABSL_ATTRIBUTE_ALWAYS_INLINE, ABSL_ATTRIBUTE_NOINLINE
// For functions we want to force inline or not inline.
// Introduced in gcc 3.1.
#if ABSL_HAVE_ATTRIBUTE(always_inline) || \
(defined(__GNUC__) && !defined(__clang__))
#define ABSL_ATTRIBUTE_ALWAYS_INLINE __attribute__((always_inline))
#define ABSL_HAVE_ATTRIBUTE_ALWAYS_INLINE 1
#else
#define ABSL_ATTRIBUTE_ALWAYS_INLINE
#endif
#if ABSL_HAVE_ATTRIBUTE(noinline) || (defined(__GNUC__) && !defined(__clang__))
#define ABSL_ATTRIBUTE_NOINLINE __attribute__((noinline))
#define ABSL_HAVE_ATTRIBUTE_NOINLINE 1
#else
#define ABSL_ATTRIBUTE_NOINLINE
#endif
// ABSL_ATTRIBUTE_NO_TAIL_CALL
// Prevent the compiler from optimizing away stack frames for functions which
// end in a call to another function.
#if ABSL_HAVE_ATTRIBUTE(disable_tail_calls)
#define ABSL_HAVE_ATTRIBUTE_NO_TAIL_CALL 1
#define ABSL_ATTRIBUTE_NO_TAIL_CALL __attribute__((disable_tail_calls))
#elif defined(__GNUC__) && !defined(__clang__)
#define ABSL_HAVE_ATTRIBUTE_NO_TAIL_CALL 1
#define ABSL_ATTRIBUTE_NO_TAIL_CALL \
__attribute__((optimize("no-optimize-sibling-calls")))
#else
#define ABSL_ATTRIBUTE_NO_TAIL_CALL
#define ABSL_HAVE_ATTRIBUTE_NO_TAIL_CALL 0
#endif
// ABSL_ATTRIBUTE_WEAK
// For weak functions
#if ABSL_HAVE_ATTRIBUTE(weak) || (defined(__GNUC__) && !defined(__clang__))
#undef ABSL_ATTRIBUTE_WEAK
#define ABSL_ATTRIBUTE_WEAK __attribute__((weak))
#define ABSL_HAVE_ATTRIBUTE_WEAK 1
#else
#define ABSL_ATTRIBUTE_WEAK
#define ABSL_HAVE_ATTRIBUTE_WEAK 0
#endif
// ABSL_ATTRIBUTE_NONNULL
// Tell the compiler either that a particular function parameter
// should be a non-null pointer, or that all pointer arguments should
// be non-null.
//
// Note: As the GCC manual states, "[s]ince non-static C++ methods
// have an implicit 'this' argument, the arguments of such methods
// should be counted from two, not one."
//
// Args are indexed starting at 1.
// For non-static class member functions, the implicit "this" argument
// is arg 1, and the first explicit argument is arg 2.
// For static class member functions, there is no implicit "this", and
// the first explicit argument is arg 1.
//
// /* arg_a cannot be null, but arg_b can */
// void Function(void* arg_a, void* arg_b) ABSL_ATTRIBUTE_NONNULL(1);
//
// class C {
// /* arg_a cannot be null, but arg_b can */
// void Method(void* arg_a, void* arg_b) ABSL_ATTRIBUTE_NONNULL(2);
//
// /* arg_a cannot be null, but arg_b can */
// static void StaticMethod(void* arg_a, void* arg_b)
// ABSL_ATTRIBUTE_NONNULL(1);
// };
//
// If no arguments are provided, then all pointer arguments should be non-null.
//
// /* No pointer arguments may be null. */
// void Function(void* arg_a, void* arg_b, int arg_c) ABSL_ATTRIBUTE_NONNULL();
//
// NOTE: The GCC nonnull attribute actually accepts a list of arguments, but
// ABSL_ATTRIBUTE_NONNULL does not.
#if ABSL_HAVE_ATTRIBUTE(nonnull) || (defined(__GNUC__) && !defined(__clang__))
#define ABSL_ATTRIBUTE_NONNULL(arg_index) __attribute__((nonnull(arg_index)))
#else
#define ABSL_ATTRIBUTE_NONNULL(...)
#endif
// ABSL_ATTRIBUTE_NORETURN
// Tell the compiler that a given function never returns
#if ABSL_HAVE_ATTRIBUTE(noreturn) || (defined(__GNUC__) && !defined(__clang__))
#define ABSL_ATTRIBUTE_NORETURN __attribute__((noreturn))
#elif defined(_MSC_VER)
#define ABSL_ATTRIBUTE_NORETURN __declspec(noreturn)
#else
#define ABSL_ATTRIBUTE_NORETURN
#endif
// ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS
// Tell AddressSanitizer (or other memory testing tools) to ignore a given
// function. Useful for cases when a function reads random locations on stack,
// calls _exit from a cloned subprocess, deliberately accesses buffer
// out of bounds or does other scary things with memory.
// NOTE: GCC supports AddressSanitizer(asan) since 4.8.
// https://gcc.gnu.org/gcc-4.8/changes.html
#if defined(__GNUC__) && defined(ADDRESS_SANITIZER)
#define ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS __attribute__((no_sanitize_address))
#else
#define ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS
#endif
// ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY
// Tell MemorySanitizer to relax the handling of a given function. All "Use of
// uninitialized value" warnings from such functions will be suppressed, and all
// values loaded from memory will be considered fully initialized.
// This is similar to the ADDRESS_SANITIZER attribute above, but deals with
// initializedness rather than addressability issues.
// NOTE: MemorySanitizer(msan) is supported by Clang but not GCC.
#if defined(__GNUC__) && defined(MEMORY_SANITIZER)
#define ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory))
#else
#define ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY
#endif
// ABSL_ATTRIBUTE_NO_SANITIZE_THREAD
// Tell ThreadSanitizer to not instrument a given function.
// If you are adding this attribute, please cc dynamic-tools@ on the cl.
// NOTE: GCC supports ThreadSanitizer(tsan) since 4.8.
// https://gcc.gnu.org/gcc-4.8/changes.html
#if defined(__GNUC__) && defined(THREAD_SANITIZER)
#define ABSL_ATTRIBUTE_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread))
#else
#define ABSL_ATTRIBUTE_NO_SANITIZE_THREAD
#endif
// ABSL_ATTRIBUTE_NO_SANITIZE_UNDEFINED
// Tell UndefinedSanitizer to ignore a given function. Useful for cases
// where certain behavior (eg. devision by zero) is being used intentionally.
// NOTE: GCC supports UndefinedBehaviorSanitizer(ubsan) since 4.9.
// https://gcc.gnu.org/gcc-4.9/changes.html
#if defined(__GNUC__) && \
(defined(UNDEFINED_BEHAVIOR_SANITIZER) || defined(ADDRESS_SANITIZER))
#define ABSL_ATTRIBUTE_NO_SANITIZE_UNDEFINED \
__attribute__((no_sanitize("undefined")))
#else
#define ABSL_ATTRIBUTE_NO_SANITIZE_UNDEFINED
#endif
// ABSL_ATTRIBUTE_NO_SANITIZE_CFI
// Tell ControlFlowIntegrity sanitizer to not instrument a given function.
// See https://clang.llvm.org/docs/ControlFlowIntegrity.html for details.
#if defined(__GNUC__) && defined(CONTROL_FLOW_INTEGRITY)
#define ABSL_ATTRIBUTE_NO_SANITIZE_CFI __attribute__((no_sanitize("cfi")))
#else
#define ABSL_ATTRIBUTE_NO_SANITIZE_CFI
#endif
// ABSL_ATTRIBUTE_SECTION
// Labeled sections are not supported on Darwin/iOS.
#ifdef ABSL_HAVE_ATTRIBUTE_SECTION
#error ABSL_HAVE_ATTRIBUTE_SECTION cannot be directly set
#elif (ABSL_HAVE_ATTRIBUTE(section) || \
(defined(__GNUC__) && !defined(__clang__))) && \
!defined(__APPLE__)
#define ABSL_HAVE_ATTRIBUTE_SECTION 1
//
// Tell the compiler/linker to put a given function into a section and define
// "__start_ ## name" and "__stop_ ## name" symbols to bracket the section.
// This functionality is supported by GNU linker.
// Any function with ABSL_ATTRIBUTE_SECTION must not be inlined, or it will
// be placed into whatever section its caller is placed into.
//
#ifndef ABSL_ATTRIBUTE_SECTION
#define ABSL_ATTRIBUTE_SECTION(name) \
__attribute__((section(#name))) __attribute__((noinline))
#endif
// Tell the compiler/linker to put a given variable into a section and define
// "__start_ ## name" and "__stop_ ## name" symbols to bracket the section.
// This functionality is supported by GNU linker.
#ifndef ABSL_ATTRIBUTE_SECTION_VARIABLE
#define ABSL_ATTRIBUTE_SECTION_VARIABLE(name) __attribute__((section(#name)))
#endif
//
// Weak section declaration to be used as a global declaration
// for ABSL_ATTRIBUTE_SECTION_START|STOP(name) to compile and link
// even without functions with ABSL_ATTRIBUTE_SECTION(name).
// ABSL_DEFINE_ATTRIBUTE_SECTION should be in the exactly one file; it's
// a no-op on ELF but not on Mach-O.
//
#ifndef ABSL_DECLARE_ATTRIBUTE_SECTION_VARS
#define ABSL_DECLARE_ATTRIBUTE_SECTION_VARS(name) \
extern char __start_##name[] ABSL_ATTRIBUTE_WEAK; \
extern char __stop_##name[] ABSL_ATTRIBUTE_WEAK
#endif
#ifndef ABSL_DEFINE_ATTRIBUTE_SECTION_VARS
#define ABSL_INIT_ATTRIBUTE_SECTION_VARS(name)
#define ABSL_DEFINE_ATTRIBUTE_SECTION_VARS(name)
#endif
// Return void* pointers to start/end of a section of code with
// functions having ABSL_ATTRIBUTE_SECTION(name).
// Returns 0 if no such functions exist.
// One must ABSL_DECLARE_ATTRIBUTE_SECTION_VARS(name) for this to compile and
// link.
//
#define ABSL_ATTRIBUTE_SECTION_START(name) \
(reinterpret_cast<void *>(__start_##name))
#define ABSL_ATTRIBUTE_SECTION_STOP(name) \
(reinterpret_cast<void *>(__stop_##name))
#else // !ABSL_HAVE_ATTRIBUTE_SECTION
#define ABSL_HAVE_ATTRIBUTE_SECTION 0
// provide dummy definitions
#define ABSL_ATTRIBUTE_SECTION(name)
#define ABSL_ATTRIBUTE_SECTION_VARIABLE(name)
#define ABSL_INIT_ATTRIBUTE_SECTION_VARS(name)
#define ABSL_DEFINE_ATTRIBUTE_SECTION_VARS(name)
#define ABSL_DECLARE_ATTRIBUTE_SECTION_VARS(name)
#define ABSL_ATTRIBUTE_SECTION_START(name) (reinterpret_cast<void *>(0))
#define ABSL_ATTRIBUTE_SECTION_STOP(name) (reinterpret_cast<void *>(0))
#endif // ABSL_ATTRIBUTE_SECTION
// ABSL_ATTRIBUTE_STACK_ALIGN_FOR_OLD_LIBC
// Support for aligning the stack on 32-bit x86.
#if ABSL_HAVE_ATTRIBUTE(force_align_arg_pointer) || \
(defined(__GNUC__) && !defined(__clang__))
#if defined(__i386__)
#define ABSL_ATTRIBUTE_STACK_ALIGN_FOR_OLD_LIBC \
__attribute__((force_align_arg_pointer))
#define ABSL_REQUIRE_STACK_ALIGN_TRAMPOLINE (0)
#elif defined(__x86_64__)
#define ABSL_REQUIRE_STACK_ALIGN_TRAMPOLINE (1)
#define ABSL_ATTRIBUTE_STACK_ALIGN_FOR_OLD_LIBC
#else // !__i386__ && !__x86_64
#define ABSL_REQUIRE_STACK_ALIGN_TRAMPOLINE (0)
#define ABSL_ATTRIBUTE_STACK_ALIGN_FOR_OLD_LIBC
#endif // __i386__
#else
#define ABSL_ATTRIBUTE_STACK_ALIGN_FOR_OLD_LIBC
#define ABSL_REQUIRE_STACK_ALIGN_TRAMPOLINE (0)
#endif
// ABSL_MUST_USE_RESULT
// Tell the compiler to warn about unused return values for functions declared
// with this macro. The macro must appear as the very first part of a function
// declaration or definition:
//
// ABSL_MUST_USE_RESULT Sprocket* AllocateSprocket();
//
// This placement has the broadest compatibility with GCC, Clang, and MSVC, with
// both defs and decls, and with GCC-style attributes, MSVC declspec, C++11
// and C++17 attributes.
//
// ABSL_MUST_USE_RESULT allows using cast-to-void to suppress the unused result
// warning. For that, warn_unused_result is used only for clang but not for gcc.
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66425
//
// Note: past advice was to place the macro after the argument list.
#if ABSL_HAVE_ATTRIBUTE(nodiscard)
#define ABSL_MUST_USE_RESULT [[nodiscard]]
#elif defined(__clang__) && ABSL_HAVE_ATTRIBUTE(warn_unused_result)
#define ABSL_MUST_USE_RESULT __attribute__((warn_unused_result))
#else
#define ABSL_MUST_USE_RESULT
#endif
// ABSL_ATTRIBUTE_HOT, ABSL_ATTRIBUTE_COLD
// Tell GCC that a function is hot or cold. GCC can use this information to
// improve static analysis, i.e. a conditional branch to a cold function
// is likely to be not-taken.
// This annotation is used for function declarations, e.g.:
// int foo() ABSL_ATTRIBUTE_HOT;
#if ABSL_HAVE_ATTRIBUTE(hot) || (defined(__GNUC__) && !defined(__clang__))
#define ABSL_ATTRIBUTE_HOT __attribute__((hot))
#else
#define ABSL_ATTRIBUTE_HOT
#endif
#if ABSL_HAVE_ATTRIBUTE(cold) || (defined(__GNUC__) && !defined(__clang__))
#define ABSL_ATTRIBUTE_COLD __attribute__((cold))
#else
#define ABSL_ATTRIBUTE_COLD
#endif
// ABSL_XRAY_ALWAYS_INSTRUMENT, ABSL_XRAY_NEVER_INSTRUMENT, ABSL_XRAY_LOG_ARGS
//
// We define the ABSL_XRAY_ALWAYS_INSTRUMENT and ABSL_XRAY_NEVER_INSTRUMENT
// macro used as an attribute to mark functions that must always or never be
// instrumented by XRay. Currently, this is only supported in Clang/LLVM.
//
// For reference on the LLVM XRay instrumentation, see
// http://llvm.org/docs/XRay.html.
//
// A function with the XRAY_ALWAYS_INSTRUMENT macro attribute in its declaration
// will always get the XRay instrumentation sleds. These sleds may introduce
// some binary size and runtime overhead and must be used sparingly.
//
// These attributes only take effect when the following conditions are met:
//
// - The file/target is built in at least C++11 mode, with a Clang compiler
// that supports XRay attributes.
// - The file/target is built with the -fxray-instrument flag set for the
// Clang/LLVM compiler.
// - The function is defined in the translation unit (the compiler honors the
// attribute in either the definition or the declaration, and must match).
//
// There are cases when, even when building with XRay instrumentation, users
// might want to control specifically which functions are instrumented for a
// particular build using special-case lists provided to the compiler. These
// special case lists are provided to Clang via the
// -fxray-always-instrument=... and -fxray-never-instrument=... flags. The
// attributes in source take precedence over these special-case lists.
//
// To disable the XRay attributes at build-time, users may define
// ABSL_NO_XRAY_ATTRIBUTES. Do NOT define ABSL_NO_XRAY_ATTRIBUTES on specific
// packages/targets, as this may lead to conflicting definitions of functions at
// link-time.
//
#if ABSL_HAVE_CPP_ATTRIBUTE(clang::xray_always_instrument) && \
!defined(ABSL_NO_XRAY_ATTRIBUTES)
#define ABSL_XRAY_ALWAYS_INSTRUMENT [[clang::xray_always_instrument]]
#define ABSL_XRAY_NEVER_INSTRUMENT [[clang::xray_never_instrument]]
#if ABSL_HAVE_CPP_ATTRIBUTE(clang::xray_log_args)
#define ABSL_XRAY_LOG_ARGS(N) \
[[clang::xray_always_instrument, clang::xray_log_args(N)]]
#else
#define ABSL_XRAY_LOG_ARGS(N) [[clang::xray_always_instrument]]
#endif
#else
#define ABSL_XRAY_ALWAYS_INSTRUMENT
#define ABSL_XRAY_NEVER_INSTRUMENT
#define ABSL_XRAY_LOG_ARGS(N)
#endif
// -----------------------------------------------------------------------------
// Variable Attributes
// -----------------------------------------------------------------------------
// ABSL_ATTRIBUTE_UNUSED
// Prevent the compiler from complaining about or optimizing away variables
// that appear unused.
#if ABSL_HAVE_ATTRIBUTE(unused) || (defined(__GNUC__) && !defined(__clang__))
#undef ABSL_ATTRIBUTE_UNUSED
#define ABSL_ATTRIBUTE_UNUSED __attribute__((__unused__))
#else
#define ABSL_ATTRIBUTE_UNUSED
#endif
// ABSL_ATTRIBUTE_INITIAL_EXEC
// Tell the compiler to use "initial-exec" mode for a thread-local variable.
// See http://people.redhat.com/drepper/tls.pdf for the gory details.
#if ABSL_HAVE_ATTRIBUTE(tls_model) || (defined(__GNUC__) && !defined(__clang__))
#define ABSL_ATTRIBUTE_INITIAL_EXEC __attribute__((tls_model("initial-exec")))
#else
#define ABSL_ATTRIBUTE_INITIAL_EXEC
#endif
// ABSL_ATTRIBUTE_PACKED
// Prevent the compiler from padding a structure to natural alignment
#if ABSL_HAVE_ATTRIBUTE(packed) || (defined(__GNUC__) && !defined(__clang__))
#define ABSL_ATTRIBUTE_PACKED __attribute__((__packed__))
#else
#define ABSL_ATTRIBUTE_PACKED
#endif
// ABSL_CONST_INIT
// A variable declaration annotated with the ABSL_CONST_INIT attribute will
// not compile (on supported platforms) unless the variable has a constant
// initializer. This is useful for variables with static and thread storage
// duration, because it guarantees that they will not suffer from the so-called
// "static init order fiasco".
//
// Sample usage:
//
// ABSL_CONST_INIT static MyType my_var = MakeMyType(...);
//
// Note that this attribute is redundant if the variable is declared constexpr.
#if ABSL_HAVE_CPP_ATTRIBUTE(clang::require_constant_initialization)
// NOLINTNEXTLINE(whitespace/braces) (b/36288871)
#define ABSL_CONST_INIT [[clang::require_constant_initialization]]
#else
#define ABSL_CONST_INIT
#endif // ABSL_HAVE_CPP_ATTRIBUTE(clang::require_constant_initialization)
#endif // ABSL_BASE_ATTRIBUTES_H_

107
absl/base/bit_cast_test.cc Normal file
View file

@ -0,0 +1,107 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Unit test for bit_cast template.
#include <cstdint>
#include <cstring>
#include "gtest/gtest.h"
#include "absl/base/casts.h"
#include "absl/base/macros.h"
namespace absl {
namespace {
template <int N>
struct marshall { char buf[N]; };
template <typename T>
void TestMarshall(const T values[], int num_values) {
for (int i = 0; i < num_values; ++i) {
T t0 = values[i];
marshall<sizeof(T)> m0 = absl::bit_cast<marshall<sizeof(T)> >(t0);
T t1 = absl::bit_cast<T>(m0);
marshall<sizeof(T)> m1 = absl::bit_cast<marshall<sizeof(T)> >(t1);
ASSERT_EQ(0, memcmp(&t0, &t1, sizeof(T)));
ASSERT_EQ(0, memcmp(&m0, &m1, sizeof(T)));
}
}
// Convert back and forth to an integral type. The C++ standard does
// not guarantee this will work, but we test that this works on all the
// platforms we support.
//
// Likewise, we below make assumptions about sizeof(float) and
// sizeof(double) which the standard does not guarantee, but which hold on the
// platforms we support.
template <typename T, typename I>
void TestIntegral(const T values[], int num_values) {
for (int i = 0; i < num_values; ++i) {
T t0 = values[i];
I i0 = absl::bit_cast<I>(t0);
T t1 = absl::bit_cast<T>(i0);
I i1 = absl::bit_cast<I>(t1);
ASSERT_EQ(0, memcmp(&t0, &t1, sizeof(T)));
ASSERT_EQ(i0, i1);
}
}
TEST(BitCast, Bool) {
static const bool bool_list[] = { false, true };
TestMarshall<bool>(bool_list, ABSL_ARRAYSIZE(bool_list));
}
TEST(BitCast, Int32) {
static const int32_t int_list[] =
{ 0, 1, 100, 2147483647, -1, -100, -2147483647, -2147483647-1 };
TestMarshall<int32_t>(int_list, ABSL_ARRAYSIZE(int_list));
}
TEST(BitCast, Int64) {
static const int64_t int64_list[] =
{ 0, 1, 1LL << 40, -1, -(1LL<<40) };
TestMarshall<int64_t>(int64_list, ABSL_ARRAYSIZE(int64_list));
}
TEST(BitCast, Uint64) {
static const uint64_t uint64_list[] =
{ 0, 1, 1LLU << 40, 1LLU << 63 };
TestMarshall<uint64_t>(uint64_list, ABSL_ARRAYSIZE(uint64_list));
}
TEST(BitCast, Float) {
static const float float_list[] =
{ 0.0f, 1.0f, -1.0f, 10.0f, -10.0f,
1e10f, 1e20f, 1e-10f, 1e-20f,
2.71828f, 3.14159f };
TestMarshall<float>(float_list, ABSL_ARRAYSIZE(float_list));
TestIntegral<float, int>(float_list, ABSL_ARRAYSIZE(float_list));
TestIntegral<float, unsigned>(float_list, ABSL_ARRAYSIZE(float_list));
}
TEST(BitCast, Double) {
static const double double_list[] =
{ 0.0, 1.0, -1.0, 10.0, -10.0,
1e10, 1e100, 1e-10, 1e-100,
2.718281828459045,
3.141592653589793238462643383279502884197169399375105820974944 };
TestMarshall<double>(double_list, ABSL_ARRAYSIZE(double_list));
TestIntegral<double, int64_t>(double_list, ABSL_ARRAYSIZE(double_list));
TestIntegral<double, uint64_t>(double_list, ABSL_ARRAYSIZE(double_list));
}
} // namespace
} // namespace absl

210
absl/base/call_once.h Normal file
View file

@ -0,0 +1,210 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: call_once.h
// -----------------------------------------------------------------------------
//
// This header file provides an Abseil version of `std::call_once` for invoking
// a given function at most once, across all threads. This Abseil version is
// faster than the C++11 version and incorporates the C++17 argument-passing
// fix, so that (for example) non-const references may be passed to the invoked
// function.
#ifndef ABSL_BASE_CALL_ONCE_H_
#define ABSL_BASE_CALL_ONCE_H_
#include <atomic>
#include <cstdint>
#include <type_traits>
#include "absl/base/internal/invoke.h"
#include "absl/base/internal/low_level_scheduling.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock_wait.h"
namespace absl {
class once_flag;
namespace base_internal {
// Implementation detail.
std::atomic<uint32_t>* ControlWord(absl::once_flag* flag);
} // namespace base_internal
// call_once()
//
// For all invocations using a given `once_flag`, invokes a given `fn` exactly
// once across all threads. The first call to `call_once()` with a particular
// `once_flag` argument (that does not throw an exception) will run the
// specified function with the provided `args`; other calls with the same
// `once_flag` argument will not run the function, but will wait
// for the provided function to finish running (if it is still running).
//
// This mechanism provides a safe, simple, and fast mechanism for one-time
// initialization in a multi-threaded process.
//
// Example:
//
// class MyInitClass {
// public:
// ...
// mutable absl::once_flag once_;
//
// MyInitClass* init() const {
// absl::call_once(once_, &MyInitClass::Init, this);
// return ptr_;
// }
//
template <typename Callable, typename... Args>
void call_once(absl::once_flag& flag, Callable&& fn, Args&&... args);
// once_flag
//
// Objects of this type are used to distinguish calls to `call_once()` and
// ensure the provided function is only invoked once across all threads. This
// type is not copyable or movable. However, it has a `constexpr`
// constructor, and is safe to use as a namespace-scoped global variable.
class once_flag {
public:
constexpr once_flag() : control_(0) {}
once_flag(const once_flag&) = delete;
once_flag& operator=(const once_flag&) = delete;
private:
friend std::atomic<uint32_t>* base_internal::ControlWord(once_flag* flag);
std::atomic<uint32_t> control_;
};
//------------------------------------------------------------------------------
// End of public interfaces.
// Implementation details follow.
//------------------------------------------------------------------------------
namespace base_internal {
// Like call_once, but uses KERNEL_ONLY scheduling. Intended to be used to
// initialize entities used by the scheduler implementation.
template <typename Callable, typename... Args>
void LowLevelCallOnce(absl::once_flag* flag, Callable&& fn, Args&&... args);
// Disables scheduling while on stack when scheduling mode is non-cooperative.
// No effect for cooperative scheduling modes.
class SchedulingHelper {
public:
explicit SchedulingHelper(base_internal::SchedulingMode mode) : mode_(mode) {
if (mode_ == base_internal::SCHEDULE_KERNEL_ONLY) {
guard_result_ = base_internal::SchedulingGuard::DisableRescheduling();
}
}
~SchedulingHelper() {
if (mode_ == base_internal::SCHEDULE_KERNEL_ONLY) {
base_internal::SchedulingGuard::EnableRescheduling(guard_result_);
}
}
private:
base_internal::SchedulingMode mode_;
bool guard_result_;
};
// Bit patterns for call_once state machine values. Internal implementation
// detail, not for use by clients.
//
// The bit patterns are arbitrarily chosen from unlikely values, to aid in
// debugging. However, kOnceInit must be 0, so that a zero-initialized
// once_flag will be valid for immediate use.
enum {
kOnceInit = 0,
kOnceRunning = 0x65C2937B,
kOnceWaiter = 0x05A308D2,
kOnceDone = 0x3F2D8AB0,
};
template <typename Callable, typename... Args>
void CallOnceImpl(std::atomic<uint32_t>* control,
base_internal::SchedulingMode scheduling_mode, Callable&& fn,
Args&&... args) {
#ifndef NDEBUG
{
uint32_t old_control = control->load(std::memory_order_acquire);
if (old_control != kOnceInit &&
old_control != kOnceRunning &&
old_control != kOnceWaiter &&
old_control != kOnceDone) {
ABSL_RAW_LOG(
FATAL,
"Unexpected value for control word: %d. Either the control word "
"has non-static storage duration (where GoogleOnceDynamic might "
"be appropriate), or there's been a memory corruption.",
old_control);
}
}
#endif // NDEBUG
static const base_internal::SpinLockWaitTransition trans[] = {
{kOnceInit, kOnceRunning, true},
{kOnceRunning, kOnceWaiter, false},
{kOnceDone, kOnceDone, true}};
// Must do this before potentially modifying control word's state.
base_internal::SchedulingHelper maybe_disable_scheduling(scheduling_mode);
// Short circuit the simplest case to avoid procedure call overhead.
uint32_t old_control = kOnceInit;
if (control->compare_exchange_strong(old_control, kOnceRunning,
std::memory_order_acquire,
std::memory_order_relaxed) ||
base_internal::SpinLockWait(control, ABSL_ARRAYSIZE(trans), trans,
scheduling_mode) == kOnceInit) {
base_internal::Invoke(std::forward<Callable>(fn),
std::forward<Args>(args)...);
old_control = control->load(std::memory_order_relaxed);
control->store(base_internal::kOnceDone, std::memory_order_release);
if (old_control == base_internal::kOnceWaiter) {
base_internal::SpinLockWake(control, true);
}
} // else *control is already kOnceDone
}
inline std::atomic<uint32_t>* ControlWord(once_flag* flag) {
return &flag->control_;
}
template <typename Callable, typename... Args>
void LowLevelCallOnce(absl::once_flag* flag, Callable&& fn, Args&&... args) {
std::atomic<uint32_t>* once = base_internal::ControlWord(flag);
uint32_t s = once->load(std::memory_order_acquire);
if (ABSL_PREDICT_FALSE(s != base_internal::kOnceDone)) {
base_internal::CallOnceImpl(once, base_internal::SCHEDULE_KERNEL_ONLY,
std::forward<Callable>(fn),
std::forward<Args>(args)...);
}
}
} // namespace base_internal
template <typename Callable, typename... Args>
void call_once(absl::once_flag& flag, Callable&& fn, Args&&... args) {
std::atomic<uint32_t>* once = base_internal::ControlWord(&flag);
uint32_t s = once->load(std::memory_order_acquire);
if (ABSL_PREDICT_FALSE(s != base_internal::kOnceDone)) {
base_internal::CallOnceImpl(
once, base_internal::SCHEDULE_COOPERATIVE_AND_KERNEL,
std::forward<Callable>(fn), std::forward<Args>(args)...);
}
}
} // namespace absl
#endif // ABSL_BASE_CALL_ONCE_H_

102
absl/base/call_once_test.cc Normal file
View file

@ -0,0 +1,102 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/call_once.h"
#include <atomic>
#include <thread>
#include "absl/base/thread_annotations.h"
#include "absl/synchronization/mutex.h"
#include "gtest/gtest.h"
namespace absl {
namespace {
absl::once_flag once;
Mutex counters_mu;
int running_thread_count GUARDED_BY(counters_mu) = 0;
int call_once_invoke_count GUARDED_BY(counters_mu) = 0;
int call_once_finished_count GUARDED_BY(counters_mu) = 0;
int call_once_return_count GUARDED_BY(counters_mu) = 0;
bool done_blocking GUARDED_BY(counters_mu) = false;
// Function to be called from absl::call_once. Waits for a notification.
void WaitAndIncrement() {
counters_mu.Lock();
++call_once_invoke_count;
counters_mu.Unlock();
counters_mu.LockWhen(Condition(&done_blocking));
++call_once_finished_count;
counters_mu.Unlock();
}
void ThreadBody() {
counters_mu.Lock();
++running_thread_count;
counters_mu.Unlock();
absl::call_once(once, WaitAndIncrement);
counters_mu.Lock();
++call_once_return_count;
counters_mu.Unlock();
}
// Returns true if all threads are set up for the test.
bool ThreadsAreSetup(void*) EXCLUSIVE_LOCKS_REQUIRED(counters_mu) {
// All ten threads must be running, and WaitAndIncrement should be blocked.
return running_thread_count == 10 && call_once_invoke_count == 1;
}
TEST(CallOnceTest, ExecutionCount) {
std::vector<std::thread> threads;
// Start 10 threads all calling call_once on the same once_flag.
for (int i = 0; i < 10; ++i) {
threads.emplace_back(ThreadBody);
}
// Wait until all ten threads have started, and WaitAndIncrement has been
// invoked.
counters_mu.LockWhen(Condition(ThreadsAreSetup, nullptr));
// WaitAndIncrement should have been invoked by exactly one call_once()
// instance. That thread should be blocking on a notification, and all other
// call_once instances should be blocking as well.
EXPECT_EQ(call_once_invoke_count, 1);
EXPECT_EQ(call_once_finished_count, 0);
EXPECT_EQ(call_once_return_count, 0);
// Allow WaitAndIncrement to finish executing. Once it does, the other
// call_once waiters will be unblocked.
done_blocking = true;
counters_mu.Unlock();
for (std::thread& thread : threads) {
thread.join();
}
counters_mu.Lock();
EXPECT_EQ(call_once_invoke_count, 1);
EXPECT_EQ(call_once_finished_count, 1);
EXPECT_EQ(call_once_return_count, 10);
counters_mu.Unlock();
}
} // namespace
} // namespace absl

141
absl/base/casts.h Normal file
View file

@ -0,0 +1,141 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: casts.h
// -----------------------------------------------------------------------------
//
// This header file defines casting templates to fit use cases not covered by
// the standard casts provided in the C++ standard. As with all cast operations,
// use these with caution and only if alternatives do not exist.
//
#ifndef ABSL_BASE_CASTS_H_
#define ABSL_BASE_CASTS_H_
#include <cstring>
#include <type_traits>
#include "absl/base/internal/identity.h"
namespace absl {
// implicit_cast()
//
// Performs an implicit conversion between types following the language
// rules for implicit conversion; if an implicit conversion is otherwise
// allowed by the language in the given context, this function performs such an
// implicit conversion.
//
// Example:
//
// // If the context allows implicit conversion:
// From from;
// To to = from;
//
// // Such code can be replaced by:
// implicit_cast<To>(from);
//
// An `implicit_cast()` may also be used to annotate numeric type conversions
// that, although safe, may produce compiler warnings (such as `long` to `int`).
// Additionally, an `implict_cast()` is also useful within return statements to
// indicate a specific implicit conversion is being undertaken.
//
// Example:
//
// return implicit_cast<double>(size_in_bytes) / capacity_;
//
// Annotating code with `implicit_cast()` allows you to explicitly select
// particular overloads and template instantiations, while providing a safer
// cast than `reinterpret_cast()` or `static_cast()`.
//
// Additionally, an `implicit_cast()` can be used to allow upcasting within a
// type hierarchy where incorrect use of `static_cast()` could accidentally
// allow downcasting.
//
// Finally, an `implicit_cast()` can be used to perform implicit conversions
// from unrelated types that otherwise couldn't be implicitly cast directly;
// C++ will normally only implicitly cast "one step" in such conversions.
//
// That is, if C is a type which can be implicitly converted to B, with B being
// a type that can be implicitly converted to A, an `implicit_cast()` can be
// used to convert C to B (which the compiler can then implicitly convert to A
// using language rules).
//
// Example:
//
// // Assume an object C is convertible to B, which is implicitly convertible
// // to A
// A a = implicit_cast<B>(C);
//
// Such implicit cast chaining may be useful within template logic.
template <typename To>
inline To implicit_cast(typename absl::internal::identity_t<To> to) {
return to;
}
// bit_cast()
//
// Performs a bitwise cast on a type without changing the underlying bit
// representation of that type's value. The two types must be of the same size
// and both types must be trivially copyable. As with most casts, use with
// caution. A `bit_cast()` might be needed when you need to temporarily treat a
// type as some other type, such as in the following cases:
//
// * Serialization (casting temporarily to `char *` for those purposes is
// always allowed by the C++ standard)
// * Managing the individual bits of a type within mathematical operations
// that are not normally accessible through that type
// * Casting non-pointer types to pointer types (casting the other way is
// allowed by `reinterpret_cast()` but round-trips cannot occur the other
// way).
//
// Example:
//
// float f = 3.14159265358979;
// int i = bit_cast<int32_t>(f);
// // i = 0x40490fdb
//
// Casting non-pointer types to pointer types and then dereferencing them
// traditionally produces undefined behavior.
//
// Example:
//
// // WRONG
// float f = 3.14159265358979; // WRONG
// int i = * reinterpret_cast<int*>(&f); // WRONG
//
// The address-casting method produces undefined behavior according to the ISO
// C++ specification section [basic.lval]. Roughly, this section says: if an
// object in memory has one type, and a program accesses it with a different
// type, the result is undefined behavior for most values of "different type".
//
// Such casting results is type punning: holding an object in memory of one type
// and reading its bits back using a different type. A `bit_cast()` avoids this
// issue by implementating its casts using `memcpy()`, which avoids introducing
// this undefined behavior.
template <typename Dest, typename Source>
inline Dest bit_cast(const Source& source) {
static_assert(sizeof(Dest) == sizeof(Source),
"Source and destination types should have equal sizes.");
Dest dest;
memcpy(&dest, &source, sizeof(dest));
return dest;
}
} // namespace absl
#endif // ABSL_BASE_CASTS_H_

367
absl/base/config.h Normal file
View file

@ -0,0 +1,367 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: config.h
// -----------------------------------------------------------------------------
//
// This header file defines a set of macros for checking the presence of
// important compiler and platform features. Such macros can be used to
// produce portable code by parameterizing compilation based on the presence or
// lack of a given feature.
//
// We define a "feature" as some interface we wish to program to: for example,
// a library function or system call. A value of `1` indicates support for
// that feature; any other value indicates the feature support is undefined.
//
// Example:
//
// Suppose a programmer wants to write a program that uses the 'mmap()' system
// call. The Abseil macro for that feature (`ABSL_HAVE_MMAP`) allows you to
// selectively include the `mmap.h` header and bracket code using that feature
// in the macro:
//
// #include "absl/base/config.h"
//
// #ifdef ABSL_HAVE_MMAP
// #include "sys/mman.h"
// #endif //ABSL_HAVE_MMAP
//
// ...
// #ifdef ABSL_HAVE_MMAP
// void *ptr = mmap(...);
// ...
// #endif // ABSL_HAVE_MMAP
#ifndef ABSL_BASE_CONFIG_H_
#define ABSL_BASE_CONFIG_H_
// Included for the __GLIBC__ macro (or similar macros on other systems).
#include <limits.h>
#ifdef __cplusplus
// Included for __GLIBCXX__, _LIBCPP_VERSION
#include <cstddef>
#endif // __cplusplus
#include "absl/base/policy_checks.h"
// -----------------------------------------------------------------------------
// Compiler Feature Checks
// -----------------------------------------------------------------------------
// ABSL_HAVE_BUILTIN()
//
// Checks whether the compiler supports a Clang Feature Checking Macro, and if
// so, checks whether it supports the provided builtin function "x" where x
// is one of the functions noted in
// https://clang.llvm.org/docs/LanguageExtensions.html
//
// Note: Use this macro to avoid an extra level of #ifdef __has_builtin check.
// http://releases.llvm.org/3.3/tools/clang/docs/LanguageExtensions.html
#ifdef __has_builtin
#define ABSL_HAVE_BUILTIN(x) __has_builtin(x)
#else
#define ABSL_HAVE_BUILTIN(x) 0
#endif
// ABSL_HAVE_TLS is defined to 1 when __thread should be supported.
// We assume __thread is supported on Linux when compiled with Clang or compiled
// against libstdc++ with _GLIBCXX_HAVE_TLS defined.
#ifdef ABSL_HAVE_TLS
#error ABSL_HAVE_TLS cannot be directly set
#elif defined(__linux__) && (defined(__clang__) || defined(_GLIBCXX_HAVE_TLS))
#define ABSL_HAVE_TLS 1
#endif
// There are platforms for which TLS should not be used even though the compiler
// makes it seem like it's supported (Android NDK < r12b for example).
// This is primarily because of linker problems and toolchain misconfiguration:
// Abseil does not intend to support this indefinitely. Currently, the newest
// toolchain that we intend to support that requires this behavior is the
// r11 NDK - allowing for a 5 year support window on that means this option
// is likely to be removed around June of 2021.
#if defined(__ANDROID__) && defined(__clang__)
#if __has_include(<android/ndk-version.h>)
#include <android/ndk-version.h>
#endif
// TLS isn't supported until NDK r12b per
// https://developer.android.com/ndk/downloads/revision_history.html
// Since NDK r16, `__NDK_MAJOR__` and `__NDK_MINOR__` are defined in
// <android/ndk-version.h>. For NDK < r16, users should define these macros,
// e.g. `-D__NDK_MAJOR__=11 -D__NKD_MINOR__=0` for NDK r11.
#if defined(__NDK_MAJOR__) && defined(__NDK_MINOR__) && \
((__NDK_MAJOR__ < 12) || ((__NDK_MAJOR__ == 12) && (__NDK_MINOR__ < 1)))
#undef ABSL_HAVE_TLS
#endif
#endif // defined(__ANDROID__) && defined(__clang__)
// ABSL_HAVE_STD_IS_TRIVIALLY_DESTRUCTIBLE
//
// Checks whether `std::is_trivially_destructible<T>` is supported.
//
// Notes: All supported compilers using libc++ support this feature, as does
// gcc >= 4.8.1 using libstdc++, and Visual Studio.
#ifdef ABSL_HAVE_STD_IS_TRIVIALLY_DESTRUCTIBLE
#error ABSL_HAVE_STD_IS_TRIVIALLY_DESTRUCTIBLE cannot be directly set
#elif defined(_LIBCPP_VERSION) || \
(!defined(__clang__) && defined(__GNUC__) && defined(__GLIBCXX__) && \
(__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))) || \
defined(_MSC_VER)
#define ABSL_HAVE_STD_IS_TRIVIALLY_DESTRUCTIBLE 1
#endif
// ABSL_HAVE_STD_IS_TRIVIALLY_CONSTRUCTIBLE
//
// Checks whether `std::is_trivially_default_constructible<T>` and
// `std::is_trivially_copy_constructible<T>` are supported.
// ABSL_HAVE_STD_IS_TRIVIALLY_ASSIGNABLE
//
// Checks whether `std::is_trivially_copy_assignable<T>` is supported.
// Notes: Clang with libc++ supports these features, as does gcc >= 5.1 with
// either libc++ or libstdc++, and Visual Studio.
#if defined(ABSL_HAVE_STD_IS_TRIVIALLY_CONSTRUCTIBLE)
#error ABSL_HAVE_STD_IS_TRIVIALLY_CONSTRUCTIBLE cannot be directly set
#elif defined(ABSL_HAVE_STD_IS_TRIVIALLY_ASSIGNABLE)
#error ABSL_HAVE_STD_IS_TRIVIALLY_ASSIGNABLE cannot directly set
#elif (defined(__clang__) && defined(_LIBCPP_VERSION)) || \
(!defined(__clang__) && defined(__GNUC__) && \
(__GNUC__ > 5 || (__GNUC__ == 5 && __GNUC_MINOR__ >= 1)) && \
(defined(_LIBCPP_VERSION) || defined(__GLIBCXX__))) || \
defined(_MSC_VER)
#define ABSL_HAVE_STD_IS_TRIVIALLY_CONSTRUCTIBLE 1
#define ABSL_HAVE_STD_IS_TRIVIALLY_ASSIGNABLE 1
#endif
// ABSL_HAVE_THREAD_LOCAL
//
// Checks whether C++11's `thread_local` storage duration specifier is
// supported.
//
// Notes: Clang implements the `thread_local` keyword but Xcode did not support
// the implementation until Xcode 8.
#ifdef ABSL_HAVE_THREAD_LOCAL
#error ABSL_HAVE_THREAD_LOCAL cannot be directly set
#elif !defined(__apple_build_version__) || __apple_build_version__ >= 8000042
#define ABSL_HAVE_THREAD_LOCAL 1
#endif
// ABSL_HAVE_INTRINSIC_INT128
//
// Checks whether the __int128 compiler extension for a 128-bit integral type is
// supported.
//
// Notes: __SIZEOF_INT128__ is defined by Clang and GCC when __int128 is
// supported, except on ppc64 and aarch64 where __int128 exists but has exhibits
// a sporadic compiler crashing bug. Nvidia's nvcc also defines __GNUC__ and
// __SIZEOF_INT128__ but not all versions actually support __int128.
#ifdef ABSL_HAVE_INTRINSIC_INT128
#error ABSL_HAVE_INTRINSIC_INT128 cannot be directly set
#elif (defined(__clang__) && defined(__SIZEOF_INT128__) && \
!defined(__ppc64__) && !defined(__aarch64__)) || \
(defined(__CUDACC__) && defined(__SIZEOF_INT128__) && \
__CUDACC_VER__ >= 70000) || \
(!defined(__clang__) && !defined(__CUDACC__) && defined(__GNUC__) && \
defined(__SIZEOF_INT128__))
#define ABSL_HAVE_INTRINSIC_INT128 1
#endif
// ABSL_HAVE_EXCEPTIONS
//
// Checks whether the compiler both supports and enables exceptions. Many
// compilers support a "no exceptions" mode that disables exceptions.
//
// Generally, when ABSL_HAVE_EXCEPTIONS is not defined:
//
// * Code using `throw` and `try` may not compile.
// * The `noexcept` specifier will still compile and behave as normal.
// * The `noexcept` operator may still return `false`.
//
// For further details, consult the compiler's documentation.
#ifdef ABSL_HAVE_EXCEPTIONS
#error ABSL_HAVE_EXCEPTIONS cannot be directly set.
#elif defined(__clang__)
// TODO(calabrese)
// Switch to using __cpp_exceptions when we no longer support versions < 3.6.
// For details on this check, see:
// http://releases.llvm.org/3.6.0/tools/clang/docs/ReleaseNotes.html#the-exceptions-macro
#if defined(__EXCEPTIONS) && __has_feature(cxx_exceptions)
#define ABSL_HAVE_EXCEPTIONS 1
#endif // defined(__EXCEPTIONS) && __has_feature(cxx_exceptions)
// Handle remaining special cases and default to exceptions being supported.
#elif !(defined(__GNUC__) && (__GNUC__ < 5) && !defined(__EXCEPTIONS)) && \
!(defined(__GNUC__) && (__GNUC__ >= 5) && !defined(__cpp_exceptions)) && \
!(defined(_MSC_VER) && !defined(_CPPUNWIND))
#define ABSL_HAVE_EXCEPTIONS 1
#endif
// -----------------------------------------------------------------------------
// Platform Feature Checks
// -----------------------------------------------------------------------------
// Currently supported operating systems and associated preprocessor
// symbols:
//
// Linux and Linux-derived __linux__
// Android __ANDROID__ (implies __linux__)
// Linux (non-Android) __linux__ && !__ANDROID__
// Darwin (Mac OS X and iOS) __APPLE__
// Akaros (http://akaros.org) __ros__
// Windows _WIN32
// NaCL __native_client__
// AsmJS __asmjs__
// Fuschia __Fuchsia__
//
// Note that since Android defines both __ANDROID__ and __linux__, one
// may probe for either Linux or Android by simply testing for __linux__.
// ABSL_HAVE_MMAP
//
// Checks whether the platform has an mmap(2) implementation as defined in
// POSIX.1-2001.
#ifdef ABSL_HAVE_MMAP
#error ABSL_HAVE_MMAP cannot be directly set
#elif defined(__linux__) || defined(__APPLE__) || defined(__ros__) || \
defined(__native_client__) || defined(__asmjs__) || defined(__Fuchsia__)
#define ABSL_HAVE_MMAP 1
#endif
// ABSL_HAVE_PTHREAD_GETSCHEDPARAM
//
// Checks whether the platform implements the pthread_(get|set)schedparam(3)
// functions as defined in POSIX.1-2001.
#ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM
#error ABSL_HAVE_PTHREAD_GETSCHEDPARAM cannot be directly set
#elif defined(__linux__) || defined(__APPLE__) || defined(__ros__)
#define ABSL_HAVE_PTHREAD_GETSCHEDPARAM 1
#endif
// ABSL_HAVE_SCHED_YIELD
//
// Checks whether the platform implements sched_yield(2) as defined in
// POSIX.1-2001.
#ifdef ABSL_HAVE_SCHED_YIELD
#error ABSL_HAVE_SCHED_YIELD cannot be directly set
#elif defined(__linux__) || defined(__ros__) || defined(__native_client__)
#define ABSL_HAVE_SCHED_YIELD 1
#endif
// ABSL_HAVE_SEMAPHORE_H
//
// Checks whether the platform supports the <semaphore.h> header and sem_open(3)
// family of functions as standardized in POSIX.1-2001.
//
// Note: While Apple provides <semaphore.h> for both iOS and macOS, it is
// explicity deprecated and will cause build failures if enabled for those
// platforms. We side-step the issue by not defining it here for Apple
// platforms.
#ifdef ABSL_HAVE_SEMAPHORE_H
#error ABSL_HAVE_SEMAPHORE_H cannot be directly set
#elif defined(__linux__) || defined(__ros__)
#define ABSL_HAVE_SEMAPHORE_H 1
#endif
// ABSL_HAVE_ALARM
//
// Checks whether the platform supports the <signal.h> header and alarm(2)
// function as standardized in POSIX.1-2001.
#ifdef ABSL_HAVE_ALARM
#error ABSL_HAVE_ALARM cannot be directly set
#elif defined(__GOOGLE_GRTE_VERSION__)
// feature tests for Google's GRTE
#define ABSL_HAVE_ALARM 1
#elif defined(__GLIBC__)
// feature test for glibc
#define ABSL_HAVE_ALARM 1
#elif defined(_MSC_VER)
// feature tests for Microsoft's library
#elif defined(__native_client__)
#else
// other standard libraries
#define ABSL_HAVE_ALARM 1
#endif
// ABSL_IS_LITTLE_ENDIAN
// ABSL_IS_BIG_ENDIAN
//
// Checks the endianness of the platform.
//
// Notes: uses the built in endian macros provided by GCC (since 4.6) and
// Clang (since 3.2); see
// https://gcc.gnu.org/onlinedocs/cpp/Common-Predefined-Macros.html.
// Otherwise, if _WIN32, assume little endian. Otherwise, bail with an error.
#if defined(ABSL_IS_BIG_ENDIAN)
#error "ABSL_IS_BIG_ENDIAN cannot be directly set."
#endif
#if defined(ABSL_IS_LITTLE_ENDIAN)
#error "ABSL_IS_LITTLE_ENDIAN cannot be directly set."
#endif
#if (defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
#define ABSL_IS_LITTLE_ENDIAN 1
#elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && \
__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#define ABSL_IS_BIG_ENDIAN 1
#elif defined(_WIN32)
#define ABSL_IS_LITTLE_ENDIAN 1
#else
#error "absl endian detection needs to be set up for your compiler"
#endif
// ABSL_HAVE_STD_ANY
//
// Checks whether C++17 std::any is availble by checking whether <any> exists.
#ifdef ABSL_HAVE_STD_ANY
#error "ABSL_HAVE_STD_ANY cannot be directly set."
#endif
#ifdef __has_include
#if __has_include(<any>) && __cplusplus >= 201703L
#define ABSL_HAVE_STD_ANY 1
#endif
#endif
// ABSL_HAVE_STD_OPTIONAL
//
// Checks whether C++17 std::optional is available.
#ifdef ABSL_HAVE_STD_OPTIONAL
#error "ABSL_HAVE_STD_OPTIONAL cannot be directly set."
#endif
#ifdef __has_include
#if __has_include(<optional>) && __cplusplus >= 201703L
#define ABSL_HAVE_STD_OPTIONAL 1
#endif
#endif
// ABSL_HAVE_STD_STRING_VIEW
//
// Checks whether C++17 std::string_view is available.
#ifdef ABSL_HAVE_STD_STRING_VIEW
#error "ABSL_HAVE_STD_STRING_VIEW cannot be directly set."
#endif
#ifdef __has_include
#if __has_include(<string_view>) && __cplusplus >= 201703L
#define ABSL_HAVE_STD_STRING_VIEW 1
#endif
#endif
#endif // ABSL_BASE_CONFIG_H_

45
absl/base/config_test.cc Normal file
View file

@ -0,0 +1,45 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/config.h"
#include <cstdint>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace {
TEST(ConfigTest, Endianness) {
union
{
uint32_t value;
uint8_t data[sizeof(uint32_t)];
} number;
number.data[0] = 0x00;
number.data[1] = 0x01;
number.data[2] = 0x02;
number.data[3] = 0x03;
#if defined(ABSL_IS_LITTLE_ENDIAN) && defined(ABSL_IS_BIG_ENDIAN)
#error Both ABSL_IS_LITTLE_ENDIAN and ABSL_IS_BIG_ENDIAN are defined
#elif defined(ABSL_IS_LITTLE_ENDIAN)
EXPECT_EQ(UINT32_C(0x03020100), number.value);
#elif defined(ABSL_IS_BIG_ENDIAN)
EXPECT_EQ(UINT32_C(0x00010203), number.value);
#else
#error Unknown endianness
#endif
}
} // namespace

View file

@ -0,0 +1,129 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <string.h>
#include "absl/base/dynamic_annotations.h"
#ifndef __has_feature
#define __has_feature(x) 0
#endif
/* Compiler-based ThreadSanitizer defines
DYNAMIC_ANNOTATIONS_EXTERNAL_IMPL = 1
and provides its own definitions of the functions. */
#ifndef DYNAMIC_ANNOTATIONS_EXTERNAL_IMPL
# define DYNAMIC_ANNOTATIONS_EXTERNAL_IMPL 0
#endif
/* Each function is empty and called (via a macro) only in debug mode.
The arguments are captured by dynamic tools at runtime. */
#if DYNAMIC_ANNOTATIONS_EXTERNAL_IMPL == 0 && !defined(__native_client__)
#if __has_feature(memory_sanitizer)
#include <sanitizer/msan_interface.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
void AnnotateRWLockCreate(const char *, int,
const volatile void *){}
void AnnotateRWLockDestroy(const char *, int,
const volatile void *){}
void AnnotateRWLockAcquired(const char *, int,
const volatile void *, long){}
void AnnotateRWLockReleased(const char *, int,
const volatile void *, long){}
void AnnotateBenignRace(const char *, int,
const volatile void *,
const char *){}
void AnnotateBenignRaceSized(const char *, int,
const volatile void *,
size_t,
const char *) {}
void AnnotateThreadName(const char *, int,
const char *){}
void AnnotateIgnoreReadsBegin(const char *, int){}
void AnnotateIgnoreReadsEnd(const char *, int){}
void AnnotateIgnoreWritesBegin(const char *, int){}
void AnnotateIgnoreWritesEnd(const char *, int){}
void AnnotateEnableRaceDetection(const char *, int, int){}
void AnnotateMemoryIsInitialized(const char *, int,
const volatile void *mem, size_t size) {
#if __has_feature(memory_sanitizer)
__msan_unpoison(mem, size);
#else
(void)mem;
(void)size;
#endif
}
void AnnotateMemoryIsUninitialized(const char *, int,
const volatile void *mem, size_t size) {
#if __has_feature(memory_sanitizer)
__msan_allocated_memory(mem, size);
#else
(void)mem;
(void)size;
#endif
}
static int GetRunningOnValgrind(void) {
#ifdef RUNNING_ON_VALGRIND
if (RUNNING_ON_VALGRIND) return 1;
#endif
char *running_on_valgrind_str = getenv("RUNNING_ON_VALGRIND");
if (running_on_valgrind_str) {
return strcmp(running_on_valgrind_str, "0") != 0;
}
return 0;
}
/* See the comments in dynamic_annotations.h */
int RunningOnValgrind(void) {
static volatile int running_on_valgrind = -1;
int local_running_on_valgrind = running_on_valgrind;
/* C doesn't have thread-safe initialization of statics, and we
don't want to depend on pthread_once here, so hack it. */
ANNOTATE_BENIGN_RACE(&running_on_valgrind, "safe hack");
if (local_running_on_valgrind == -1)
running_on_valgrind = local_running_on_valgrind = GetRunningOnValgrind();
return local_running_on_valgrind;
}
/* See the comments in dynamic_annotations.h */
double ValgrindSlowdown(void) {
/* Same initialization hack as in RunningOnValgrind(). */
static volatile double slowdown = 0.0;
double local_slowdown = slowdown;
ANNOTATE_BENIGN_RACE(&slowdown, "safe hack");
if (RunningOnValgrind() == 0) {
return 1.0;
}
if (local_slowdown == 0.0) {
char *env = getenv("VALGRIND_SLOWDOWN");
slowdown = local_slowdown = env ? atof(env) : 50.0;
}
return local_slowdown;
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* DYNAMIC_ANNOTATIONS_EXTERNAL_IMPL == 0 */

View file

@ -0,0 +1,409 @@
/*
* Copyright 2017 The Abseil Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This file defines dynamic annotations for use with dynamic analysis
tool such as valgrind, PIN, etc.
Dynamic annotation is a source code annotation that affects
the generated code (that is, the annotation is not a comment).
Each such annotation is attached to a particular
instruction and/or to a particular object (address) in the program.
The annotations that should be used by users are macros in all upper-case
(e.g., ANNOTATE_THREAD_NAME).
Actual implementation of these macros may differ depending on the
dynamic analysis tool being used.
This file supports the following configurations:
- Dynamic Annotations enabled (with static thread-safety warnings disabled).
In this case, macros expand to functions implemented by Thread Sanitizer,
when building with TSan. When not provided an external implementation,
dynamic_annotations.cc provides no-op implementations.
- Static Clang thread-safety warnings enabled.
When building with a Clang compiler that supports thread-safety warnings,
a subset of annotations can be statically-checked at compile-time. We
expand these macros to static-inline functions that can be analyzed for
thread-safety, but afterwards elided when building the final binary.
- All annotations are disabled.
If neither Dynamic Annotations nor Clang thread-safety warnings are
enabled, then all annotation-macros expand to empty. */
#ifndef ABSL_BASE_DYNAMIC_ANNOTATIONS_H_
#define ABSL_BASE_DYNAMIC_ANNOTATIONS_H_
#ifndef DYNAMIC_ANNOTATIONS_ENABLED
# define DYNAMIC_ANNOTATIONS_ENABLED 0
#endif
#if defined(__native_client__)
#include "nacl/dynamic_annotations.h"
// Stub out the macros missing from the NaCl version.
#ifndef ANNOTATE_CONTIGUOUS_CONTAINER
#define ANNOTATE_CONTIGUOUS_CONTAINER(beg, end, old_mid, new_mid)
#endif
#ifndef ANNOTATE_RWLOCK_CREATE_STATIC
#define ANNOTATE_RWLOCK_CREATE_STATIC(lock)
#endif
#ifndef ADDRESS_SANITIZER_REDZONE
#define ADDRESS_SANITIZER_REDZONE(name)
#endif
#ifndef ANNOTATE_MEMORY_IS_UNINITIALIZED
#define ANNOTATE_MEMORY_IS_UNINITIALIZED(address, size)
#endif
#else /* !__native_client__ */
#if DYNAMIC_ANNOTATIONS_ENABLED != 0
/* -------------------------------------------------------------
Annotations that suppress errors. It is usually better to express the
program's synchronization using the other annotations, but these can
be used when all else fails. */
/* Report that we may have a benign race at "pointer", with size
"sizeof(*(pointer))". "pointer" must be a non-void* pointer. Insert at the
point where "pointer" has been allocated, preferably close to the point
where the race happens. See also ANNOTATE_BENIGN_RACE_STATIC. */
#define ANNOTATE_BENIGN_RACE(pointer, description) \
AnnotateBenignRaceSized(__FILE__, __LINE__, pointer, \
sizeof(*(pointer)), description)
/* Same as ANNOTATE_BENIGN_RACE(address, description), but applies to
the memory range [address, address+size). */
#define ANNOTATE_BENIGN_RACE_SIZED(address, size, description) \
AnnotateBenignRaceSized(__FILE__, __LINE__, address, size, description)
/* Enable (enable!=0) or disable (enable==0) race detection for all threads.
This annotation could be useful if you want to skip expensive race analysis
during some period of program execution, e.g. during initialization. */
#define ANNOTATE_ENABLE_RACE_DETECTION(enable) \
AnnotateEnableRaceDetection(__FILE__, __LINE__, enable)
/* -------------------------------------------------------------
Annotations useful for debugging. */
/* Report the current thread name to a race detector. */
#define ANNOTATE_THREAD_NAME(name) \
AnnotateThreadName(__FILE__, __LINE__, name)
/* -------------------------------------------------------------
Annotations useful when implementing locks. They are not
normally needed by modules that merely use locks.
The "lock" argument is a pointer to the lock object. */
/* Report that a lock has been created at address "lock". */
#define ANNOTATE_RWLOCK_CREATE(lock) \
AnnotateRWLockCreate(__FILE__, __LINE__, lock)
/* Report that a linker initialized lock has been created at address "lock".
*/
#ifdef THREAD_SANITIZER
#define ANNOTATE_RWLOCK_CREATE_STATIC(lock) \
AnnotateRWLockCreateStatic(__FILE__, __LINE__, lock)
#else
#define ANNOTATE_RWLOCK_CREATE_STATIC(lock) ANNOTATE_RWLOCK_CREATE(lock)
#endif
/* Report that the lock at address "lock" is about to be destroyed. */
#define ANNOTATE_RWLOCK_DESTROY(lock) \
AnnotateRWLockDestroy(__FILE__, __LINE__, lock)
/* Report that the lock at address "lock" has been acquired.
is_w=1 for writer lock, is_w=0 for reader lock. */
#define ANNOTATE_RWLOCK_ACQUIRED(lock, is_w) \
AnnotateRWLockAcquired(__FILE__, __LINE__, lock, is_w)
/* Report that the lock at address "lock" is about to be released. */
#define ANNOTATE_RWLOCK_RELEASED(lock, is_w) \
AnnotateRWLockReleased(__FILE__, __LINE__, lock, is_w)
#else /* DYNAMIC_ANNOTATIONS_ENABLED == 0 */
#define ANNOTATE_RWLOCK_CREATE(lock) /* empty */
#define ANNOTATE_RWLOCK_CREATE_STATIC(lock) /* empty */
#define ANNOTATE_RWLOCK_DESTROY(lock) /* empty */
#define ANNOTATE_RWLOCK_ACQUIRED(lock, is_w) /* empty */
#define ANNOTATE_RWLOCK_RELEASED(lock, is_w) /* empty */
#define ANNOTATE_BENIGN_RACE(address, description) /* empty */
#define ANNOTATE_BENIGN_RACE_SIZED(address, size, description) /* empty */
#define ANNOTATE_THREAD_NAME(name) /* empty */
#define ANNOTATE_ENABLE_RACE_DETECTION(enable) /* empty */
#endif /* DYNAMIC_ANNOTATIONS_ENABLED */
/* These annotations are also made available to LLVM's Memory Sanitizer */
#if DYNAMIC_ANNOTATIONS_ENABLED == 1 || defined(MEMORY_SANITIZER)
#define ANNOTATE_MEMORY_IS_INITIALIZED(address, size) \
AnnotateMemoryIsInitialized(__FILE__, __LINE__, address, size)
#define ANNOTATE_MEMORY_IS_UNINITIALIZED(address, size) \
AnnotateMemoryIsUninitialized(__FILE__, __LINE__, address, size)
#else
#define ANNOTATE_MEMORY_IS_INITIALIZED(address, size) /* empty */
#define ANNOTATE_MEMORY_IS_UNINITIALIZED(address, size) /* empty */
#endif /* DYNAMIC_ANNOTATIONS_ENABLED || MEMORY_SANITIZER */
/* TODO(delesley) -- Replace __CLANG_SUPPORT_DYN_ANNOTATION__ with the
appropriate feature ID. */
#if defined(__clang__) && (!defined(SWIG)) \
&& defined(__CLANG_SUPPORT_DYN_ANNOTATION__)
#if DYNAMIC_ANNOTATIONS_ENABLED == 0
#define ANNOTALYSIS_ENABLED
#endif
/* When running in opt-mode, GCC will issue a warning, if these attributes are
compiled. Only include them when compiling using Clang. */
#define ATTRIBUTE_IGNORE_READS_BEGIN \
__attribute((exclusive_lock_function("*")))
#define ATTRIBUTE_IGNORE_READS_END \
__attribute((unlock_function("*")))
#else
#define ATTRIBUTE_IGNORE_READS_BEGIN /* empty */
#define ATTRIBUTE_IGNORE_READS_END /* empty */
#endif /* defined(__clang__) && ... */
#if (DYNAMIC_ANNOTATIONS_ENABLED != 0) || defined(ANNOTALYSIS_ENABLED)
#define ANNOTATIONS_ENABLED
#endif
#if (DYNAMIC_ANNOTATIONS_ENABLED != 0)
/* Request the analysis tool to ignore all reads in the current thread
until ANNOTATE_IGNORE_READS_END is called.
Useful to ignore intentional racey reads, while still checking
other reads and all writes.
See also ANNOTATE_UNPROTECTED_READ. */
#define ANNOTATE_IGNORE_READS_BEGIN() \
AnnotateIgnoreReadsBegin(__FILE__, __LINE__)
/* Stop ignoring reads. */
#define ANNOTATE_IGNORE_READS_END() \
AnnotateIgnoreReadsEnd(__FILE__, __LINE__)
/* Similar to ANNOTATE_IGNORE_READS_BEGIN, but ignore writes instead. */
#define ANNOTATE_IGNORE_WRITES_BEGIN() \
AnnotateIgnoreWritesBegin(__FILE__, __LINE__)
/* Stop ignoring writes. */
#define ANNOTATE_IGNORE_WRITES_END() \
AnnotateIgnoreWritesEnd(__FILE__, __LINE__)
/* Clang provides limited support for static thread-safety analysis
through a feature called Annotalysis. We configure macro-definitions
according to whether Annotalysis support is available. */
#elif defined(ANNOTALYSIS_ENABLED)
#define ANNOTATE_IGNORE_READS_BEGIN() \
StaticAnnotateIgnoreReadsBegin(__FILE__, __LINE__)
#define ANNOTATE_IGNORE_READS_END() \
StaticAnnotateIgnoreReadsEnd(__FILE__, __LINE__)
#define ANNOTATE_IGNORE_WRITES_BEGIN() \
StaticAnnotateIgnoreWritesBegin(__FILE__, __LINE__)
#define ANNOTATE_IGNORE_WRITES_END() \
StaticAnnotateIgnoreWritesEnd(__FILE__, __LINE__)
#else
#define ANNOTATE_IGNORE_READS_BEGIN() /* empty */
#define ANNOTATE_IGNORE_READS_END() /* empty */
#define ANNOTATE_IGNORE_WRITES_BEGIN() /* empty */
#define ANNOTATE_IGNORE_WRITES_END() /* empty */
#endif
/* Implement the ANNOTATE_IGNORE_READS_AND_WRITES_* annotations using the more
primitive annotations defined above. */
#if defined(ANNOTATIONS_ENABLED)
/* Start ignoring all memory accesses (both reads and writes). */
#define ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN() \
do { \
ANNOTATE_IGNORE_READS_BEGIN(); \
ANNOTATE_IGNORE_WRITES_BEGIN(); \
}while (0)
/* Stop ignoring both reads and writes. */
#define ANNOTATE_IGNORE_READS_AND_WRITES_END() \
do { \
ANNOTATE_IGNORE_WRITES_END(); \
ANNOTATE_IGNORE_READS_END(); \
}while (0)
#else
#define ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN() /* empty */
#define ANNOTATE_IGNORE_READS_AND_WRITES_END() /* empty */
#endif
/* Use the macros above rather than using these functions directly. */
#include <stddef.h>
#ifdef __cplusplus
extern "C" {
#endif
void AnnotateRWLockCreate(const char *file, int line,
const volatile void *lock);
void AnnotateRWLockCreateStatic(const char *file, int line,
const volatile void *lock);
void AnnotateRWLockDestroy(const char *file, int line,
const volatile void *lock);
void AnnotateRWLockAcquired(const char *file, int line,
const volatile void *lock, long is_w); /* NOLINT */
void AnnotateRWLockReleased(const char *file, int line,
const volatile void *lock, long is_w); /* NOLINT */
void AnnotateBenignRace(const char *file, int line,
const volatile void *address,
const char *description);
void AnnotateBenignRaceSized(const char *file, int line,
const volatile void *address,
size_t size,
const char *description);
void AnnotateThreadName(const char *file, int line,
const char *name);
void AnnotateEnableRaceDetection(const char *file, int line, int enable);
void AnnotateMemoryIsInitialized(const char *file, int line,
const volatile void *mem, size_t size);
void AnnotateMemoryIsUninitialized(const char *file, int line,
const volatile void *mem, size_t size);
/* Annotations expand to these functions, when Dynamic Annotations are enabled.
These functions are either implemented as no-op calls, if no Sanitizer is
attached, or provided with externally-linked implementations by a library
like ThreadSanitizer. */
void AnnotateIgnoreReadsBegin(const char *file, int line)
ATTRIBUTE_IGNORE_READS_BEGIN;
void AnnotateIgnoreReadsEnd(const char *file, int line)
ATTRIBUTE_IGNORE_READS_END;
void AnnotateIgnoreWritesBegin(const char *file, int line);
void AnnotateIgnoreWritesEnd(const char *file, int line);
#if defined(ANNOTALYSIS_ENABLED)
/* When Annotalysis is enabled without Dynamic Annotations, the use of
static-inline functions allows the annotations to be read at compile-time,
while still letting the compiler elide the functions from the final build.
TODO(delesley) -- The exclusive lock here ignores writes as well, but
allows INGORE_READS_AND_WRITES to work properly. */
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-function"
static inline void StaticAnnotateIgnoreReadsBegin(const char *file, int line)
ATTRIBUTE_IGNORE_READS_BEGIN { (void)file; (void)line; }
static inline void StaticAnnotateIgnoreReadsEnd(const char *file, int line)
ATTRIBUTE_IGNORE_READS_END { (void)file; (void)line; }
static inline void StaticAnnotateIgnoreWritesBegin(
const char *file, int line) { (void)file; (void)line; }
static inline void StaticAnnotateIgnoreWritesEnd(
const char *file, int line) { (void)file; (void)line; }
#pragma GCC diagnostic pop
#endif
/* Return non-zero value if running under valgrind.
If "valgrind.h" is included into dynamic_annotations.cc,
the regular valgrind mechanism will be used.
See http://valgrind.org/docs/manual/manual-core-adv.html about
RUNNING_ON_VALGRIND and other valgrind "client requests".
The file "valgrind.h" may be obtained by doing
svn co svn://svn.valgrind.org/valgrind/trunk/include
If for some reason you can't use "valgrind.h" or want to fake valgrind,
there are two ways to make this function return non-zero:
- Use environment variable: export RUNNING_ON_VALGRIND=1
- Make your tool intercept the function RunningOnValgrind() and
change its return value.
*/
int RunningOnValgrind(void);
/* ValgrindSlowdown returns:
* 1.0, if (RunningOnValgrind() == 0)
* 50.0, if (RunningOnValgrind() != 0 && getenv("VALGRIND_SLOWDOWN") == NULL)
* atof(getenv("VALGRIND_SLOWDOWN")) otherwise
This function can be used to scale timeout values:
EXAMPLE:
for (;;) {
DoExpensiveBackgroundTask();
SleepForSeconds(5 * ValgrindSlowdown());
}
*/
double ValgrindSlowdown(void);
#ifdef __cplusplus
}
#endif
/* ANNOTATE_UNPROTECTED_READ is the preferred way to annotate racey reads.
Instead of doing
ANNOTATE_IGNORE_READS_BEGIN();
... = x;
ANNOTATE_IGNORE_READS_END();
one can use
... = ANNOTATE_UNPROTECTED_READ(x); */
#if defined(__cplusplus) && defined(ANNOTATIONS_ENABLED)
template <typename T>
inline T ANNOTATE_UNPROTECTED_READ(const volatile T &x) { /* NOLINT */
ANNOTATE_IGNORE_READS_BEGIN();
T res = x;
ANNOTATE_IGNORE_READS_END();
return res;
}
#else
#define ANNOTATE_UNPROTECTED_READ(x) (x)
#endif
#if DYNAMIC_ANNOTATIONS_ENABLED != 0 && defined(__cplusplus)
/* Apply ANNOTATE_BENIGN_RACE_SIZED to a static variable. */
#define ANNOTATE_BENIGN_RACE_STATIC(static_var, description) \
namespace { \
class static_var ## _annotator { \
public: \
static_var ## _annotator() { \
ANNOTATE_BENIGN_RACE_SIZED(&static_var, \
sizeof(static_var), \
# static_var ": " description); \
} \
}; \
static static_var ## _annotator the ## static_var ## _annotator;\
} // namespace
#else /* DYNAMIC_ANNOTATIONS_ENABLED == 0 */
#define ANNOTATE_BENIGN_RACE_STATIC(static_var, description) /* empty */
#endif /* DYNAMIC_ANNOTATIONS_ENABLED */
#ifdef ADDRESS_SANITIZER
/* Describe the current state of a contiguous container such as e.g.
* std::vector or std::string. For more details see
* sanitizer/common_interface_defs.h, which is provided by the compiler. */
#include <sanitizer/common_interface_defs.h>
#define ANNOTATE_CONTIGUOUS_CONTAINER(beg, end, old_mid, new_mid) \
__sanitizer_annotate_contiguous_container(beg, end, old_mid, new_mid)
#define ADDRESS_SANITIZER_REDZONE(name) \
struct { char x[8] __attribute__ ((aligned (8))); } name
#else
#define ANNOTATE_CONTIGUOUS_CONTAINER(beg, end, old_mid, new_mid)
#define ADDRESS_SANITIZER_REDZONE(name)
#endif // ADDRESS_SANITIZER
/* Undefine the macros intended only in this file. */
#undef ANNOTALYSIS_ENABLED
#undef ANNOTATIONS_ENABLED
#undef ATTRIBUTE_IGNORE_READS_BEGIN
#undef ATTRIBUTE_IGNORE_READS_END
#endif /* !__native_client__ */
#endif /* ABSL_BASE_DYNAMIC_ANNOTATIONS_H_ */

View file

@ -0,0 +1,122 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#ifndef ABSL_BASE_INTERNAL_ATOMIC_HOOK_H_
#define ABSL_BASE_INTERNAL_ATOMIC_HOOK_H_
#include <cassert>
#include <atomic>
#include <utility>
namespace absl {
namespace base_internal {
// In current versions of MSVC (as of July 2017), a std::atomic<T> where T is a
// pointer to function cannot be constant-initialized with an address constant
// expression. That is, the following code does not compile:
// void NoOp() {}
// constexpr std::atomic<void(*)()> ptr(NoOp);
//
// This is the only compiler we support that seems to have this issue. We
// conditionalize on MSVC here to use a fallback implementation. But we
// should revisit this occasionally. If MSVC fixes this compiler bug, we
// can then change this to be conditionalized on the value on _MSC_FULL_VER
// instead.
#ifdef _MSC_FULL_VER
#define ABSL_HAVE_FUNCTION_ADDRESS_CONSTANT_EXPRESSION 0
#else
#define ABSL_HAVE_FUNCTION_ADDRESS_CONSTANT_EXPRESSION 1
#endif
template <typename T>
class AtomicHook;
// AtomicHook is a helper class, templatized on a raw function pointer type, for
// implementing Abseil customization hooks. It is a callable object that
// dispatches to the registered hook, or performs a no-op (and returns a default
// constructed object) if no hook has been registered.
//
// Reads and writes guarantee memory_order_acquire/memory_order_release
// semantics.
template <typename ReturnType, typename... Args>
class AtomicHook<ReturnType (*)(Args...)> {
public:
using FnPtr = ReturnType (*)(Args...);
constexpr AtomicHook() : hook_(DummyFunction) {}
// Stores the provided function pointer as the value for this hook.
//
// This is intended to be called once. Multiple calls are legal only if the
// same function pointer is provided for each call. The store is implemented
// as a memory_order_release operation, and read accesses are implemented as
// memory_order_acquire.
void Store(FnPtr fn) {
assert(fn);
FnPtr expected = DummyFunction;
hook_.compare_exchange_strong(expected, fn, std::memory_order_acq_rel,
std::memory_order_acquire);
// If the compare and exchange failed, make sure that's because hook_ was
// already set to `fn` by an earlier call. Any other state reflects an API
// violation (calling Store() multiple times with different values).
//
// Avoid ABSL_RAW_CHECK, since raw logging depends on AtomicHook.
assert(expected == DummyFunction || expected == fn);
}
// Invokes the registered callback. If no callback has yet been registered, a
// default-constructed object of the appropriate type is returned instead.
template <typename... CallArgs>
ReturnType operator()(CallArgs&&... args) const {
FnPtr hook = hook_.load(std::memory_order_acquire);
if (ABSL_HAVE_FUNCTION_ADDRESS_CONSTANT_EXPRESSION || hook) {
return hook(std::forward<CallArgs>(args)...);
} else {
return ReturnType();
}
}
// Returns the registered callback, or nullptr if none has been registered.
// Useful if client code needs to conditionalize behavior based on whether a
// callback was registered.
//
// Note that atomic_hook.Load()() and atomic_hook() have different semantics:
// operator()() will perform a no-op if no callback was registered, while
// Load()() will dereference a null function pointer. Prefer operator()() to
// Load()() unless you must conditionalize behavior on whether a hook was
// registered.
FnPtr Load() const {
FnPtr ptr = hook_.load(std::memory_order_acquire);
return (ptr == DummyFunction) ? nullptr : ptr;
}
private:
#if ABSL_HAVE_FUNCTION_ADDRESS_CONSTANT_EXPRESSION
static ReturnType DummyFunction(Args...) {
return ReturnType();
}
#else
static constexpr FnPtr DummyFunction = nullptr;
#endif
std::atomic<FnPtr> hook_;
};
#undef ABSL_HAVE_FUNCTION_ADDRESS_CONSTANT_EXPRESSION
} // namespace base_internal
} // namespace absl
#endif // ABSL_BASE_INTERNAL_ATOMIC_HOOK_H_

View file

@ -0,0 +1,81 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The implementation of CycleClock::Frequency.
//
// NOTE: only i386 and x86_64 have been well tested.
// PPC, sparc, alpha, and ia64 are based on
// http://peter.kuscsik.com/wordpress/?p=14
// with modifications by m3b. See also
// https://setisvn.ssl.berkeley.edu/svn/lib/fftw-3.0.1/kernel/cycle.h
#include "absl/base/internal/cycleclock.h"
#include <chrono> // NOLINT(build/c++11)
#include "absl/base/internal/unscaledcycleclock.h"
namespace absl {
namespace base_internal {
#if ABSL_USE_UNSCALED_CYCLECLOCK
namespace {
#ifdef NDEBUG
#ifdef ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY
// Not debug mode and the UnscaledCycleClock frequency is the CPU
// frequency. Scale the CycleClock to prevent overflow if someone
// tries to represent the time as cycles since the Unix epoch.
static constexpr int32_t kShift = 1;
#else
// Not debug mode and the UnscaledCycleClock isn't operating at the
// raw CPU frequency. There is no need to do any scaling, so don't
// needlessly sacrifice precision.
static constexpr int32_t kShift = 0;
#endif
#else
// In debug mode use a different shift to discourage depending on a
// particular shift value.
static constexpr int32_t kShift = 2;
#endif
static constexpr double kFrequencyScale = 1.0 / (1 << kShift);
} // namespace
int64_t CycleClock::Now() {
return base_internal::UnscaledCycleClock::Now() >> kShift;
}
double CycleClock::Frequency() {
return kFrequencyScale * base_internal::UnscaledCycleClock::Frequency();
}
#else
int64_t CycleClock::Now() {
return std::chrono::duration_cast<std::chrono::nanoseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
}
double CycleClock::Frequency() {
return 1e9;
}
#endif
} // namespace base_internal
} // namespace absl

View file

@ -0,0 +1,77 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: cycleclock.h
// -----------------------------------------------------------------------------
//
// This header file defines a `CycleClock`, which yields the value and frequency
// of a cycle counter that increments at a rate that is approximately constant.
//
// NOTE:
//
// The cycle counter frequency is not necessarily related to the core clock
// frequency and should not be treated as such. That is, `CycleClock` cycles are
// not necessarily "CPU cycles" and code should not rely on that behavior, even
// if experimentally observed.
//
//
// An arbitrary offset may have been added to the counter at power on.
//
// On some platforms, the rate and offset of the counter may differ
// slightly when read from different CPUs of a multiprocessor. Usually,
// we try to ensure that the operating system adjusts values periodically
// so that values agree approximately. If you need stronger guarantees,
// consider using alternate interfaces.
//
// The CPU is not required to maintain the ordering of a cycle counter read
// with respect to surrounding instructions.
#ifndef ABSL_BASE_INTERNAL_CYCLECLOCK_H_
#define ABSL_BASE_INTERNAL_CYCLECLOCK_H_
#include <cstdint>
namespace absl {
namespace base_internal {
// -----------------------------------------------------------------------------
// CycleClock
// -----------------------------------------------------------------------------
class CycleClock {
public:
// CycleClock::Now()
//
// Returns the value of a cycle counter that counts at a rate that is
// approximately constant.
static int64_t Now();
// CycleClock::Frequency()
//
// Returns the amount by which `CycleClock::Now()` increases per second. Note
// that this value may not necessarily match the core CPU clock frequency.
static double Frequency();
private:
CycleClock() = delete; // no instances
CycleClock(const CycleClock&) = delete;
CycleClock& operator=(const CycleClock&) = delete;
};
} // namespace base_internal
} // namespace absl
#endif // ABSL_BASE_INTERNAL_CYCLECLOCK_H_

267
absl/base/internal/endian.h Normal file
View file

@ -0,0 +1,267 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#ifndef ABSL_BASE_INTERNAL_ENDIAN_H_
#define ABSL_BASE_INTERNAL_ENDIAN_H_
// The following guarantees declaration of the byte swap functions
#ifdef _MSC_VER
#include <stdlib.h> // NOLINT(build/include)
#elif defined(__APPLE__)
// Mac OS X / Darwin features
#include <libkern/OSByteOrder.h>
#elif defined(__GLIBC__)
#include <byteswap.h> // IWYU pragma: export
#endif
#include <cstdint>
#include "absl/base/config.h"
#include "absl/base/internal/unaligned_access.h"
#include "absl/base/port.h"
namespace absl {
// Use compiler byte-swapping intrinsics if they are available. 32-bit
// and 64-bit versions are available in Clang and GCC as of GCC 4.3.0.
// The 16-bit version is available in Clang and GCC only as of GCC 4.8.0.
// For simplicity, we enable them all only for GCC 4.8.0 or later.
#if defined(__clang__) || \
(defined(__GNUC__) && \
((__GNUC__ == 4 && __GNUC_MINOR__ >= 8) || __GNUC__ >= 5))
inline uint64_t gbswap_64(uint64_t host_int) {
return __builtin_bswap64(host_int);
}
inline uint32_t gbswap_32(uint32_t host_int) {
return __builtin_bswap32(host_int);
}
inline uint16_t gbswap_16(uint16_t host_int) {
return __builtin_bswap16(host_int);
}
#elif defined(_MSC_VER)
inline uint64_t gbswap_64(uint64_t host_int) {
return _byteswap_uint64(host_int);
}
inline uint32_t gbswap_32(uint32_t host_int) {
return _byteswap_ulong(host_int);
}
inline uint16_t gbswap_16(uint16_t host_int) {
return _byteswap_ushort(host_int);
}
#elif defined(__APPLE__)
inline uint64_t gbswap_64(uint64_t host_int) { return OSSwapInt16(host_int); }
inline uint32_t gbswap_32(uint32_t host_int) { return OSSwapInt32(host_int); }
inline uint16_t gbswap_16(uint16_t host_int) { return OSSwapInt64(host_int); }
#else
inline uint64_t gbswap_64(uint64_t host_int) {
#if defined(__GNUC__) && defined(__x86_64__) && !defined(__APPLE__)
// Adapted from /usr/include/byteswap.h. Not available on Mac.
if (__builtin_constant_p(host_int)) {
return __bswap_constant_64(host_int);
} else {
register uint64_t result;
__asm__("bswap %0" : "=r"(result) : "0"(host_int));
return result;
}
#elif defined(__GLIBC__)
return bswap_64(host_int);
#else
return (((x & uint64_t{(0xFF}) << 56) |
((x & uint64_t{(0xFF00}) << 40) |
((x & uint64_t{(0xFF0000}) << 24) |
((x & uint64_t{(0xFF000000}) << 8) |
((x & uint64_t{(0xFF00000000}) >> 8) |
((x & uint64_t{(0xFF0000000000}) >> 24) |
((x & uint64_t{(0xFF000000000000}) >> 40) |
((x & uint64_t{(0xFF00000000000000}) >> 56));
#endif // bswap_64
}
inline uint32_t gbswap_32(uint32_t host_int) {
#if defined(__GLIBC__)
return bswap_32(host_int);
#else
return (((x & 0xFF) << 24) | ((x & 0xFF00) << 8) | ((x & 0xFF0000) >> 8) |
((x & 0xFF000000) >> 24));
#endif
}
inline uint16_t gbswap_16(uint16_t host_int) {
#if defined(__GLIBC__)
return bswap_16(host_int);
#else
return uint16_t{((x & 0xFF) << 8) | ((x & 0xFF00) >> 8)};
#endif
}
#endif // intrinics available
#ifdef ABSL_IS_LITTLE_ENDIAN
// Definitions for ntohl etc. that don't require us to include
// netinet/in.h. We wrap gbswap_32 and gbswap_16 in functions rather
// than just #defining them because in debug mode, gcc doesn't
// correctly handle the (rather involved) definitions of bswap_32.
// gcc guarantees that inline functions are as fast as macros, so
// this isn't a performance hit.
inline uint16_t ghtons(uint16_t x) { return gbswap_16(x); }
inline uint32_t ghtonl(uint32_t x) { return gbswap_32(x); }
inline uint64_t ghtonll(uint64_t x) { return gbswap_64(x); }
#elif defined ABSL_IS_BIG_ENDIAN
// These definitions are simpler on big-endian machines
// These are functions instead of macros to avoid self-assignment warnings
// on calls such as "i = ghtnol(i);". This also provides type checking.
inline uint16_t ghtons(uint16_t x) { return x; }
inline uint32_t ghtonl(uint32_t x) { return x; }
inline uint64_t ghtonll(uint64_t x) { return x; }
#else
#error \
"Unsupported byte order: Either ABSL_IS_BIG_ENDIAN or " \
"ABSL_IS_LITTLE_ENDIAN must be defined"
#endif // byte order
inline uint16_t gntohs(uint16_t x) { return ghtons(x); }
inline uint32_t gntohl(uint32_t x) { return ghtonl(x); }
inline uint64_t gntohll(uint64_t x) { return ghtonll(x); }
// Utilities to convert numbers between the current hosts's native byte
// order and little-endian byte order
//
// Load/Store methods are alignment safe
namespace little_endian {
// Conversion functions.
#ifdef ABSL_IS_LITTLE_ENDIAN
inline uint16_t FromHost16(uint16_t x) { return x; }
inline uint16_t ToHost16(uint16_t x) { return x; }
inline uint32_t FromHost32(uint32_t x) { return x; }
inline uint32_t ToHost32(uint32_t x) { return x; }
inline uint64_t FromHost64(uint64_t x) { return x; }
inline uint64_t ToHost64(uint64_t x) { return x; }
inline constexpr bool IsLittleEndian() { return true; }
#elif defined ABSL_IS_BIG_ENDIAN
inline uint16_t FromHost16(uint16_t x) { return gbswap_16(x); }
inline uint16_t ToHost16(uint16_t x) { return gbswap_16(x); }
inline uint32_t FromHost32(uint32_t x) { return gbswap_32(x); }
inline uint32_t ToHost32(uint32_t x) { return gbswap_32(x); }
inline uint64_t FromHost64(uint64_t x) { return gbswap_64(x); }
inline uint64_t ToHost64(uint64_t x) { return gbswap_64(x); }
inline constexpr bool IsLittleEndian() { return false; }
#endif /* ENDIAN */
// Functions to do unaligned loads and stores in little-endian order.
inline uint16_t Load16(const void *p) {
return ToHost16(ABSL_INTERNAL_UNALIGNED_LOAD16(p));
}
inline void Store16(void *p, uint16_t v) {
ABSL_INTERNAL_UNALIGNED_STORE16(p, FromHost16(v));
}
inline uint32_t Load32(const void *p) {
return ToHost32(ABSL_INTERNAL_UNALIGNED_LOAD32(p));
}
inline void Store32(void *p, uint32_t v) {
ABSL_INTERNAL_UNALIGNED_STORE32(p, FromHost32(v));
}
inline uint64_t Load64(const void *p) {
return ToHost64(ABSL_INTERNAL_UNALIGNED_LOAD64(p));
}
inline void Store64(void *p, uint64_t v) {
ABSL_INTERNAL_UNALIGNED_STORE64(p, FromHost64(v));
}
} // namespace little_endian
// Utilities to convert numbers between the current hosts's native byte
// order and big-endian byte order (same as network byte order)
//
// Load/Store methods are alignment safe
namespace big_endian {
#ifdef ABSL_IS_LITTLE_ENDIAN
inline uint16_t FromHost16(uint16_t x) { return gbswap_16(x); }
inline uint16_t ToHost16(uint16_t x) { return gbswap_16(x); }
inline uint32_t FromHost32(uint32_t x) { return gbswap_32(x); }
inline uint32_t ToHost32(uint32_t x) { return gbswap_32(x); }
inline uint64_t FromHost64(uint64_t x) { return gbswap_64(x); }
inline uint64_t ToHost64(uint64_t x) { return gbswap_64(x); }
inline constexpr bool IsLittleEndian() { return true; }
#elif defined ABSL_IS_BIG_ENDIAN
inline uint16_t FromHost16(uint16_t x) { return x; }
inline uint16_t ToHost16(uint16_t x) { return x; }
inline uint32_t FromHost32(uint32_t x) { return x; }
inline uint32_t ToHost32(uint32_t x) { return x; }
inline uint64_t FromHost64(uint64_t x) { return x; }
inline uint64_t ToHost64(uint64_t x) { return x; }
inline constexpr bool IsLittleEndian() { return false; }
#endif /* ENDIAN */
// Functions to do unaligned loads and stores in big-endian order.
inline uint16_t Load16(const void *p) {
return ToHost16(ABSL_INTERNAL_UNALIGNED_LOAD16(p));
}
inline void Store16(void *p, uint16_t v) {
ABSL_INTERNAL_UNALIGNED_STORE16(p, FromHost16(v));
}
inline uint32_t Load32(const void *p) {
return ToHost32(ABSL_INTERNAL_UNALIGNED_LOAD32(p));
}
inline void Store32(void *p, uint32_t v) {
ABSL_INTERNAL_UNALIGNED_STORE32(p, FromHost32(v));
}
inline uint64_t Load64(const void *p) {
return ToHost64(ABSL_INTERNAL_UNALIGNED_LOAD64(p));
}
inline void Store64(void *p, uint64_t v) {
ABSL_INTERNAL_UNALIGNED_STORE64(p, FromHost64(v));
}
} // namespace big_endian
} // namespace absl
#endif // ABSL_BASE_INTERNAL_ENDIAN_H_

View file

@ -0,0 +1,281 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/endian.h"
#include <algorithm>
#include <cstdint>
#include <cstdio>
#include <limits>
#include <random>
#include <vector>
#include "gtest/gtest.h"
#include "absl/base/casts.h"
#include "absl/base/config.h"
namespace absl {
namespace {
const uint64_t kInitialNumber{0x0123456789abcdef};
const uint64_t k64Value{kInitialNumber};
const uint32_t k32Value{0x01234567};
const uint16_t k16Value{0x0123};
const int kNumValuesToTest = 1000000;
const int kRandomSeed = 12345;
#ifdef ABSL_IS_BIG_ENDIAN
const uint64_t kInitialInNetworkOrder{kInitialNumber};
const uint64_t k64ValueLE{0xefcdab8967452301};
const uint32_t k32ValueLE{0x67452301};
const uint16_t k16ValueLE{0x2301};
const uint8_t k8ValueLE{k8Value};
const uint64_t k64IValueLE{0xefcdab89674523a1};
const uint32_t k32IValueLE{0x67452391};
const uint16_t k16IValueLE{0x85ff};
const uint8_t k8IValueLE{0xff};
const uint64_t kDoubleValueLE{0x6e861bf0f9210940};
const uint32_t kFloatValueLE{0xd00f4940};
const uint8_t kBoolValueLE{0x1};
const uint64_t k64ValueBE{kInitialNumber};
const uint32_t k32ValueBE{k32Value};
const uint16_t k16ValueBE{k16Value};
const uint8_t k8ValueBE{k8Value};
const uint64_t k64IValueBE{0xa123456789abcdef};
const uint32_t k32IValueBE{0x91234567};
const uint16_t k16IValueBE{0xff85};
const uint8_t k8IValueBE{0xff};
const uint64_t kDoubleValueBE{0x400921f9f01b866e};
const uint32_t kFloatValueBE{0x40490fd0};
const uint8_t kBoolValueBE{0x1};
#elif defined ABSL_IS_LITTLE_ENDIAN
const uint64_t kInitialInNetworkOrder{0xefcdab8967452301};
const uint64_t k64ValueLE{kInitialNumber};
const uint32_t k32ValueLE{k32Value};
const uint16_t k16ValueLE{k16Value};
const uint64_t k64ValueBE{0xefcdab8967452301};
const uint32_t k32ValueBE{0x67452301};
const uint16_t k16ValueBE{0x2301};
#endif
template<typename T>
std::vector<T> GenerateAllValuesForType() {
std::vector<T> result;
T next = std::numeric_limits<T>::min();
while (true) {
result.push_back(next);
if (next == std::numeric_limits<T>::max()) {
return result;
}
++next;
}
}
template<typename T>
std::vector<T> GenerateRandomIntegers(size_t numValuesToTest) {
std::vector<T> result;
std::mt19937_64 rng(kRandomSeed);
for (size_t i = 0; i < numValuesToTest; ++i) {
result.push_back(rng());
}
return result;
}
void ManualByteSwap(char* bytes, int length) {
if (length == 1)
return;
EXPECT_EQ(0, length % 2);
for (int i = 0; i < length / 2; ++i) {
int j = (length - 1) - i;
using std::swap;
swap(bytes[i], bytes[j]);
}
}
template<typename T>
inline T UnalignedLoad(const char* p) {
static_assert(
sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8,
"Unexpected type size");
switch (sizeof(T)) {
case 1: return *reinterpret_cast<const T*>(p);
case 2:
return ABSL_INTERNAL_UNALIGNED_LOAD16(p);
case 4:
return ABSL_INTERNAL_UNALIGNED_LOAD32(p);
case 8:
return ABSL_INTERNAL_UNALIGNED_LOAD64(p);
default:
// Suppresses invalid "not all control paths return a value" on MSVC
return {};
}
}
template <typename T, typename ByteSwapper>
static void GBSwapHelper(const std::vector<T>& host_values_to_test,
const ByteSwapper& byte_swapper) {
// Test byte_swapper against a manual byte swap.
for (typename std::vector<T>::const_iterator it = host_values_to_test.begin();
it != host_values_to_test.end(); ++it) {
T host_value = *it;
char actual_value[sizeof(host_value)];
memcpy(actual_value, &host_value, sizeof(host_value));
byte_swapper(actual_value);
char expected_value[sizeof(host_value)];
memcpy(expected_value, &host_value, sizeof(host_value));
ManualByteSwap(expected_value, sizeof(host_value));
ASSERT_EQ(0, memcmp(actual_value, expected_value, sizeof(host_value)))
<< "Swap output for 0x" << std::hex << host_value << " does not match. "
<< "Expected: 0x" << UnalignedLoad<T>(expected_value) << "; "
<< "actual: 0x" << UnalignedLoad<T>(actual_value);
}
}
void Swap16(char* bytes) {
ABSL_INTERNAL_UNALIGNED_STORE16(
bytes, gbswap_16(ABSL_INTERNAL_UNALIGNED_LOAD16(bytes)));
}
void Swap32(char* bytes) {
ABSL_INTERNAL_UNALIGNED_STORE32(
bytes, gbswap_32(ABSL_INTERNAL_UNALIGNED_LOAD32(bytes)));
}
void Swap64(char* bytes) {
ABSL_INTERNAL_UNALIGNED_STORE64(
bytes, gbswap_64(ABSL_INTERNAL_UNALIGNED_LOAD64(bytes)));
}
TEST(EndianessTest, Uint16) {
GBSwapHelper(GenerateAllValuesForType<uint16_t>(), &Swap16);
}
TEST(EndianessTest, Uint32) {
GBSwapHelper(GenerateRandomIntegers<uint32_t>(kNumValuesToTest), &Swap32);
}
TEST(EndianessTest, Uint64) {
GBSwapHelper(GenerateRandomIntegers<uint64_t>(kNumValuesToTest), &Swap64);
}
TEST(EndianessTest, ghtonll_gntohll) {
// Test that absl::ghtonl compiles correctly
uint32_t test = 0x01234567;
EXPECT_EQ(absl::gntohl(absl::ghtonl(test)), test);
uint64_t comp = absl::ghtonll(kInitialNumber);
EXPECT_EQ(comp, kInitialInNetworkOrder);
comp = absl::gntohll(kInitialInNetworkOrder);
EXPECT_EQ(comp, kInitialNumber);
// Test that htonll and ntohll are each others' inverse functions on a
// somewhat assorted batch of numbers. 37 is chosen to not be anything
// particularly nice base 2.
uint64_t value = 1;
for (int i = 0; i < 100; ++i) {
comp = absl::ghtonll(absl::gntohll(value));
EXPECT_EQ(value, comp);
comp = absl::gntohll(absl::ghtonll(value));
EXPECT_EQ(value, comp);
value *= 37;
}
}
TEST(EndianessTest, little_endian) {
// Check little_endian uint16_t.
uint64_t comp = little_endian::FromHost16(k16Value);
EXPECT_EQ(comp, k16ValueLE);
comp = little_endian::ToHost16(k16ValueLE);
EXPECT_EQ(comp, k16Value);
// Check little_endian uint32_t.
comp = little_endian::FromHost32(k32Value);
EXPECT_EQ(comp, k32ValueLE);
comp = little_endian::ToHost32(k32ValueLE);
EXPECT_EQ(comp, k32Value);
// Check little_endian uint64_t.
comp = little_endian::FromHost64(k64Value);
EXPECT_EQ(comp, k64ValueLE);
comp = little_endian::ToHost64(k64ValueLE);
EXPECT_EQ(comp, k64Value);
// Check little-endian Load and store functions.
uint16_t u16Buf;
uint32_t u32Buf;
uint64_t u64Buf;
little_endian::Store16(&u16Buf, k16Value);
EXPECT_EQ(u16Buf, k16ValueLE);
comp = little_endian::Load16(&u16Buf);
EXPECT_EQ(comp, k16Value);
little_endian::Store32(&u32Buf, k32Value);
EXPECT_EQ(u32Buf, k32ValueLE);
comp = little_endian::Load32(&u32Buf);
EXPECT_EQ(comp, k32Value);
little_endian::Store64(&u64Buf, k64Value);
EXPECT_EQ(u64Buf, k64ValueLE);
comp = little_endian::Load64(&u64Buf);
EXPECT_EQ(comp, k64Value);
}
TEST(EndianessTest, big_endian) {
// Check big-endian Load and store functions.
uint16_t u16Buf;
uint32_t u32Buf;
uint64_t u64Buf;
unsigned char buffer[10];
big_endian::Store16(&u16Buf, k16Value);
EXPECT_EQ(u16Buf, k16ValueBE);
uint64_t comp = big_endian::Load16(&u16Buf);
EXPECT_EQ(comp, k16Value);
big_endian::Store32(&u32Buf, k32Value);
EXPECT_EQ(u32Buf, k32ValueBE);
comp = big_endian::Load32(&u32Buf);
EXPECT_EQ(comp, k32Value);
big_endian::Store64(&u64Buf, k64Value);
EXPECT_EQ(u64Buf, k64ValueBE);
comp = big_endian::Load64(&u64Buf);
EXPECT_EQ(comp, k64Value);
big_endian::Store16(buffer + 1, k16Value);
EXPECT_EQ(u16Buf, k16ValueBE);
comp = big_endian::Load16(buffer + 1);
EXPECT_EQ(comp, k16Value);
big_endian::Store32(buffer + 1, k32Value);
EXPECT_EQ(u32Buf, k32ValueBE);
comp = big_endian::Load32(buffer + 1);
EXPECT_EQ(comp, k32Value);
big_endian::Store64(buffer + 1, k64Value);
EXPECT_EQ(u64Buf, k64ValueBE);
comp = big_endian::Load64(buffer + 1);
EXPECT_EQ(comp, k64Value);
}
} // namespace
} // namespace absl

View file

@ -0,0 +1,24 @@
// Testing utilities for ABSL types which throw exceptions.
#ifndef ABSL_BASE_INTERNAL_EXCEPTION_TESTING_H_
#define ABSL_BASE_INTERNAL_EXCEPTION_TESTING_H_
#include "gtest/gtest.h"
#include "absl/base/config.h"
// ABSL_BASE_INTERNAL_EXPECT_FAIL tests either for a specified thrown exception
// if exceptions are enabled, or for death with a specified text in the error
// message
#ifdef ABSL_HAVE_EXCEPTIONS
#define ABSL_BASE_INTERNAL_EXPECT_FAIL(expr, exception_t, text) \
EXPECT_THROW(expr, exception_t)
#else
#define ABSL_BASE_INTERNAL_EXPECT_FAIL(expr, exception_t, text) \
EXPECT_DEATH(expr, text)
#endif
#endif // ABSL_BASE_INTERNAL_EXCEPTION_TESTING_H_

View file

@ -0,0 +1,33 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#ifndef ABSL_BASE_INTERNAL_IDENTITY_H_
#define ABSL_BASE_INTERNAL_IDENTITY_H_
namespace absl {
namespace internal {
template <typename T>
struct identity {
typedef T type;
};
template <typename T>
using identity_t = typename identity<T>::type;
} // namespace internal
} // namespace absl
#endif // ABSL_BASE_INTERNAL_IDENTITY_H_

188
absl/base/internal/invoke.h Normal file
View file

@ -0,0 +1,188 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// absl::base_internal::Invoke(f, args...) is an implementation of
// INVOKE(f, args...) from section [func.require] of the C++ standard.
//
// [func.require]
// Define INVOKE (f, t1, t2, ..., tN) as follows:
// 1. (t1.*f)(t2, ..., tN) when f is a pointer to a member function of a class T
// and t1 is an object of type T or a reference to an object of type T or a
// reference to an object of a type derived from T;
// 2. ((*t1).*f)(t2, ..., tN) when f is a pointer to a member function of a
// class T and t1 is not one of the types described in the previous item;
// 3. t1.*f when N == 1 and f is a pointer to member data of a class T and t1 is
// an object of type T or a reference to an object of type T or a reference
// to an object of a type derived from T;
// 4. (*t1).*f when N == 1 and f is a pointer to member data of a class T and t1
// is not one of the types described in the previous item;
// 5. f(t1, t2, ..., tN) in all other cases.
//
// The implementation is SFINAE-friendly: substitution failure within Invoke()
// isn't an error.
#ifndef ABSL_BASE_INTERNAL_INVOKE_H_
#define ABSL_BASE_INTERNAL_INVOKE_H_
#include <algorithm>
#include <type_traits>
#include <utility>
// The following code is internal implementation detail. See the comment at the
// top of this file for the API documentation.
namespace absl {
namespace base_internal {
// The five classes below each implement one of the clauses from the definition
// of INVOKE. The inner class template Accept<F, Args...> checks whether the
// clause is applicable; static function template Invoke(f, args...) does the
// invocation.
//
// By separating the clause selection logic from invocation we make sure that
// Invoke() does exactly what the standard says.
template <typename Derived>
struct StrippedAccept {
template <typename... Args>
struct Accept : Derived::template AcceptImpl<typename std::remove_cv<
typename std::remove_reference<Args>::type>::type...> {};
};
// (t1.*f)(t2, ..., tN) when f is a pointer to a member function of a class T
// and t1 is an object of type T or a reference to an object of type T or a
// reference to an object of a type derived from T.
struct MemFunAndRef : StrippedAccept<MemFunAndRef> {
template <typename... Args>
struct AcceptImpl : std::false_type {};
template <typename R, typename C, typename... Params, typename Obj,
typename... Args>
struct AcceptImpl<R (C::*)(Params...), Obj, Args...>
: std::is_base_of<C, Obj> {};
template <typename R, typename C, typename... Params, typename Obj,
typename... Args>
struct AcceptImpl<R (C::*)(Params...) const, Obj, Args...>
: std::is_base_of<C, Obj> {};
template <typename MemFun, typename Obj, typename... Args>
static decltype((std::declval<Obj>().*
std::declval<MemFun>())(std::declval<Args>()...))
Invoke(MemFun&& mem_fun, Obj&& obj, Args&&... args) {
return (std::forward<Obj>(obj).*
std::forward<MemFun>(mem_fun))(std::forward<Args>(args)...);
}
};
// ((*t1).*f)(t2, ..., tN) when f is a pointer to a member function of a
// class T and t1 is not one of the types described in the previous item.
struct MemFunAndPtr : StrippedAccept<MemFunAndPtr> {
template <typename... Args>
struct AcceptImpl : std::false_type {};
template <typename R, typename C, typename... Params, typename Ptr,
typename... Args>
struct AcceptImpl<R (C::*)(Params...), Ptr, Args...>
: std::integral_constant<bool, !std::is_base_of<C, Ptr>::value> {};
template <typename R, typename C, typename... Params, typename Ptr,
typename... Args>
struct AcceptImpl<R (C::*)(Params...) const, Ptr, Args...>
: std::integral_constant<bool, !std::is_base_of<C, Ptr>::value> {};
template <typename MemFun, typename Ptr, typename... Args>
static decltype(((*std::declval<Ptr>()).*
std::declval<MemFun>())(std::declval<Args>()...))
Invoke(MemFun&& mem_fun, Ptr&& ptr, Args&&... args) {
return ((*std::forward<Ptr>(ptr)).*
std::forward<MemFun>(mem_fun))(std::forward<Args>(args)...);
}
};
// t1.*f when N == 1 and f is a pointer to member data of a class T and t1 is
// an object of type T or a reference to an object of type T or a reference
// to an object of a type derived from T.
struct DataMemAndRef : StrippedAccept<DataMemAndRef> {
template <typename... Args>
struct AcceptImpl : std::false_type {};
template <typename R, typename C, typename Obj>
struct AcceptImpl<R C::*, Obj> : std::is_base_of<C, Obj> {};
template <typename DataMem, typename Ref>
static decltype(std::declval<Ref>().*std::declval<DataMem>()) Invoke(
DataMem&& data_mem, Ref&& ref) {
return std::forward<Ref>(ref).*std::forward<DataMem>(data_mem);
}
};
// (*t1).*f when N == 1 and f is a pointer to member data of a class T and t1
// is not one of the types described in the previous item.
struct DataMemAndPtr : StrippedAccept<DataMemAndPtr> {
template <typename... Args>
struct AcceptImpl : std::false_type {};
template <typename R, typename C, typename Ptr>
struct AcceptImpl<R C::*, Ptr>
: std::integral_constant<bool, !std::is_base_of<C, Ptr>::value> {};
template <typename DataMem, typename Ptr>
static decltype((*std::declval<Ptr>()).*std::declval<DataMem>()) Invoke(
DataMem&& data_mem, Ptr&& ptr) {
return (*std::forward<Ptr>(ptr)).*std::forward<DataMem>(data_mem);
}
};
// f(t1, t2, ..., tN) in all other cases.
struct Callable {
// Callable doesn't have Accept because it's the last clause that gets picked
// when none of the previous clauses are applicable.
template <typename F, typename... Args>
static decltype(std::declval<F>()(std::declval<Args>()...)) Invoke(
F&& f, Args&&... args) {
return std::forward<F>(f)(std::forward<Args>(args)...);
}
};
// Resolves to the first matching clause.
template <typename... Args>
struct Invoker {
typedef typename std::conditional<
MemFunAndRef::Accept<Args...>::value, MemFunAndRef,
typename std::conditional<
MemFunAndPtr::Accept<Args...>::value, MemFunAndPtr,
typename std::conditional<
DataMemAndRef::Accept<Args...>::value, DataMemAndRef,
typename std::conditional<DataMemAndPtr::Accept<Args...>::value,
DataMemAndPtr, Callable>::type>::type>::
type>::type type;
};
// The result type of Invoke<F, Args...>.
template <typename F, typename... Args>
using InvokeT = decltype(Invoker<F, Args...>::type::Invoke(
std::declval<F>(), std::declval<Args>()...));
// Invoke(f, args...) is an implementation of INVOKE(f, args...) from section
// [func.require] of the C++ standard.
template <typename F, typename... Args>
InvokeT<F, Args...> Invoke(F&& f, Args&&... args) {
return Invoker<F, Args...>::type::Invoke(std::forward<F>(f),
std::forward<Args>(args)...);
}
} // namespace base_internal
} // namespace absl
#endif // ABSL_BASE_INTERNAL_INVOKE_H_

View file

@ -0,0 +1,15 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/log_severity.h"

View file

@ -0,0 +1,52 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#ifndef ABSL_BASE_INTERNAL_LOG_SEVERITY_H_
#define ABSL_BASE_INTERNAL_LOG_SEVERITY_H_
#include "absl/base/attributes.h"
namespace absl {
enum class LogSeverity : int {
kInfo = 0,
kWarning = 1,
kError = 2,
kFatal = 3,
};
constexpr const char* LogSeverityName(absl::LogSeverity s) {
return s == absl::LogSeverity::kInfo
? "INFO"
: s == absl::LogSeverity::kWarning
? "WARNING"
: s == absl::LogSeverity::kError
? "ERROR"
: s == absl::LogSeverity::kFatal ? "FATAL" : "UNKNOWN";
}
// Note that out-of-range large severities normalize to kError, not kFatal.
constexpr absl::LogSeverity NormalizeLogSeverity(absl::LogSeverity s) {
return s < absl::LogSeverity::kInfo
? absl::LogSeverity::kInfo
: s > absl::LogSeverity::kFatal ? absl::LogSeverity::kError : s;
}
constexpr absl::LogSeverity NormalizeLogSeverity(int s) {
return NormalizeLogSeverity(static_cast<absl::LogSeverity>(s));
}
} // namespace absl
#endif // ABSL_BASE_INTERNAL_LOG_SEVERITY_H_

View file

@ -0,0 +1,598 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// A low-level allocator that can be used by other low-level
// modules without introducing dependency cycles.
// This allocator is slow and wasteful of memory;
// it should not be used when performance is key.
#include "absl/base/config.h"
#include "absl/base/internal/low_level_alloc.h"
// LowLevelAlloc requires that the platform support low-level
// allocation of virtual memory. Platforms lacking this cannot use
// LowLevelAlloc.
#ifndef ABSL_LOW_LEVEL_ALLOC_MISSING
#ifndef _WIN32
#include <pthread.h>
#include <signal.h>
#include <sys/mman.h>
#include <unistd.h>
#else
#include <windows.h>
#endif
#include <string.h>
#include <algorithm>
#include <atomic>
#include <cstddef>
#include <cerrno>
#include <new> // for placement-new
#include "absl/base/dynamic_annotations.h"
#include "absl/base/internal/malloc_hook.h"
#include "absl/base/internal/malloc_hook_invoke.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"
// MAP_ANONYMOUS
#if defined(__APPLE__)
// For mmap, Linux defines both MAP_ANONYMOUS and MAP_ANON and says MAP_ANON is
// deprecated. In Darwin, MAP_ANON is all there is.
#if !defined MAP_ANONYMOUS
#define MAP_ANONYMOUS MAP_ANON
#endif // !MAP_ANONYMOUS
#endif // __APPLE__
namespace absl {
namespace base_internal {
// A first-fit allocator with amortized logarithmic free() time.
// ---------------------------------------------------------------------------
static const int kMaxLevel = 30;
namespace {
// This struct describes one allocated block, or one free block.
struct AllocList {
struct Header {
// Size of entire region, including this field. Must be
// first. Valid in both allocated and unallocated blocks.
uintptr_t size;
// kMagicAllocated or kMagicUnallocated xor this.
uintptr_t magic;
// Pointer to parent arena.
LowLevelAlloc::Arena *arena;
// Aligns regions to 0 mod 2*sizeof(void*).
void *dummy_for_alignment;
} header;
// Next two fields: in unallocated blocks: freelist skiplist data
// in allocated blocks: overlaps with client data
// Levels in skiplist used.
int levels;
// Actually has levels elements. The AllocList node may not have room
// for all kMaxLevel entries. See max_fit in LLA_SkiplistLevels().
AllocList *next[kMaxLevel];
};
} // namespace
// ---------------------------------------------------------------------------
// A trivial skiplist implementation. This is used to keep the freelist
// in address order while taking only logarithmic time per insert and delete.
// An integer approximation of log2(size/base)
// Requires size >= base.
static int IntLog2(size_t size, size_t base) {
int result = 0;
for (size_t i = size; i > base; i >>= 1) { // i == floor(size/2**result)
result++;
}
// floor(size / 2**result) <= base < floor(size / 2**(result-1))
// => log2(size/(base+1)) <= result < 1+log2(size/base)
// => result ~= log2(size/base)
return result;
}
// Return a random integer n: p(n)=1/(2**n) if 1 <= n; p(n)=0 if n < 1.
static int Random(uint32_t *state) {
uint32_t r = *state;
int result = 1;
while ((((r = r*1103515245 + 12345) >> 30) & 1) == 0) {
result++;
}
*state = r;
return result;
}
// Return a number of skiplist levels for a node of size bytes, where
// base is the minimum node size. Compute level=log2(size / base)+n
// where n is 1 if random is false and otherwise a random number generated with
// the standard distribution for a skiplist: See Random() above.
// Bigger nodes tend to have more skiplist levels due to the log2(size / base)
// term, so first-fit searches touch fewer nodes. "level" is clipped so
// level<kMaxLevel and next[level-1] will fit in the node.
// 0 < LLA_SkiplistLevels(x,y,false) <= LLA_SkiplistLevels(x,y,true) < kMaxLevel
static int LLA_SkiplistLevels(size_t size, size_t base, uint32_t *random) {
// max_fit is the maximum number of levels that will fit in a node for the
// given size. We can't return more than max_fit, no matter what the
// random number generator says.
size_t max_fit = (size - offsetof(AllocList, next)) / sizeof(AllocList *);
int level = IntLog2(size, base) + (random != nullptr ? Random(random) : 1);
if (static_cast<size_t>(level) > max_fit) level = static_cast<int>(max_fit);
if (level > kMaxLevel-1) level = kMaxLevel - 1;
ABSL_RAW_CHECK(level >= 1, "block not big enough for even one level");
return level;
}
// Return "atleast", the first element of AllocList *head s.t. *atleast >= *e.
// For 0 <= i < head->levels, set prev[i] to "no_greater", where no_greater
// points to the last element at level i in the AllocList less than *e, or is
// head if no such element exists.
static AllocList *LLA_SkiplistSearch(AllocList *head,
AllocList *e, AllocList **prev) {
AllocList *p = head;
for (int level = head->levels - 1; level >= 0; level--) {
for (AllocList *n; (n = p->next[level]) != nullptr && n < e; p = n) {
}
prev[level] = p;
}
return (head->levels == 0) ? nullptr : prev[0]->next[0];
}
// Insert element *e into AllocList *head. Set prev[] as LLA_SkiplistSearch.
// Requires that e->levels be previously set by the caller (using
// LLA_SkiplistLevels())
static void LLA_SkiplistInsert(AllocList *head, AllocList *e,
AllocList **prev) {
LLA_SkiplistSearch(head, e, prev);
for (; head->levels < e->levels; head->levels++) { // extend prev pointers
prev[head->levels] = head; // to all *e's levels
}
for (int i = 0; i != e->levels; i++) { // add element to list
e->next[i] = prev[i]->next[i];
prev[i]->next[i] = e;
}
}
// Remove element *e from AllocList *head. Set prev[] as LLA_SkiplistSearch().
// Requires that e->levels be previous set by the caller (using
// LLA_SkiplistLevels())
static void LLA_SkiplistDelete(AllocList *head, AllocList *e,
AllocList **prev) {
AllocList *found = LLA_SkiplistSearch(head, e, prev);
ABSL_RAW_CHECK(e == found, "element not in freelist");
for (int i = 0; i != e->levels && prev[i]->next[i] == e; i++) {
prev[i]->next[i] = e->next[i];
}
while (head->levels > 0 && head->next[head->levels - 1] == nullptr) {
head->levels--; // reduce head->levels if level unused
}
}
// ---------------------------------------------------------------------------
// Arena implementation
struct LowLevelAlloc::Arena {
// This constructor does nothing, and relies on zero-initialization to get
// the proper initial state.
Arena() : mu(base_internal::kLinkerInitialized) {} // NOLINT
explicit Arena(int) // NOLINT(readability/casting)
: // Avoid recursive cooperative scheduling w/ kernel scheduling.
mu(base_internal::SCHEDULE_KERNEL_ONLY),
// Set pagesize to zero explicitly for non-static init.
pagesize(0),
random(0) {}
base_internal::SpinLock mu; // protects freelist, allocation_count,
// pagesize, roundup, min_size
AllocList freelist; // head of free list; sorted by addr (under mu)
int32_t allocation_count; // count of allocated blocks (under mu)
std::atomic<uint32_t> flags; // flags passed to NewArena (ro after init)
size_t pagesize; // ==getpagesize() (init under mu, then ro)
size_t roundup; // lowest 2^n >= max(16,sizeof (AllocList))
// (init under mu, then ro)
size_t min_size; // smallest allocation block size
// (init under mu, then ro)
uint32_t random; // PRNG state
};
// The default arena, which is used when 0 is passed instead of an Arena
// pointer.
static struct LowLevelAlloc::Arena default_arena; // NOLINT
// Non-malloc-hooked arenas: used only to allocate metadata for arenas that
// do not want malloc hook reporting, so that for them there's no malloc hook
// reporting even during arena creation.
static struct LowLevelAlloc::Arena unhooked_arena; // NOLINT
#ifndef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
static struct LowLevelAlloc::Arena unhooked_async_sig_safe_arena; // NOLINT
#endif
// magic numbers to identify allocated and unallocated blocks
static const uintptr_t kMagicAllocated = 0x4c833e95U;
static const uintptr_t kMagicUnallocated = ~kMagicAllocated;
namespace {
class SCOPED_LOCKABLE ArenaLock {
public:
explicit ArenaLock(LowLevelAlloc::Arena *arena)
EXCLUSIVE_LOCK_FUNCTION(arena->mu)
: arena_(arena) {
#ifndef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
if (arena == &unhooked_async_sig_safe_arena ||
(arena->flags.load(std::memory_order_relaxed) &
LowLevelAlloc::kAsyncSignalSafe) != 0) {
sigset_t all;
sigfillset(&all);
mask_valid_ = pthread_sigmask(SIG_BLOCK, &all, &mask_) == 0;
}
#endif
arena_->mu.Lock();
}
~ArenaLock() { ABSL_RAW_CHECK(left_, "haven't left Arena region"); }
void Leave() UNLOCK_FUNCTION() {
arena_->mu.Unlock();
#ifndef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
if (mask_valid_) {
pthread_sigmask(SIG_SETMASK, &mask_, nullptr);
}
#endif
left_ = true;
}
private:
bool left_ = false; // whether left region
#ifndef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
bool mask_valid_ = false;
sigset_t mask_; // old mask of blocked signals
#endif
LowLevelAlloc::Arena *arena_;
ArenaLock(const ArenaLock &) = delete;
ArenaLock &operator=(const ArenaLock &) = delete;
};
} // namespace
// create an appropriate magic number for an object at "ptr"
// "magic" should be kMagicAllocated or kMagicUnallocated
inline static uintptr_t Magic(uintptr_t magic, AllocList::Header *ptr) {
return magic ^ reinterpret_cast<uintptr_t>(ptr);
}
// Initialize the fields of an Arena
static void ArenaInit(LowLevelAlloc::Arena *arena) {
if (arena->pagesize == 0) {
#ifdef _WIN32
SYSTEM_INFO system_info;
GetSystemInfo(&system_info);
arena->pagesize = std::max(system_info.dwPageSize,
system_info.dwAllocationGranularity);
#else
arena->pagesize = getpagesize();
#endif
// Round up block sizes to a power of two close to the header size.
arena->roundup = 16;
while (arena->roundup < sizeof (arena->freelist.header)) {
arena->roundup += arena->roundup;
}
// Don't allocate blocks less than twice the roundup size to avoid tiny
// free blocks.
arena->min_size = 2 * arena->roundup;
arena->freelist.header.size = 0;
arena->freelist.header.magic =
Magic(kMagicUnallocated, &arena->freelist.header);
arena->freelist.header.arena = arena;
arena->freelist.levels = 0;
memset(arena->freelist.next, 0, sizeof (arena->freelist.next));
arena->allocation_count = 0;
if (arena == &default_arena) {
// Default arena should be hooked, e.g. for heap-checker to trace
// pointer chains through objects in the default arena.
arena->flags.store(LowLevelAlloc::kCallMallocHook,
std::memory_order_relaxed);
}
#ifndef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
else if (arena == // NOLINT(readability/braces)
&unhooked_async_sig_safe_arena) {
arena->flags.store(LowLevelAlloc::kAsyncSignalSafe,
std::memory_order_relaxed);
}
#endif
else { // NOLINT(readability/braces)
// other arenas' flags may be overridden by client,
// but unhooked_arena will have 0 in 'flags'.
arena->flags.store(0, std::memory_order_relaxed);
}
}
}
// L < meta_data_arena->mu
LowLevelAlloc::Arena *LowLevelAlloc::NewArena(int32_t flags,
Arena *meta_data_arena) {
ABSL_RAW_CHECK(meta_data_arena != nullptr, "must pass a valid arena");
if (meta_data_arena == &default_arena) {
#ifndef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
if ((flags & LowLevelAlloc::kAsyncSignalSafe) != 0) {
meta_data_arena = &unhooked_async_sig_safe_arena;
} else // NOLINT(readability/braces)
#endif
if ((flags & LowLevelAlloc::kCallMallocHook) == 0) {
meta_data_arena = &unhooked_arena;
}
}
// Arena(0) uses the constructor for non-static contexts
Arena *result =
new (AllocWithArena(sizeof (*result), meta_data_arena)) Arena(0);
ArenaInit(result);
result->flags.store(flags, std::memory_order_relaxed);
return result;
}
// L < arena->mu, L < arena->arena->mu
bool LowLevelAlloc::DeleteArena(Arena *arena) {
ABSL_RAW_CHECK(
arena != nullptr && arena != &default_arena && arena != &unhooked_arena,
"may not delete default arena");
ArenaLock section(arena);
bool empty = (arena->allocation_count == 0);
section.Leave();
if (empty) {
while (arena->freelist.next[0] != nullptr) {
AllocList *region = arena->freelist.next[0];
size_t size = region->header.size;
arena->freelist.next[0] = region->next[0];
ABSL_RAW_CHECK(
region->header.magic == Magic(kMagicUnallocated, &region->header),
"bad magic number in DeleteArena()");
ABSL_RAW_CHECK(region->header.arena == arena,
"bad arena pointer in DeleteArena()");
ABSL_RAW_CHECK(size % arena->pagesize == 0,
"empty arena has non-page-aligned block size");
ABSL_RAW_CHECK(reinterpret_cast<uintptr_t>(region) % arena->pagesize == 0,
"empty arena has non-page-aligned block");
int munmap_result;
#ifdef _WIN32
munmap_result = VirtualFree(region, 0, MEM_RELEASE);
ABSL_RAW_CHECK(munmap_result != 0,
"LowLevelAlloc::DeleteArena: VitualFree failed");
#else
if ((arena->flags.load(std::memory_order_relaxed) &
LowLevelAlloc::kAsyncSignalSafe) == 0) {
munmap_result = munmap(region, size);
} else {
munmap_result = MallocHook::UnhookedMUnmap(region, size);
}
if (munmap_result != 0) {
ABSL_RAW_LOG(FATAL, "LowLevelAlloc::DeleteArena: munmap failed: %d",
errno);
}
#endif
}
Free(arena);
}
return empty;
}
// ---------------------------------------------------------------------------
// Addition, checking for overflow. The intent is to die if an external client
// manages to push through a request that would cause arithmetic to fail.
static inline uintptr_t CheckedAdd(uintptr_t a, uintptr_t b) {
uintptr_t sum = a + b;
ABSL_RAW_CHECK(sum >= a, "LowLevelAlloc arithmetic overflow");
return sum;
}
// Return value rounded up to next multiple of align.
// align must be a power of two.
static inline uintptr_t RoundUp(uintptr_t addr, uintptr_t align) {
return CheckedAdd(addr, align - 1) & ~(align - 1);
}
// Equivalent to "return prev->next[i]" but with sanity checking
// that the freelist is in the correct order, that it
// consists of regions marked "unallocated", and that no two regions
// are adjacent in memory (they should have been coalesced).
// L < arena->mu
static AllocList *Next(int i, AllocList *prev, LowLevelAlloc::Arena *arena) {
ABSL_RAW_CHECK(i < prev->levels, "too few levels in Next()");
AllocList *next = prev->next[i];
if (next != nullptr) {
ABSL_RAW_CHECK(
next->header.magic == Magic(kMagicUnallocated, &next->header),
"bad magic number in Next()");
ABSL_RAW_CHECK(next->header.arena == arena, "bad arena pointer in Next()");
if (prev != &arena->freelist) {
ABSL_RAW_CHECK(prev < next, "unordered freelist");
ABSL_RAW_CHECK(reinterpret_cast<char *>(prev) + prev->header.size <
reinterpret_cast<char *>(next),
"malformed freelist");
}
}
return next;
}
// Coalesce list item "a" with its successor if they are adjacent.
static void Coalesce(AllocList *a) {
AllocList *n = a->next[0];
if (n != nullptr && reinterpret_cast<char *>(a) + a->header.size ==
reinterpret_cast<char *>(n)) {
LowLevelAlloc::Arena *arena = a->header.arena;
a->header.size += n->header.size;
n->header.magic = 0;
n->header.arena = nullptr;
AllocList *prev[kMaxLevel];
LLA_SkiplistDelete(&arena->freelist, n, prev);
LLA_SkiplistDelete(&arena->freelist, a, prev);
a->levels = LLA_SkiplistLevels(a->header.size, arena->min_size,
&arena->random);
LLA_SkiplistInsert(&arena->freelist, a, prev);
}
}
// Adds block at location "v" to the free list
// L >= arena->mu
static void AddToFreelist(void *v, LowLevelAlloc::Arena *arena) {
AllocList *f = reinterpret_cast<AllocList *>(
reinterpret_cast<char *>(v) - sizeof (f->header));
ABSL_RAW_CHECK(f->header.magic == Magic(kMagicAllocated, &f->header),
"bad magic number in AddToFreelist()");
ABSL_RAW_CHECK(f->header.arena == arena,
"bad arena pointer in AddToFreelist()");
f->levels = LLA_SkiplistLevels(f->header.size, arena->min_size,
&arena->random);
AllocList *prev[kMaxLevel];
LLA_SkiplistInsert(&arena->freelist, f, prev);
f->header.magic = Magic(kMagicUnallocated, &f->header);
Coalesce(f); // maybe coalesce with successor
Coalesce(prev[0]); // maybe coalesce with predecessor
}
// Frees storage allocated by LowLevelAlloc::Alloc().
// L < arena->mu
void LowLevelAlloc::Free(void *v) {
if (v != nullptr) {
AllocList *f = reinterpret_cast<AllocList *>(
reinterpret_cast<char *>(v) - sizeof (f->header));
ABSL_RAW_CHECK(f->header.magic == Magic(kMagicAllocated, &f->header),
"bad magic number in Free()");
LowLevelAlloc::Arena *arena = f->header.arena;
if ((arena->flags.load(std::memory_order_relaxed) & kCallMallocHook) != 0) {
MallocHook::InvokeDeleteHook(v);
}
ArenaLock section(arena);
AddToFreelist(v, arena);
ABSL_RAW_CHECK(arena->allocation_count > 0, "nothing in arena to free");
arena->allocation_count--;
section.Leave();
}
}
// allocates and returns a block of size bytes, to be freed with Free()
// L < arena->mu
static void *DoAllocWithArena(size_t request, LowLevelAlloc::Arena *arena) {
void *result = nullptr;
if (request != 0) {
AllocList *s; // will point to region that satisfies request
ArenaLock section(arena);
ArenaInit(arena);
// round up with header
size_t req_rnd = RoundUp(CheckedAdd(request, sizeof (s->header)),
arena->roundup);
for (;;) { // loop until we find a suitable region
// find the minimum levels that a block of this size must have
int i = LLA_SkiplistLevels(req_rnd, arena->min_size, nullptr) - 1;
if (i < arena->freelist.levels) { // potential blocks exist
AllocList *before = &arena->freelist; // predecessor of s
while ((s = Next(i, before, arena)) != nullptr &&
s->header.size < req_rnd) {
before = s;
}
if (s != nullptr) { // we found a region
break;
}
}
// we unlock before mmap() both because mmap() may call a callback hook,
// and because it may be slow.
arena->mu.Unlock();
// mmap generous 64K chunks to decrease
// the chances/impact of fragmentation:
size_t new_pages_size = RoundUp(req_rnd, arena->pagesize * 16);
void *new_pages;
#ifdef _WIN32
new_pages = VirtualAlloc(0, new_pages_size,
MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
ABSL_RAW_CHECK(new_pages != nullptr, "VirtualAlloc failed");
#else
if ((arena->flags.load(std::memory_order_relaxed) &
LowLevelAlloc::kAsyncSignalSafe) != 0) {
new_pages = MallocHook::UnhookedMMap(nullptr, new_pages_size,
PROT_WRITE|PROT_READ, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
} else {
new_pages = mmap(nullptr, new_pages_size, PROT_WRITE | PROT_READ,
MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
}
if (new_pages == MAP_FAILED) {
ABSL_RAW_LOG(FATAL, "mmap error: %d", errno);
}
#endif
arena->mu.Lock();
s = reinterpret_cast<AllocList *>(new_pages);
s->header.size = new_pages_size;
// Pretend the block is allocated; call AddToFreelist() to free it.
s->header.magic = Magic(kMagicAllocated, &s->header);
s->header.arena = arena;
AddToFreelist(&s->levels, arena); // insert new region into free list
}
AllocList *prev[kMaxLevel];
LLA_SkiplistDelete(&arena->freelist, s, prev); // remove from free list
// s points to the first free region that's big enough
if (CheckedAdd(req_rnd, arena->min_size) <= s->header.size) {
// big enough to split
AllocList *n = reinterpret_cast<AllocList *>
(req_rnd + reinterpret_cast<char *>(s));
n->header.size = s->header.size - req_rnd;
n->header.magic = Magic(kMagicAllocated, &n->header);
n->header.arena = arena;
s->header.size = req_rnd;
AddToFreelist(&n->levels, arena);
}
s->header.magic = Magic(kMagicAllocated, &s->header);
ABSL_RAW_CHECK(s->header.arena == arena, "");
arena->allocation_count++;
section.Leave();
result = &s->levels;
}
ANNOTATE_MEMORY_IS_UNINITIALIZED(result, request);
return result;
}
void *LowLevelAlloc::Alloc(size_t request) {
void *result = DoAllocWithArena(request, &default_arena);
if ((default_arena.flags.load(std::memory_order_relaxed) &
kCallMallocHook) != 0) {
// this call must be directly in the user-called allocator function
// for MallocHook::GetCallerStackTrace to work properly
MallocHook::InvokeNewHook(result, request);
}
return result;
}
void *LowLevelAlloc::AllocWithArena(size_t request, Arena *arena) {
ABSL_RAW_CHECK(arena != nullptr, "must pass a valid arena");
void *result = DoAllocWithArena(request, arena);
if ((arena->flags.load(std::memory_order_relaxed) & kCallMallocHook) != 0) {
// this call must be directly in the user-called allocator function
// for MallocHook::GetCallerStackTrace to work properly
MallocHook::InvokeNewHook(result, request);
}
return result;
}
LowLevelAlloc::Arena *LowLevelAlloc::DefaultArena() {
return &default_arena;
}
} // namespace base_internal
} // namespace absl
#endif // ABSL_LOW_LEVEL_ALLOC_MISSING

View file

@ -0,0 +1,120 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#ifndef ABSL_BASE_INTERNAL_LOW_LEVEL_ALLOC_H_
#define ABSL_BASE_INTERNAL_LOW_LEVEL_ALLOC_H_
// A simple thread-safe memory allocator that does not depend on
// mutexes or thread-specific data. It is intended to be used
// sparingly, and only when malloc() would introduce an unwanted
// dependency, such as inside the heap-checker, or the Mutex
// implementation.
// IWYU pragma: private, include "base/low_level_alloc.h"
#include <cstdint>
#include "absl/base/config.h"
// LowLevelAlloc requires that the platform support low-level
// allocation of virtual memory. Platforms lacking this cannot use
// LowLevelAlloc.
#ifdef ABSL_LOW_LEVEL_ALLOC_MISSING
#error ABSL_LOW_LEVEL_ALLOC_MISSING cannot be directly set
#elif !defined(ABSL_HAVE_MMAP) && !defined(_WIN32)
#define ABSL_LOW_LEVEL_ALLOC_MISSING 1
#endif
// Using LowLevelAlloc with kAsyncSignalSafe isn't supported on Windows.
#ifdef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
#error ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING cannot be directly set
#elif defined(_WIN32)
#define ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING 1
#endif
#include <cstddef>
#include "absl/base/port.h"
namespace absl {
namespace base_internal {
class LowLevelAlloc {
public:
struct Arena; // an arena from which memory may be allocated
// Returns a pointer to a block of at least "request" bytes
// that have been newly allocated from the specific arena.
// for Alloc() call the DefaultArena() is used.
// Returns 0 if passed request==0.
// Does not return 0 under other circumstances; it crashes if memory
// is not available.
static void *Alloc(size_t request) ABSL_ATTRIBUTE_SECTION(malloc_hook);
static void *AllocWithArena(size_t request, Arena *arena)
ABSL_ATTRIBUTE_SECTION(malloc_hook);
// Deallocates a region of memory that was previously allocated with
// Alloc(). Does nothing if passed 0. "s" must be either 0,
// or must have been returned from a call to Alloc() and not yet passed to
// Free() since that call to Alloc(). The space is returned to the arena
// from which it was allocated.
static void Free(void *s) ABSL_ATTRIBUTE_SECTION(malloc_hook);
// ABSL_ATTRIBUTE_SECTION(malloc_hook) for Alloc* and Free
// are to put all callers of MallocHook::Invoke* in this module
// into special section,
// so that MallocHook::GetCallerStackTrace can function accurately.
// Create a new arena.
// The root metadata for the new arena is allocated in the
// meta_data_arena; the DefaultArena() can be passed for meta_data_arena.
// These values may be ored into flags:
enum {
// Report calls to Alloc() and Free() via the MallocHook interface.
// Set in the DefaultArena.
kCallMallocHook = 0x0001,
#ifndef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
// Make calls to Alloc(), Free() be async-signal-safe. Not set in
// DefaultArena(). Not supported on all platforms.
kAsyncSignalSafe = 0x0002,
#endif
// When used with DefaultArena(), the NewArena() and DeleteArena() calls
// obey the flags given explicitly in the NewArena() call, even if those
// flags differ from the settings in DefaultArena(). So the call
// NewArena(kAsyncSignalSafe, DefaultArena()) is itself async-signal-safe,
// as well as generatating an arena that provides async-signal-safe
// Alloc/Free.
};
static Arena *NewArena(int32_t flags, Arena *meta_data_arena);
// Destroys an arena allocated by NewArena and returns true,
// provided no allocated blocks remain in the arena.
// If allocated blocks remain in the arena, does nothing and
// returns false.
// It is illegal to attempt to destroy the DefaultArena().
static bool DeleteArena(Arena *arena);
// The default arena that always exists.
static Arena *DefaultArena();
private:
LowLevelAlloc(); // no instances
};
} // namespace base_internal
} // namespace absl
#endif // ABSL_BASE_INTERNAL_LOW_LEVEL_ALLOC_H_

View file

@ -0,0 +1,203 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/low_level_alloc.h"
#include <stdio.h>
#include <stdlib.h>
#include <thread> // NOLINT(build/c++11)
#include <unordered_map>
#include "absl/base/internal/malloc_hook.h"
namespace absl {
namespace base_internal {
namespace {
// This test doesn't use gtest since it needs to test that everything
// works before main().
#define TEST_ASSERT(x) \
if (!(x)) { \
printf("TEST_ASSERT(%s) FAILED ON LINE %d\n", #x, __LINE__); \
abort(); \
}
// a block of memory obtained from the allocator
struct BlockDesc {
char *ptr; // pointer to memory
int len; // number of bytes
int fill; // filled with data starting with this
};
// Check that the pattern placed in the block d
// by RandomizeBlockDesc is still there.
static void CheckBlockDesc(const BlockDesc &d) {
for (int i = 0; i != d.len; i++) {
TEST_ASSERT((d.ptr[i] & 0xff) == ((d.fill + i) & 0xff));
}
}
// Fill the block "*d" with a pattern
// starting with a random byte.
static void RandomizeBlockDesc(BlockDesc *d) {
d->fill = rand() & 0xff;
for (int i = 0; i != d->len; i++) {
d->ptr[i] = (d->fill + i) & 0xff;
}
}
// Use to indicate to the malloc hooks that
// this calls is from LowLevelAlloc.
static bool using_low_level_alloc = false;
// n times, toss a coin, and based on the outcome
// either allocate a new block or deallocate an old block.
// New blocks are placed in a std::unordered_map with a random key
// and initialized with RandomizeBlockDesc().
// If keys conflict, the older block is freed.
// Old blocks are always checked with CheckBlockDesc()
// before being freed. At the end of the run,
// all remaining allocated blocks are freed.
// If use_new_arena is true, use a fresh arena, and then delete it.
// If call_malloc_hook is true and user_arena is true,
// allocations and deallocations are reported via the MallocHook
// interface.
static void Test(bool use_new_arena, bool call_malloc_hook, int n) {
typedef std::unordered_map<int, BlockDesc> AllocMap;
AllocMap allocated;
AllocMap::iterator it;
BlockDesc block_desc;
int rnd;
LowLevelAlloc::Arena *arena = 0;
if (use_new_arena) {
int32_t flags = call_malloc_hook ? LowLevelAlloc::kCallMallocHook : 0;
arena = LowLevelAlloc::NewArena(flags, LowLevelAlloc::DefaultArena());
}
for (int i = 0; i != n; i++) {
if (i != 0 && i % 10000 == 0) {
printf(".");
fflush(stdout);
}
switch (rand() & 1) { // toss a coin
case 0: // coin came up heads: add a block
using_low_level_alloc = true;
block_desc.len = rand() & 0x3fff;
block_desc.ptr =
reinterpret_cast<char *>(
arena == 0
? LowLevelAlloc::Alloc(block_desc.len)
: LowLevelAlloc::AllocWithArena(block_desc.len, arena));
using_low_level_alloc = false;
RandomizeBlockDesc(&block_desc);
rnd = rand();
it = allocated.find(rnd);
if (it != allocated.end()) {
CheckBlockDesc(it->second);
using_low_level_alloc = true;
LowLevelAlloc::Free(it->second.ptr);
using_low_level_alloc = false;
it->second = block_desc;
} else {
allocated[rnd] = block_desc;
}
break;
case 1: // coin came up tails: remove a block
it = allocated.begin();
if (it != allocated.end()) {
CheckBlockDesc(it->second);
using_low_level_alloc = true;
LowLevelAlloc::Free(it->second.ptr);
using_low_level_alloc = false;
allocated.erase(it);
}
break;
}
}
// remove all remaining blocks
while ((it = allocated.begin()) != allocated.end()) {
CheckBlockDesc(it->second);
using_low_level_alloc = true;
LowLevelAlloc::Free(it->second.ptr);
using_low_level_alloc = false;
allocated.erase(it);
}
if (use_new_arena) {
TEST_ASSERT(LowLevelAlloc::DeleteArena(arena));
}
}
// used for counting allocates and frees
static int32_t allocates;
static int32_t frees;
// ignore uses of the allocator not triggered by our test
static std::thread::id* test_tid;
// called on each alloc if kCallMallocHook specified
static void AllocHook(const void *p, size_t size) {
if (using_low_level_alloc) {
if (*test_tid == std::this_thread::get_id()) {
allocates++;
}
}
}
// called on each free if kCallMallocHook specified
static void FreeHook(const void *p) {
if (using_low_level_alloc) {
if (*test_tid == std::this_thread::get_id()) {
frees++;
}
}
}
// LowLevelAlloc is designed to be safe to call before main().
static struct BeforeMain {
BeforeMain() {
test_tid = new std::thread::id(std::this_thread::get_id());
TEST_ASSERT(MallocHook::AddNewHook(&AllocHook));
TEST_ASSERT(MallocHook::AddDeleteHook(&FreeHook));
TEST_ASSERT(allocates == 0);
TEST_ASSERT(frees == 0);
Test(false, false, 50000);
TEST_ASSERT(allocates != 0); // default arena calls hooks
TEST_ASSERT(frees != 0);
for (int i = 0; i != 16; i++) {
bool call_hooks = ((i & 1) == 1);
allocates = 0;
frees = 0;
Test(true, call_hooks, 15000);
if (call_hooks) {
TEST_ASSERT(allocates > 5000); // arena calls hooks
TEST_ASSERT(frees > 5000);
} else {
TEST_ASSERT(allocates == 0); // arena doesn't call hooks
TEST_ASSERT(frees == 0);
}
}
TEST_ASSERT(MallocHook::RemoveNewHook(&AllocHook));
TEST_ASSERT(MallocHook::RemoveDeleteHook(&FreeHook));
}
} before_main;
} // namespace
} // namespace base_internal
} // namespace absl
int main(int argc, char *argv[]) {
// The actual test runs in the global constructor of `before_main`.
printf("PASS\n");
return 0;
}

View file

@ -0,0 +1,104 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Core interfaces and definitions used by by low-level //base interfaces such
// as SpinLock.
#ifndef ABSL_BASE_INTERNAL_LOW_LEVEL_SCHEDULING_H_
#define ABSL_BASE_INTERNAL_LOW_LEVEL_SCHEDULING_H_
#include "absl/base/internal/scheduling_mode.h"
#include "absl/base/macros.h"
// The following two declarations exist so SchedulingGuard may friend them with
// the appropriate language linkage. These callbacks allow libc internals, such
// as function level statics, to schedule cooperatively when locking.
extern "C" bool __google_disable_rescheduling(void);
extern "C" void __google_enable_rescheduling(bool disable_result);
namespace absl {
namespace base_internal {
class SpinLock; // To allow use of SchedulingGuard.
class SchedulingHelper; // To allow use of SchedulingGuard.
// SchedulingGuard
// Provides guard semantics that may be used to disable cooperative rescheduling
// of the calling thread within specific program blocks. This is used to
// protect resources (e.g. low-level SpinLocks or Domain code) that cooperative
// scheduling depends on.
//
// Domain implementations capable of rescheduling in reaction to involuntary
// kernel thread actions (e.g blocking due to a pagefault or syscall) must
// guarantee that an annotated thread is not allowed to (cooperatively)
// reschedule until the annotated region is complete.
//
// It is an error to attempt to use a cooperatively scheduled resource (e.g.
// Mutex) within a rescheduling-disabled region.
//
// All methods are async-signal safe.
class SchedulingGuard {
public:
// Returns true iff the calling thread may be cooperatively rescheduled.
static bool ReschedulingIsAllowed();
private:
// Disable cooperative rescheduling of the calling thread. It may still
// initiate scheduling operations (e.g. wake-ups), however, it may not itself
// reschedule. Nestable. The returned result is opaque, clients should not
// attempt to interpret it.
// REQUIRES: Result must be passed to a pairing EnableScheduling().
static bool DisableRescheduling();
// Marks the end of a rescheduling disabled region, previously started by
// DisableRescheduling().
// REQUIRES: Pairs with innermost call (and result) of DisableRescheduling().
static void EnableRescheduling(bool disable_result);
// A scoped helper for {Disable, Enable}Rescheduling().
// REQUIRES: destructor must run in same thread as constructor.
struct ScopedDisable {
ScopedDisable() { disabled = SchedulingGuard::DisableRescheduling(); }
~ScopedDisable() { SchedulingGuard::EnableRescheduling(disabled); }
bool disabled;
};
// Access to SchedulingGuard is explicitly white-listed.
friend class SchedulingHelper;
friend class SpinLock;
SchedulingGuard(const SchedulingGuard&) = delete;
SchedulingGuard& operator=(const SchedulingGuard&) = delete;
};
//------------------------------------------------------------------------------
// End of public interfaces.
//------------------------------------------------------------------------------
inline bool SchedulingGuard::ReschedulingIsAllowed() {
return false;
}
inline bool SchedulingGuard::DisableRescheduling() {
return false;
}
inline void SchedulingGuard::EnableRescheduling(bool /* disable_result */) {
return;
}
} // namespace base_internal
} // namespace absl
#endif // ABSL_BASE_INTERNAL_LOW_LEVEL_SCHEDULING_H_

View file

@ -0,0 +1,197 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/malloc_extension.h"
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <atomic>
#include <string>
#include "absl/base/dynamic_annotations.h"
#include "absl/base/internal/malloc_extension_c.h"
#include "absl/base/port.h"
namespace absl {
namespace base_internal {
// SysAllocator implementation
SysAllocator::~SysAllocator() {}
void SysAllocator::GetStats(char* buffer, int) { buffer[0] = 0; }
// Default implementation -- does nothing
MallocExtension::~MallocExtension() { }
bool MallocExtension::VerifyAllMemory() { return true; }
bool MallocExtension::VerifyNewMemory(const void*) { return true; }
bool MallocExtension::VerifyArrayNewMemory(const void*) { return true; }
bool MallocExtension::VerifyMallocMemory(const void*) { return true; }
bool MallocExtension::GetNumericProperty(const char*, size_t*) {
return false;
}
bool MallocExtension::SetNumericProperty(const char*, size_t) {
return false;
}
void MallocExtension::GetStats(char* buffer, int length) {
assert(length > 0);
static_cast<void>(length);
buffer[0] = '\0';
}
bool MallocExtension::MallocMemoryStats(int* blocks, size_t* total,
int histogram[kMallocHistogramSize]) {
*blocks = 0;
*total = 0;
memset(histogram, 0, sizeof(*histogram) * kMallocHistogramSize);
return true;
}
void MallocExtension::MarkThreadIdle() {
// Default implementation does nothing
}
void MallocExtension::MarkThreadBusy() {
// Default implementation does nothing
}
SysAllocator* MallocExtension::GetSystemAllocator() {
return nullptr;
}
void MallocExtension::SetSystemAllocator(SysAllocator*) {
// Default implementation does nothing
}
void MallocExtension::ReleaseToSystem(size_t) {
// Default implementation does nothing
}
void MallocExtension::ReleaseFreeMemory() {
ReleaseToSystem(static_cast<size_t>(-1)); // SIZE_T_MAX
}
void MallocExtension::SetMemoryReleaseRate(double) {
// Default implementation does nothing
}
double MallocExtension::GetMemoryReleaseRate() {
return -1.0;
}
size_t MallocExtension::GetEstimatedAllocatedSize(size_t size) {
return size;
}
size_t MallocExtension::GetAllocatedSize(const void* p) {
assert(GetOwnership(p) != kNotOwned);
static_cast<void>(p);
return 0;
}
MallocExtension::Ownership MallocExtension::GetOwnership(const void*) {
return kUnknownOwnership;
}
void MallocExtension::GetProperties(MallocExtension::StatLevel,
std::map<std::string, Property>* result) {
result->clear();
}
size_t MallocExtension::ReleaseCPUMemory(int) {
return 0;
}
// The current malloc extension object.
std::atomic<MallocExtension*> MallocExtension::current_instance_;
MallocExtension* MallocExtension::InitModule() {
MallocExtension* ext = new MallocExtension;
current_instance_.store(ext, std::memory_order_release);
return ext;
}
void MallocExtension::Register(MallocExtension* implementation) {
InitModuleOnce();
// When running under valgrind, our custom malloc is replaced with
// valgrind's one and malloc extensions will not work. (Note:
// callers should be responsible for checking that they are the
// malloc that is really being run, before calling Register. This
// is just here as an extra sanity check.)
// Under compiler-based ThreadSanitizer RunningOnValgrind() returns true,
// but we still want to use malloc extensions.
#ifndef THREAD_SANITIZER
if (RunningOnValgrind()) {
return;
}
#endif // #ifndef THREAD_SANITIZER
current_instance_.store(implementation, std::memory_order_release);
}
void MallocExtension::GetHeapSample(MallocExtensionWriter*) {}
void MallocExtension::GetHeapGrowthStacks(MallocExtensionWriter*) {}
void MallocExtension::GetFragmentationProfile(MallocExtensionWriter*) {}
} // namespace base_internal
} // namespace absl
// These are C shims that work on the current instance.
#define C_SHIM(fn, retval, paramlist, arglist) \
extern "C" retval MallocExtension_##fn paramlist { \
return absl::base_internal::MallocExtension::instance()->fn arglist; \
}
C_SHIM(VerifyAllMemory, int, (void), ());
C_SHIM(VerifyNewMemory, int, (const void* p), (p));
C_SHIM(VerifyArrayNewMemory, int, (const void* p), (p));
C_SHIM(VerifyMallocMemory, int, (const void* p), (p));
C_SHIM(
MallocMemoryStats, int,
(int* blocks, size_t* total,
int histogram[absl::base_internal::MallocExtension::kMallocHistogramSize]),
(blocks, total, histogram));
C_SHIM(GetStats, void,
(char* buffer, int buffer_length), (buffer, buffer_length));
C_SHIM(GetNumericProperty, int,
(const char* property, size_t* value), (property, value));
C_SHIM(SetNumericProperty, int,
(const char* property, size_t value), (property, value));
C_SHIM(MarkThreadIdle, void, (void), ());
C_SHIM(MarkThreadBusy, void, (void), ());
C_SHIM(ReleaseFreeMemory, void, (void), ());
C_SHIM(ReleaseToSystem, void, (size_t num_bytes), (num_bytes));
C_SHIM(GetEstimatedAllocatedSize, size_t, (size_t size), (size));
C_SHIM(GetAllocatedSize, size_t, (const void* p), (p));
// Can't use the shim here because of the need to translate the enums.
extern "C"
MallocExtension_Ownership MallocExtension_GetOwnership(const void* p) {
return static_cast<MallocExtension_Ownership>(
absl::base_internal::MallocExtension::instance()->GetOwnership(p));
}
// Default implementation just returns size. The expectation is that
// the linked-in malloc implementation might provide an override of
// this weak function with a better implementation.
ABSL_ATTRIBUTE_WEAK ABSL_ATTRIBUTE_NOINLINE size_t nallocx(size_t size, int) {
return size;
}

View file

@ -0,0 +1,424 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Extra extensions exported by some malloc implementations. These
// extensions are accessed through a virtual base class so an
// application can link against a malloc that does not implement these
// extensions, and it will get default versions that do nothing.
//
// NOTE FOR C USERS: If you wish to use this functionality from within
// a C program, see malloc_extension_c.h.
#ifndef ABSL_BASE_INTERNAL_MALLOC_EXTENSION_H_
#define ABSL_BASE_INTERNAL_MALLOC_EXTENSION_H_
#include <atomic>
#include <map>
#include <memory>
#include <vector>
#include <stddef.h>
#include <stdint.h>
#include <string>
#include "absl/base/macros.h"
#include "absl/base/port.h"
namespace absl {
namespace base_internal {
class MallocExtensionWriter;
// Interface to a pluggable system allocator.
class SysAllocator {
public:
SysAllocator() {
}
virtual ~SysAllocator();
// Allocates "size"-byte of memory from system aligned with "alignment".
// Returns null if failed. Otherwise, the returned pointer p up to and
// including (p + actual_size -1) have been allocated.
virtual void* Alloc(size_t size, size_t *actual_size, size_t alignment) = 0;
// Get a human-readable description of the current state of the
// allocator. The state is stored as a null-terminated std::string in
// a prefix of buffer.
virtual void GetStats(char* buffer, int length);
};
// The default implementations of the following routines do nothing.
// All implementations should be thread-safe; the current ones
// (DebugMallocImplementation and TCMallocImplementation) are.
class MallocExtension {
public:
virtual ~MallocExtension();
// Verifies that all blocks are valid. Returns true if all are; dumps
// core otherwise. A no-op except in debug mode. Even in debug mode,
// they may not do any checking except with certain malloc
// implementations. Thread-safe.
virtual bool VerifyAllMemory();
// Verifies that p was returned by new, has not been deleted, and is
// valid. Returns true if p is good; dumps core otherwise. A no-op
// except in debug mode. Even in debug mode, may not do any checking
// except with certain malloc implementations. Thread-safe.
virtual bool VerifyNewMemory(const void* p);
// Verifies that p was returned by new[], has not been deleted, and is
// valid. Returns true if p is good; dumps core otherwise. A no-op
// except in debug mode. Even in debug mode, may not do any checking
// except with certain malloc implementations. Thread-safe.
virtual bool VerifyArrayNewMemory(const void* p);
// Verifies that p was returned by malloc, has not been freed, and is
// valid. Returns true if p is good; dumps core otherwise. A no-op
// except in debug mode. Even in debug mode, may not do any checking
// except with certain malloc implementations. Thread-safe.
virtual bool VerifyMallocMemory(const void* p);
// If statistics collection is enabled, sets *blocks to be the number of
// currently allocated blocks, sets *total to be the total size allocated
// over all blocks, sets histogram[n] to be the number of blocks with
// size between 2^n-1 and 2^(n+1), and returns true. Returns false, and
// does not change *blocks, *total, or *histogram, if statistics
// collection is disabled.
//
// Note that these statistics reflect memory allocated by new, new[],
// malloc(), and realloc(), but not mmap(). They may be larger (if not
// all pages have been written to) or smaller (if pages have been
// allocated by mmap()) than the total RSS size. They will always be
// smaller than the total virtual memory size.
static constexpr int kMallocHistogramSize = 64;
virtual bool MallocMemoryStats(int* blocks, size_t* total,
int histogram[kMallocHistogramSize]);
// Get a human readable description of the current state of the malloc
// data structures. The state is stored as a null-terminated std::string
// in a prefix of "buffer[0,buffer_length-1]".
// REQUIRES: buffer_length > 0.
virtual void GetStats(char* buffer, int buffer_length);
// Outputs to "writer" a sample of live objects and the stack traces
// that allocated these objects. The output can be passed to pprof.
virtual void GetHeapSample(MallocExtensionWriter* writer);
// Outputs to "writer" the stack traces that caused growth in the
// address space size. The output can be passed to "pprof".
virtual void GetHeapGrowthStacks(MallocExtensionWriter* writer);
// Outputs to "writer" a fragmentation profile. The output can be
// passed to "pprof". In particular, the result is a list of
// <n,total,stacktrace> tuples that says that "total" bytes in "n"
// objects are currently unusable because of fragmentation caused by
// an allocation with the specified "stacktrace".
virtual void GetFragmentationProfile(MallocExtensionWriter* writer);
// -------------------------------------------------------------------
// Control operations for getting and setting malloc implementation
// specific parameters. Some currently useful properties:
//
// generic
// -------
// "generic.current_allocated_bytes"
// Number of bytes currently allocated by application
// This property is not writable.
//
// "generic.heap_size"
// Number of bytes in the heap ==
// current_allocated_bytes +
// fragmentation +
// freed memory regions
// This property is not writable.
//
// tcmalloc
// --------
// "tcmalloc.max_total_thread_cache_bytes"
// Upper limit on total number of bytes stored across all
// per-thread caches. Default: 16MB.
//
// "tcmalloc.current_total_thread_cache_bytes"
// Number of bytes used across all thread caches.
// This property is not writable.
//
// "tcmalloc.pageheap_free_bytes"
// Number of bytes in free, mapped pages in page heap. These
// bytes can be used to fulfill allocation requests. They
// always count towards virtual memory usage, and unless the
// underlying memory is swapped out by the OS, they also count
// towards physical memory usage. This property is not writable.
//
// "tcmalloc.pageheap_unmapped_bytes"
// Number of bytes in free, unmapped pages in page heap.
// These are bytes that have been released back to the OS,
// possibly by one of the MallocExtension "Release" calls.
// They can be used to fulfill allocation requests, but
// typically incur a page fault. They always count towards
// virtual memory usage, and depending on the OS, typically
// do not count towards physical memory usage. This property
// is not writable.
//
// "tcmalloc.per_cpu_caches_active"
// Whether tcmalloc is using per-CPU caches (1 or 0 respectively).
// This property is not writable.
// -------------------------------------------------------------------
// Get the named "property"'s value. Returns true if the property
// is known. Returns false if the property is not a valid property
// name for the current malloc implementation.
// REQUIRES: property != null; value != null
virtual bool GetNumericProperty(const char* property, size_t* value);
// Set the named "property"'s value. Returns true if the property
// is known and writable. Returns false if the property is not a
// valid property name for the current malloc implementation, or
// is not writable.
// REQUIRES: property != null
virtual bool SetNumericProperty(const char* property, size_t value);
// Mark the current thread as "idle". This routine may optionally
// be called by threads as a hint to the malloc implementation that
// any thread-specific resources should be released. Note: this may
// be an expensive routine, so it should not be called too often.
//
// Also, if the code that calls this routine will go to sleep for
// a while, it should take care to not allocate anything between
// the call to this routine and the beginning of the sleep.
//
// Most malloc implementations ignore this routine.
virtual void MarkThreadIdle();
// Mark the current thread as "busy". This routine should be
// called after MarkThreadIdle() if the thread will now do more
// work. If this method is not called, performance may suffer.
//
// Most malloc implementations ignore this routine.
virtual void MarkThreadBusy();
// Attempt to free any resources associated with cpu <cpu> (in the sense
// of only being usable from that CPU.) Returns the number of bytes
// previously assigned to "cpu" that were freed. Safe to call from
// any processor, not just <cpu>.
//
// Most malloc implementations ignore this routine (known exceptions:
// tcmalloc with --tcmalloc_per_cpu_caches=true.)
virtual size_t ReleaseCPUMemory(int cpu);
// Gets the system allocator used by the malloc extension instance. Returns
// null for malloc implementations that do not support pluggable system
// allocators.
virtual SysAllocator* GetSystemAllocator();
// Sets the system allocator to the specified.
//
// Users could register their own system allocators for malloc implementation
// that supports pluggable system allocators, such as TCMalloc, by doing:
// alloc = new MyOwnSysAllocator();
// MallocExtension::instance()->SetSystemAllocator(alloc);
// It's up to users whether to fall back (recommended) to the default
// system allocator (use GetSystemAllocator() above) or not. The caller is
// responsible to any necessary locking.
// See tcmalloc/system-alloc.h for the interface and
// tcmalloc/memfs_malloc.cc for the examples.
//
// It's a no-op for malloc implementations that do not support pluggable
// system allocators.
virtual void SetSystemAllocator(SysAllocator *a);
// Try to release num_bytes of free memory back to the operating
// system for reuse. Use this extension with caution -- to get this
// memory back may require faulting pages back in by the OS, and
// that may be slow. (Currently only implemented in tcmalloc.)
virtual void ReleaseToSystem(size_t num_bytes);
// Same as ReleaseToSystem() but release as much memory as possible.
virtual void ReleaseFreeMemory();
// Sets the rate at which we release unused memory to the system.
// Zero means we never release memory back to the system. Increase
// this flag to return memory faster; decrease it to return memory
// slower. Reasonable rates are in the range [0,10]. (Currently
// only implemented in tcmalloc).
virtual void SetMemoryReleaseRate(double rate);
// Gets the release rate. Returns a value < 0 if unknown.
virtual double GetMemoryReleaseRate();
// Returns the estimated number of bytes that will be allocated for
// a request of "size" bytes. This is an estimate: an allocation of
// SIZE bytes may reserve more bytes, but will never reserve less.
// (Currently only implemented in tcmalloc, other implementations
// always return SIZE.)
// This is equivalent to malloc_good_size() in OS X.
virtual size_t GetEstimatedAllocatedSize(size_t size);
// Returns the actual number N of bytes reserved by tcmalloc for the
// pointer p. This number may be equal to or greater than the
// number of bytes requested when p was allocated.
//
// This routine is just useful for statistics collection. The
// client must *not* read or write from the extra bytes that are
// indicated by this call.
//
// Example, suppose the client gets memory by calling
// p = malloc(10)
// and GetAllocatedSize(p) returns 16. The client must only use the
// first 10 bytes p[0..9], and not attempt to read or write p[10..15].
//
// p must have been allocated by this malloc implementation, must
// not be an interior pointer -- that is, must be exactly the
// pointer returned to by malloc() et al., not some offset from that
// -- and should not have been freed yet. p may be null.
// (Currently only implemented in tcmalloc; other implementations
// will return 0.)
virtual size_t GetAllocatedSize(const void* p);
// Returns kOwned if this malloc implementation allocated the memory
// pointed to by p, or kNotOwned if some other malloc implementation
// allocated it or p is null. May also return kUnknownOwnership if
// the malloc implementation does not keep track of ownership.
// REQUIRES: p must be a value returned from a previous call to
// malloc(), calloc(), realloc(), memalign(), posix_memalign(),
// valloc(), pvalloc(), new, or new[], and must refer to memory that
// is currently allocated (so, for instance, you should not pass in
// a pointer after having called free() on it).
enum Ownership {
// NOTE: Enum values MUST be kept in sync with the version in
// malloc_extension_c.h
kUnknownOwnership = 0,
kOwned,
kNotOwned
};
virtual Ownership GetOwnership(const void* p);
// The current malloc implementation. Always non-null.
static MallocExtension* instance() {
InitModuleOnce();
return current_instance_.load(std::memory_order_acquire);
}
// Change the malloc implementation. Typically called by the
// malloc implementation during initialization.
static void Register(MallocExtension* implementation);
// Type used by GetProperties. See comment on GetProperties.
struct Property {
size_t value;
// Stores breakdown of the property value bucketed by object size.
struct Bucket {
size_t min_object_size;
size_t max_object_size;
size_t size;
};
// Empty unless detailed info was asked for and this type has buckets
std::vector<Bucket> buckets;
};
// Type used by GetProperties. See comment on GetProperties.
enum StatLevel { kSummary, kDetailed };
// Stores in *result detailed statistics about the malloc
// implementation. *result will be a map keyed by the name of
// the statistic. Each statistic has at least a "value" field.
//
// Some statistics may also contain an array of buckets if
// level==kDetailed and the "value" can be subdivided
// into different buckets for different object sizes. If
// such detailed statistics are not available, Property::buckets
// will be empty. Otherwise Property::buckets will contain
// potentially many entries. For each bucket b, b.value
// will count the value contributed by objects in the range
// [b.min_object_size, b.max_object_size].
//
// Common across malloc implementations:
// generic.bytes_in_use_by_app -- Bytes currently in use by application
// generic.physical_memory_used -- Overall (including malloc internals)
// generic.virtual_memory_used -- Overall (including malloc internals)
//
// Tcmalloc specific properties
// tcmalloc.cpu_free -- Bytes in per-cpu free-lists
// tcmalloc.thread_cache_free -- Bytes in per-thread free-lists
// tcmalloc.transfer_cache -- Bytes in cross-thread transfer caches
// tcmalloc.central_cache_free -- Bytes in central cache
// tcmalloc.page_heap_free -- Bytes in page heap
// tcmalloc.page_heap_unmapped -- Bytes in page heap (no backing phys. mem)
// tcmalloc.metadata_bytes -- Used by internal data structures
// tcmalloc.thread_cache_count -- Number of thread caches in use
//
// Debug allocator
// debug.free_queue -- Recently freed objects
virtual void GetProperties(StatLevel level,
std::map<std::string, Property>* result);
private:
static MallocExtension* InitModule();
static void InitModuleOnce() {
// Pointer stored here so heap leak checker will consider the default
// instance reachable, even if current_instance_ is later overridden by
// MallocExtension::Register().
ABSL_ATTRIBUTE_UNUSED static MallocExtension* default_instance =
InitModule();
}
static std::atomic<MallocExtension*> current_instance_;
};
// Base class than can handle output generated by GetHeapSample() and
// GetHeapGrowthStacks(). Use the available subclass or roll your
// own. Useful if you want explicit control over the type of output
// buffer used (e.g. IOBuffer, Cord, etc.)
class MallocExtensionWriter {
public:
virtual ~MallocExtensionWriter() {}
virtual void Write(const char* buf, int len) = 0;
protected:
MallocExtensionWriter() {}
MallocExtensionWriter(const MallocExtensionWriter&) = delete;
MallocExtensionWriter& operator=(const MallocExtensionWriter&) = delete;
};
// A subclass that writes to the std::string "out". NOTE: The generated
// data is *appended* to "*out". I.e., the old contents of "*out" are
// preserved.
class StringMallocExtensionWriter : public MallocExtensionWriter {
public:
explicit StringMallocExtensionWriter(std::string* out) : out_(out) {}
virtual void Write(const char* buf, int len) {
out_->append(buf, len);
}
private:
std::string* const out_;
StringMallocExtensionWriter(const StringMallocExtensionWriter&) = delete;
StringMallocExtensionWriter& operator=(const StringMallocExtensionWriter&) =
delete;
};
} // namespace base_internal
} // namespace absl
// The nallocx function allocates no memory, but it performs the same size
// computation as the malloc function, and returns the real size of the
// allocation that would result from the equivalent malloc function call.
// Default weak implementation returns size unchanged, but tcmalloc overrides it
// and returns rounded up size. See the following link for details:
// http://www.unix.com/man-page/freebsd/3/nallocx/
extern "C" size_t nallocx(size_t size, int flags);
#ifndef MALLOCX_LG_ALIGN
#define MALLOCX_LG_ALIGN(la) (la)
#endif
#endif // ABSL_BASE_INTERNAL_MALLOC_EXTENSION_H_

View file

@ -0,0 +1,75 @@
/*
* Copyright 2017 The Abseil Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* C shims for the C++ malloc_extension.h. See malloc_extension.h for
* details. Note these C shims always work on
* MallocExtension::instance(); it is not possible to have more than
* one MallocExtension object in C applications.
*/
#ifndef ABSL_BASE_INTERNAL_MALLOC_EXTENSION_C_H_
#define ABSL_BASE_INTERNAL_MALLOC_EXTENSION_C_H_
#include <stddef.h>
#include <sys/types.h>
#ifdef __cplusplus
extern "C" {
#endif
#define kMallocExtensionHistogramSize 64
int MallocExtension_VerifyAllMemory(void);
int MallocExtension_VerifyNewMemory(const void* p);
int MallocExtension_VerifyArrayNewMemory(const void* p);
int MallocExtension_VerifyMallocMemory(const void* p);
int MallocExtension_MallocMemoryStats(int* blocks, size_t* total,
int histogram[kMallocExtensionHistogramSize]);
void MallocExtension_GetStats(char* buffer, int buffer_length);
/* TODO(csilvers): write a C version of these routines, that perhaps
* takes a function ptr and a void *.
*/
/* void MallocExtension_GetHeapSample(MallocExtensionWriter* result); */
/* void MallocExtension_GetHeapGrowthStacks(MallocExtensionWriter* result); */
int MallocExtension_GetNumericProperty(const char* property, size_t* value);
int MallocExtension_SetNumericProperty(const char* property, size_t value);
void MallocExtension_MarkThreadIdle(void);
void MallocExtension_MarkThreadBusy(void);
void MallocExtension_ReleaseToSystem(size_t num_bytes);
void MallocExtension_ReleaseFreeMemory(void);
size_t MallocExtension_GetEstimatedAllocatedSize(size_t size);
size_t MallocExtension_GetAllocatedSize(const void* p);
/*
* NOTE: These enum values MUST be kept in sync with the version in
* malloc_extension.h
*/
typedef enum {
MallocExtension_kUnknownOwnership = 0,
MallocExtension_kOwned,
MallocExtension_kNotOwned
} MallocExtension_Ownership;
MallocExtension_Ownership MallocExtension_GetOwnership(const void* p);
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* ABSL_BASE_INTERNAL_MALLOC_EXTENSION_C_H_ */

View file

@ -0,0 +1,102 @@
/*
* Copyright 2017 The Abseil Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <cstdlib>
#include "gtest/gtest.h"
#include "absl/base/internal/malloc_extension.h"
#include "absl/base/internal/malloc_extension_c.h"
namespace absl {
namespace base_internal {
namespace {
TEST(MallocExtension, MallocExtension) {
void* a = malloc(1000);
size_t cxx_bytes_used, c_bytes_used;
if (!MallocExtension::instance()->GetNumericProperty(
"generic.current_allocated_bytes", &cxx_bytes_used)) {
EXPECT_TRUE(ABSL_MALLOC_EXTENSION_TEST_ALLOW_MISSING_EXTENSION);
} else {
ASSERT_TRUE(MallocExtension::instance()->GetNumericProperty(
"generic.current_allocated_bytes", &cxx_bytes_used));
ASSERT_TRUE(MallocExtension_GetNumericProperty(
"generic.current_allocated_bytes", &c_bytes_used));
#ifndef MEMORY_SANITIZER
EXPECT_GT(cxx_bytes_used, 1000);
EXPECT_GT(c_bytes_used, 1000);
#endif
EXPECT_TRUE(MallocExtension::instance()->VerifyAllMemory());
EXPECT_TRUE(MallocExtension_VerifyAllMemory());
EXPECT_EQ(MallocExtension::kOwned,
MallocExtension::instance()->GetOwnership(a));
// TODO(csilvers): this relies on undocumented behavior that
// GetOwnership works on stack-allocated variables. Use a better test.
EXPECT_EQ(MallocExtension::kNotOwned,
MallocExtension::instance()->GetOwnership(&cxx_bytes_used));
EXPECT_EQ(MallocExtension::kNotOwned,
MallocExtension::instance()->GetOwnership(nullptr));
EXPECT_GE(MallocExtension::instance()->GetAllocatedSize(a), 1000);
// This is just a sanity check. If we allocated too much, tcmalloc is
// broken
EXPECT_LE(MallocExtension::instance()->GetAllocatedSize(a), 5000);
EXPECT_GE(MallocExtension::instance()->GetEstimatedAllocatedSize(1000),
1000);
for (int i = 0; i < 10; ++i) {
void* p = malloc(i);
EXPECT_GE(MallocExtension::instance()->GetAllocatedSize(p),
MallocExtension::instance()->GetEstimatedAllocatedSize(i));
free(p);
}
// Check the c-shim version too.
EXPECT_EQ(MallocExtension_kOwned, MallocExtension_GetOwnership(a));
EXPECT_EQ(MallocExtension_kNotOwned,
MallocExtension_GetOwnership(&cxx_bytes_used));
EXPECT_EQ(MallocExtension_kNotOwned, MallocExtension_GetOwnership(nullptr));
EXPECT_GE(MallocExtension_GetAllocatedSize(a), 1000);
EXPECT_LE(MallocExtension_GetAllocatedSize(a), 5000);
EXPECT_GE(MallocExtension_GetEstimatedAllocatedSize(1000), 1000);
}
free(a);
}
// Verify that the .cc file and .h file have the same enum values.
TEST(GetOwnership, EnumValuesEqualForCAndCXX) {
EXPECT_EQ(static_cast<int>(MallocExtension::kUnknownOwnership),
static_cast<int>(MallocExtension_kUnknownOwnership));
EXPECT_EQ(static_cast<int>(MallocExtension::kOwned),
static_cast<int>(MallocExtension_kOwned));
EXPECT_EQ(static_cast<int>(MallocExtension::kNotOwned),
static_cast<int>(MallocExtension_kNotOwned));
}
TEST(nallocx, SaneBehavior) {
for (size_t size = 0; size < 64 * 1024; ++size) {
size_t alloc_size = nallocx(size, 0);
EXPECT_LE(size, alloc_size) << "size is " << size;
EXPECT_LE(alloc_size, std::max(size + 100, 2 * size)) << "size is " << size;
}
}
} // namespace
} // namespace base_internal
} // namespace absl

View file

@ -0,0 +1,611 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/config.h"
#if ABSL_HAVE_MMAP
// Disable the glibc prototype of mremap(), as older versions of the
// system headers define this function with only four arguments,
// whereas newer versions allow an optional fifth argument:
#define mremap glibc_mremap
#include <sys/mman.h>
#undef mremap
#endif
#include <cstddef>
#include <cstdint>
#include <algorithm>
#include "absl/base/call_once.h"
#include "absl/base/casts.h"
#include "absl/base/internal/malloc_hook.h"
#include "absl/base/internal/malloc_hook_invoke.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"
// __THROW is defined in glibc systems. It means, counter-intuitively,
// "This function will never throw an exception." It's an optional
// optimization tool, but we may need to use it to match glibc prototypes.
#ifndef __THROW // I guess we're not on a glibc system
# define __THROW // __THROW is just an optimization, so ok to make it ""
#endif
namespace absl {
namespace base_internal {
namespace {
void RemoveInitialHooksAndCallInitializers(); // below.
absl::once_flag once;
// These hooks are installed in MallocHook as the only initial hooks. The first
// hook that is called will run RemoveInitialHooksAndCallInitializers (see the
// definition below) and then redispatch to any malloc hooks installed by
// RemoveInitialHooksAndCallInitializers.
//
// Note(llib): there is a possibility of a race in the event that there are
// multiple threads running before the first allocation. This is pretty
// difficult to achieve, but if it is then multiple threads may concurrently do
// allocations. The first caller will call
// RemoveInitialHooksAndCallInitializers via one of the initial hooks. A
// concurrent allocation may, depending on timing either:
// * still have its initial malloc hook installed, run that and block on waiting
// for the first caller to finish its call to
// RemoveInitialHooksAndCallInitializers, and proceed normally.
// * occur some time during the RemoveInitialHooksAndCallInitializers call, at
// which point there could be no initial hooks and the subsequent hooks that
// are about to be set up by RemoveInitialHooksAndCallInitializers haven't
// been installed yet. I think the worst we can get is that some allocations
// will not get reported to some hooks set by the initializers called from
// RemoveInitialHooksAndCallInitializers.
void InitialNewHook(const void* ptr, size_t size) {
absl::call_once(once, RemoveInitialHooksAndCallInitializers);
MallocHook::InvokeNewHook(ptr, size);
}
void InitialPreMMapHook(const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset) {
absl::call_once(once, RemoveInitialHooksAndCallInitializers);
MallocHook::InvokePreMmapHook(start, size, protection, flags, fd, offset);
}
void InitialPreSbrkHook(ptrdiff_t increment) {
absl::call_once(once, RemoveInitialHooksAndCallInitializers);
MallocHook::InvokePreSbrkHook(increment);
}
// This function is called at most once by one of the above initial malloc
// hooks. It removes all initial hooks and initializes all other clients that
// want to get control at the very first memory allocation. The initializers
// may assume that the initial malloc hooks have been removed. The initializers
// may set up malloc hooks and allocate memory.
void RemoveInitialHooksAndCallInitializers() {
ABSL_RAW_CHECK(MallocHook::RemoveNewHook(&InitialNewHook), "");
ABSL_RAW_CHECK(MallocHook::RemovePreMmapHook(&InitialPreMMapHook), "");
ABSL_RAW_CHECK(MallocHook::RemovePreSbrkHook(&InitialPreSbrkHook), "");
}
} // namespace
} // namespace base_internal
} // namespace absl
namespace absl {
namespace base_internal {
// This lock is shared between all implementations of HookList::Add & Remove.
// The potential for contention is very small. This needs to be a SpinLock and
// not a Mutex since it's possible for Mutex locking to allocate memory (e.g.,
// per-thread allocation in debug builds), which could cause infinite recursion.
static absl::base_internal::SpinLock hooklist_spinlock(
absl::base_internal::kLinkerInitialized);
template <typename T>
bool HookList<T>::Add(T value_as_t) {
if (value_as_t == T()) {
return false;
}
absl::base_internal::SpinLockHolder l(&hooklist_spinlock);
// Find the first slot in data that is 0.
int index = 0;
while ((index < kHookListMaxValues) &&
(priv_data[index].load(std::memory_order_relaxed) != 0)) {
++index;
}
if (index == kHookListMaxValues) {
return false;
}
int prev_num_hooks = priv_end.load(std::memory_order_acquire);
priv_data[index].store(reinterpret_cast<intptr_t>(value_as_t),
std::memory_order_release);
if (prev_num_hooks <= index) {
priv_end.store(index + 1, std::memory_order_release);
}
return true;
}
template <typename T>
bool HookList<T>::Remove(T value_as_t) {
if (value_as_t == T()) {
return false;
}
absl::base_internal::SpinLockHolder l(&hooklist_spinlock);
int hooks_end = priv_end.load(std::memory_order_acquire);
int index = 0;
while (index < hooks_end &&
value_as_t != reinterpret_cast<T>(
priv_data[index].load(std::memory_order_acquire))) {
++index;
}
if (index == hooks_end) {
return false;
}
priv_data[index].store(0, std::memory_order_release);
if (hooks_end == index + 1) {
// Adjust hooks_end down to the lowest possible value.
hooks_end = index;
while ((hooks_end > 0) &&
(priv_data[hooks_end - 1].load(std::memory_order_acquire) == 0)) {
--hooks_end;
}
priv_end.store(hooks_end, std::memory_order_release);
}
return true;
}
template <typename T>
int HookList<T>::Traverse(T* output_array, int n) const {
int hooks_end = priv_end.load(std::memory_order_acquire);
int actual_hooks_end = 0;
for (int i = 0; i < hooks_end && n > 0; ++i) {
T data = reinterpret_cast<T>(priv_data[i].load(std::memory_order_acquire));
if (data != T()) {
*output_array++ = data;
++actual_hooks_end;
--n;
}
}
return actual_hooks_end;
}
// Initialize a HookList (optionally with the given initial_value in index 0).
#define INIT_HOOK_LIST { {0}, {{}} }
#define INIT_HOOK_LIST_WITH_VALUE(initial_value) \
{ {1}, { {reinterpret_cast<intptr_t>(initial_value)} } }
// Explicit instantiation for malloc_hook_test.cc. This ensures all the methods
// are instantiated.
template struct HookList<MallocHook::NewHook>;
HookList<MallocHook::NewHook> new_hooks_ =
INIT_HOOK_LIST_WITH_VALUE(&InitialNewHook);
HookList<MallocHook::DeleteHook> delete_hooks_ = INIT_HOOK_LIST;
HookList<MallocHook::SampledNewHook> sampled_new_hooks_ = INIT_HOOK_LIST;
HookList<MallocHook::SampledDeleteHook> sampled_delete_hooks_ = INIT_HOOK_LIST;
HookList<MallocHook::PreMmapHook> premmap_hooks_ =
INIT_HOOK_LIST_WITH_VALUE(&InitialPreMMapHook);
HookList<MallocHook::MmapHook> mmap_hooks_ = INIT_HOOK_LIST;
HookList<MallocHook::MunmapHook> munmap_hooks_ = INIT_HOOK_LIST;
HookList<MallocHook::MremapHook> mremap_hooks_ = INIT_HOOK_LIST;
HookList<MallocHook::PreSbrkHook> presbrk_hooks_ =
INIT_HOOK_LIST_WITH_VALUE(InitialPreSbrkHook);
HookList<MallocHook::SbrkHook> sbrk_hooks_ = INIT_HOOK_LIST;
// These lists contain either 0 or 1 hooks.
HookList<MallocHook::MmapReplacement> mmap_replacement_ = INIT_HOOK_LIST;
HookList<MallocHook::MunmapReplacement> munmap_replacement_ = INIT_HOOK_LIST;
#undef INIT_HOOK_LIST_WITH_VALUE
#undef INIT_HOOK_LIST
} // namespace base_internal
} // namespace absl
// These are available as C bindings as well as C++, hence their
// definition outside the MallocHook class.
extern "C"
int MallocHook_AddNewHook(MallocHook_NewHook hook) {
return absl::base_internal::new_hooks_.Add(hook);
}
extern "C"
int MallocHook_RemoveNewHook(MallocHook_NewHook hook) {
return absl::base_internal::new_hooks_.Remove(hook);
}
extern "C"
int MallocHook_AddDeleteHook(MallocHook_DeleteHook hook) {
return absl::base_internal::delete_hooks_.Add(hook);
}
extern "C"
int MallocHook_RemoveDeleteHook(MallocHook_DeleteHook hook) {
return absl::base_internal::delete_hooks_.Remove(hook);
}
extern "C" int MallocHook_AddSampledNewHook(MallocHook_SampledNewHook hook) {
return absl::base_internal::sampled_new_hooks_.Add(hook);
}
extern "C" int MallocHook_RemoveSampledNewHook(MallocHook_SampledNewHook hook) {
return absl::base_internal::sampled_new_hooks_.Remove(hook);
}
extern "C" int MallocHook_AddSampledDeleteHook(
MallocHook_SampledDeleteHook hook) {
return absl::base_internal::sampled_delete_hooks_.Add(hook);
}
extern "C" int MallocHook_RemoveSampledDeleteHook(
MallocHook_SampledDeleteHook hook) {
return absl::base_internal::sampled_delete_hooks_.Remove(hook);
}
extern "C"
int MallocHook_AddPreMmapHook(MallocHook_PreMmapHook hook) {
return absl::base_internal::premmap_hooks_.Add(hook);
}
extern "C"
int MallocHook_RemovePreMmapHook(MallocHook_PreMmapHook hook) {
return absl::base_internal::premmap_hooks_.Remove(hook);
}
extern "C"
int MallocHook_SetMmapReplacement(MallocHook_MmapReplacement hook) {
// NOTE this is a best effort CHECK. Concurrent sets could succeed since
// this test is outside of the Add spin lock.
ABSL_RAW_CHECK(absl::base_internal::mmap_replacement_.empty(),
"Only one MMapReplacement is allowed.");
return absl::base_internal::mmap_replacement_.Add(hook);
}
extern "C"
int MallocHook_RemoveMmapReplacement(MallocHook_MmapReplacement hook) {
return absl::base_internal::mmap_replacement_.Remove(hook);
}
extern "C"
int MallocHook_AddMmapHook(MallocHook_MmapHook hook) {
return absl::base_internal::mmap_hooks_.Add(hook);
}
extern "C"
int MallocHook_RemoveMmapHook(MallocHook_MmapHook hook) {
return absl::base_internal::mmap_hooks_.Remove(hook);
}
extern "C"
int MallocHook_AddMunmapHook(MallocHook_MunmapHook hook) {
return absl::base_internal::munmap_hooks_.Add(hook);
}
extern "C"
int MallocHook_RemoveMunmapHook(MallocHook_MunmapHook hook) {
return absl::base_internal::munmap_hooks_.Remove(hook);
}
extern "C"
int MallocHook_SetMunmapReplacement(MallocHook_MunmapReplacement hook) {
// NOTE this is a best effort CHECK. Concurrent sets could succeed since
// this test is outside of the Add spin lock.
ABSL_RAW_CHECK(absl::base_internal::munmap_replacement_.empty(),
"Only one MunmapReplacement is allowed.");
return absl::base_internal::munmap_replacement_.Add(hook);
}
extern "C"
int MallocHook_RemoveMunmapReplacement(MallocHook_MunmapReplacement hook) {
return absl::base_internal::munmap_replacement_.Remove(hook);
}
extern "C"
int MallocHook_AddMremapHook(MallocHook_MremapHook hook) {
return absl::base_internal::mremap_hooks_.Add(hook);
}
extern "C"
int MallocHook_RemoveMremapHook(MallocHook_MremapHook hook) {
return absl::base_internal::mremap_hooks_.Remove(hook);
}
extern "C"
int MallocHook_AddPreSbrkHook(MallocHook_PreSbrkHook hook) {
return absl::base_internal::presbrk_hooks_.Add(hook);
}
extern "C"
int MallocHook_RemovePreSbrkHook(MallocHook_PreSbrkHook hook) {
return absl::base_internal::presbrk_hooks_.Remove(hook);
}
extern "C"
int MallocHook_AddSbrkHook(MallocHook_SbrkHook hook) {
return absl::base_internal::sbrk_hooks_.Add(hook);
}
extern "C"
int MallocHook_RemoveSbrkHook(MallocHook_SbrkHook hook) {
return absl::base_internal::sbrk_hooks_.Remove(hook);
}
namespace absl {
namespace base_internal {
// Note: embedding the function calls inside the traversal of HookList would be
// very confusing, as it is legal for a hook to remove itself and add other
// hooks. Doing traversal first, and then calling the hooks ensures we only
// call the hooks registered at the start.
#define INVOKE_HOOKS(HookType, hook_list, args) \
do { \
HookType hooks[kHookListMaxValues]; \
int num_hooks = hook_list.Traverse(hooks, kHookListMaxValues); \
for (int i = 0; i < num_hooks; ++i) { \
(*hooks[i]) args; \
} \
} while (0)
// There should only be one replacement. Return the result of the first
// one, or false if there is none.
#define INVOKE_REPLACEMENT(HookType, hook_list, args) \
do { \
HookType hooks[kHookListMaxValues]; \
int num_hooks = hook_list.Traverse(hooks, kHookListMaxValues); \
return (num_hooks > 0 && (*hooks[0])args); \
} while (0)
void MallocHook::InvokeNewHookSlow(const void* ptr, size_t size) {
INVOKE_HOOKS(NewHook, new_hooks_, (ptr, size));
}
void MallocHook::InvokeDeleteHookSlow(const void* ptr) {
INVOKE_HOOKS(DeleteHook, delete_hooks_, (ptr));
}
void MallocHook::InvokeSampledNewHookSlow(const SampledAlloc* sampled_alloc) {
INVOKE_HOOKS(SampledNewHook, sampled_new_hooks_, (sampled_alloc));
}
void MallocHook::InvokeSampledDeleteHookSlow(AllocHandle handle) {
INVOKE_HOOKS(SampledDeleteHook, sampled_delete_hooks_, (handle));
}
void MallocHook::InvokePreMmapHookSlow(const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset) {
INVOKE_HOOKS(PreMmapHook, premmap_hooks_, (start, size, protection, flags, fd,
offset));
}
void MallocHook::InvokeMmapHookSlow(const void* result,
const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset) {
INVOKE_HOOKS(MmapHook, mmap_hooks_, (result, start, size, protection, flags,
fd, offset));
}
bool MallocHook::InvokeMmapReplacementSlow(const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset,
void** result) {
INVOKE_REPLACEMENT(MmapReplacement, mmap_replacement_,
(start, size, protection, flags, fd, offset, result));
}
void MallocHook::InvokeMunmapHookSlow(const void* start, size_t size) {
INVOKE_HOOKS(MunmapHook, munmap_hooks_, (start, size));
}
bool MallocHook::InvokeMunmapReplacementSlow(const void* start,
size_t size,
int* result) {
INVOKE_REPLACEMENT(MunmapReplacement, munmap_replacement_,
(start, size, result));
}
void MallocHook::InvokeMremapHookSlow(const void* result,
const void* old_addr,
size_t old_size,
size_t new_size,
int flags,
const void* new_addr) {
INVOKE_HOOKS(MremapHook, mremap_hooks_, (result, old_addr, old_size, new_size,
flags, new_addr));
}
void MallocHook::InvokePreSbrkHookSlow(ptrdiff_t increment) {
INVOKE_HOOKS(PreSbrkHook, presbrk_hooks_, (increment));
}
void MallocHook::InvokeSbrkHookSlow(const void* result, ptrdiff_t increment) {
INVOKE_HOOKS(SbrkHook, sbrk_hooks_, (result, increment));
}
#undef INVOKE_HOOKS
#undef INVOKE_REPLACEMENT
} // namespace base_internal
} // namespace absl
ABSL_DEFINE_ATTRIBUTE_SECTION_VARS(google_malloc);
ABSL_DECLARE_ATTRIBUTE_SECTION_VARS(google_malloc);
// actual functions are in debugallocation.cc or tcmalloc.cc
ABSL_DEFINE_ATTRIBUTE_SECTION_VARS(malloc_hook);
ABSL_DECLARE_ATTRIBUTE_SECTION_VARS(malloc_hook);
// actual functions are in this file, malloc_hook.cc, and low_level_alloc.cc
ABSL_DEFINE_ATTRIBUTE_SECTION_VARS(blink_malloc);
ABSL_DECLARE_ATTRIBUTE_SECTION_VARS(blink_malloc);
// actual functions are in third_party/blink_headless/.../{PartitionAlloc,
// FastMalloc}.cpp.
#define ADDR_IN_ATTRIBUTE_SECTION(addr, name) \
(reinterpret_cast<uintptr_t>(ABSL_ATTRIBUTE_SECTION_START(name)) <= \
reinterpret_cast<uintptr_t>(addr) && \
reinterpret_cast<uintptr_t>(addr) < \
reinterpret_cast<uintptr_t>(ABSL_ATTRIBUTE_SECTION_STOP(name)))
// Return true iff 'caller' is a return address within a function
// that calls one of our hooks via MallocHook:Invoke*.
// A helper for GetCallerStackTrace.
static inline bool InHookCaller(const void* caller) {
return ADDR_IN_ATTRIBUTE_SECTION(caller, google_malloc) ||
ADDR_IN_ATTRIBUTE_SECTION(caller, malloc_hook) ||
ADDR_IN_ATTRIBUTE_SECTION(caller, blink_malloc);
// We can use one section for everything except tcmalloc_or_debug
// due to its special linkage mode, which prevents merging of the sections.
}
#undef ADDR_IN_ATTRIBUTE_SECTION
static absl::once_flag in_hook_caller_once;
static void InitializeInHookCaller() {
ABSL_INIT_ATTRIBUTE_SECTION_VARS(google_malloc);
if (ABSL_ATTRIBUTE_SECTION_START(google_malloc) ==
ABSL_ATTRIBUTE_SECTION_STOP(google_malloc)) {
ABSL_RAW_LOG(ERROR,
"google_malloc section is missing, "
"thus InHookCaller is broken!");
}
ABSL_INIT_ATTRIBUTE_SECTION_VARS(malloc_hook);
if (ABSL_ATTRIBUTE_SECTION_START(malloc_hook) ==
ABSL_ATTRIBUTE_SECTION_STOP(malloc_hook)) {
ABSL_RAW_LOG(ERROR,
"malloc_hook section is missing, "
"thus InHookCaller is broken!");
}
ABSL_INIT_ATTRIBUTE_SECTION_VARS(blink_malloc);
// The blink_malloc section is only expected to be present in binaries
// linking against the blink rendering engine in third_party/blink_headless.
}
// We can improve behavior/compactness of this function
// if we pass a generic test function (with a generic arg)
// into the implementations for get_stack_trace_fn instead of the skip_count.
extern "C" int MallocHook_GetCallerStackTrace(
void** result, int max_depth, int skip_count,
MallocHook_GetStackTraceFn get_stack_trace_fn) {
if (!ABSL_HAVE_ATTRIBUTE_SECTION) {
// Fall back to get_stack_trace_fn and good old but fragile frame skip
// counts.
// Note: this path is inaccurate when a hook is not called directly by an
// allocation function but is daisy-chained through another hook,
// search for MallocHook::(Get|Set|Invoke)* to find such cases.
#ifdef NDEBUG
return get_stack_trace_fn(result, max_depth, skip_count);
#else
return get_stack_trace_fn(result, max_depth, skip_count + 1);
#endif
// due to -foptimize-sibling-calls in opt mode
// there's no need for extra frame skip here then
}
absl::call_once(in_hook_caller_once, InitializeInHookCaller);
// MallocHook caller determination via InHookCaller works, use it:
static const int kMaxSkip = 32 + 6 + 3;
// Constant tuned to do just one get_stack_trace_fn call below in practice
// and not get many frames that we don't actually need:
// currently max passed max_depth is 32,
// max passed/needed skip_count is 6
// and 3 is to account for some hook daisy chaining.
static const int kStackSize = kMaxSkip + 1;
void* stack[kStackSize];
int depth =
get_stack_trace_fn(stack, kStackSize, 1); // skip this function frame
if (depth == 0)
// silently propagate cases when get_stack_trace_fn does not work
return 0;
for (int i = depth - 1; i >= 0; --i) { // stack[0] is our immediate caller
if (InHookCaller(stack[i])) {
i += 1; // skip hook caller frame
depth -= i; // correct depth
if (depth > max_depth) depth = max_depth;
std::copy(stack + i, stack + i + depth, result);
if (depth < max_depth && depth + i == kStackSize) {
// get frames for the missing depth
depth += get_stack_trace_fn(result + depth, max_depth - depth,
1 + kStackSize);
}
return depth;
}
}
ABSL_RAW_LOG(WARNING,
"Hooked allocator frame not found, returning empty trace");
// If this happens try increasing kMaxSkip
// or else something must be wrong with InHookCaller,
// e.g. for every section used in InHookCaller
// all functions in that section must be inside the same library.
return 0;
}
// On systems where we know how, we override mmap/munmap/mremap/sbrk
// to provide support for calling the related hooks (in addition,
// of course, to doing what these functions normally do).
// The ABSL_MALLOC_HOOK_MMAP_DISABLE macro disables mmap/munmap interceptors.
// Dynamic tools that intercept mmap/munmap can't be linked together with
// malloc_hook interceptors. We disable the malloc_hook interceptors for the
// widely-used dynamic tools, i.e. ThreadSanitizer and MemorySanitizer, but
// still allow users to disable this in special cases that can't be easily
// detected during compilation, via -DABSL_MALLOC_HOOK_MMAP_DISABLE or #define
// ABSL_MALLOC_HOOK_MMAP_DISABLE.
// TODO(b/62370839): Remove MALLOC_HOOK_MMAP_DISABLE in CROSSTOOL for tsan and
// msan config; Replace MALLOC_HOOK_MMAP_DISABLE with
// ABSL_MALLOC_HOOK_MMAP_DISABLE for other special cases.
#if !defined(THREAD_SANITIZER) && !defined(MEMORY_SANITIZER) && \
!defined(ABSL_MALLOC_HOOK_MMAP_DISABLE) && defined(__linux__)
#include "absl/base/internal/malloc_hook_mmap_linux.inc"
#elif ABSL_HAVE_MMAP
namespace absl {
namespace base_internal {
// static
void* MallocHook::UnhookedMMap(void* start, size_t size, int protection,
int flags, int fd, off_t offset) {
void* result;
if (!MallocHook::InvokeMmapReplacement(
start, size, protection, flags, fd, offset, &result)) {
result = mmap(start, size, protection, flags, fd, offset);
}
return result;
}
// static
int MallocHook::UnhookedMUnmap(void* start, size_t size) {
int result;
if (!MallocHook::InvokeMunmapReplacement(start, size, &result)) {
result = munmap(start, size);
}
return result;
}
} // namespace base_internal
} // namespace absl
#endif

View file

@ -0,0 +1,333 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Some of our malloc implementations can invoke the following hooks whenever
// memory is allocated or deallocated. MallocHook is thread-safe, and things
// you do before calling AddFooHook(MyHook) are visible to any resulting calls
// to MyHook. Hooks must be thread-safe. If you write:
//
// CHECK(MallocHook::AddNewHook(&MyNewHook));
//
// MyNewHook will be invoked in subsequent calls in the current thread, but
// there are no guarantees on when it might be invoked in other threads.
//
// There are a limited number of slots available for each hook type. Add*Hook
// will return false if there are no slots available. Remove*Hook will return
// false if the given hook was not already installed.
//
// The order in which individual hooks are called in Invoke*Hook is undefined.
//
// It is safe for a hook to remove itself within Invoke*Hook and add other
// hooks. Any hooks added inside a hook invocation (for the same hook type)
// will not be invoked for the current invocation.
//
// One important user of these hooks is the heap profiler.
//
// CAVEAT: If you add new MallocHook::Invoke* calls then those calls must be
// directly in the code of the (de)allocation function that is provided to the
// user and that function must have an ABSL_ATTRIBUTE_SECTION(malloc_hook)
// attribute.
//
// Note: the Invoke*Hook() functions are defined in malloc_hook-inl.h. If you
// need to invoke a hook (which you shouldn't unless you're part of tcmalloc),
// be sure to #include malloc_hook-inl.h in addition to malloc_hook.h.
//
// NOTE FOR C USERS: If you want to use malloc_hook functionality from
// a C program, #include malloc_hook_c.h instead of this file.
//
// IWYU pragma: private, include "base/malloc_hook.h"
#ifndef ABSL_BASE_INTERNAL_MALLOC_HOOK_H_
#define ABSL_BASE_INTERNAL_MALLOC_HOOK_H_
#include <sys/types.h>
#include <cstddef>
#include "absl/base/config.h"
#include "absl/base/internal/malloc_hook_c.h"
#include "absl/base/port.h"
namespace absl {
namespace base_internal {
// Note: malloc_hook_c.h defines MallocHook_*Hook and
// MallocHook_{Add,Remove}*Hook. The version of these inside the MallocHook
// class are defined in terms of the malloc_hook_c version. See malloc_hook_c.h
// for details of these types/functions.
class MallocHook {
public:
// The NewHook is invoked whenever an object is being allocated.
// Object pointer and size are passed in.
// It may be passed null pointer if the allocator returned null.
typedef MallocHook_NewHook NewHook;
inline static bool AddNewHook(NewHook hook) {
return MallocHook_AddNewHook(hook);
}
inline static bool RemoveNewHook(NewHook hook) {
return MallocHook_RemoveNewHook(hook);
}
inline static void InvokeNewHook(const void* ptr, size_t size);
// The DeleteHook is invoked whenever an object is being deallocated.
// Object pointer is passed in.
// It may be passed null pointer if the caller is trying to delete null.
typedef MallocHook_DeleteHook DeleteHook;
inline static bool AddDeleteHook(DeleteHook hook) {
return MallocHook_AddDeleteHook(hook);
}
inline static bool RemoveDeleteHook(DeleteHook hook) {
return MallocHook_RemoveDeleteHook(hook);
}
inline static void InvokeDeleteHook(const void* ptr);
// The SampledNewHook is invoked for some subset of object allocations
// according to the sampling policy of an allocator such as tcmalloc.
// SampledAlloc has the following fields:
// * AllocHandle handle: to be set to an effectively unique value (in this
// process) by allocator.
// * size_t allocated_size: space actually used by allocator to host
// the object.
// * int stack_depth and const void* stack: invocation stack for
// the allocation.
// The allocator invoking the hook should record the handle value and later
// call InvokeSampledDeleteHook() with that value.
typedef MallocHook_SampledNewHook SampledNewHook;
typedef MallocHook_SampledAlloc SampledAlloc;
inline static bool AddSampledNewHook(SampledNewHook hook) {
return MallocHook_AddSampledNewHook(hook);
}
inline static bool RemoveSampledNewHook(SampledNewHook hook) {
return MallocHook_RemoveSampledNewHook(hook);
}
inline static void InvokeSampledNewHook(const SampledAlloc* sampled_alloc);
// The SampledDeleteHook is invoked whenever an object previously chosen
// by an allocator for sampling is being deallocated.
// The handle identifying the object --as previously chosen by
// InvokeSampledNewHook()-- is passed in.
typedef MallocHook_SampledDeleteHook SampledDeleteHook;
typedef MallocHook_AllocHandle AllocHandle;
inline static bool AddSampledDeleteHook(SampledDeleteHook hook) {
return MallocHook_AddSampledDeleteHook(hook);
}
inline static bool RemoveSampledDeleteHook(SampledDeleteHook hook) {
return MallocHook_RemoveSampledDeleteHook(hook);
}
inline static void InvokeSampledDeleteHook(AllocHandle handle);
// The PreMmapHook is invoked with mmap's or mmap64's arguments just
// before the mmap/mmap64 call is actually made. Such a hook may be useful
// in memory limited contexts, to catch allocations that will exceed
// a memory limit, and take outside actions to increase that limit.
typedef MallocHook_PreMmapHook PreMmapHook;
inline static bool AddPreMmapHook(PreMmapHook hook) {
return MallocHook_AddPreMmapHook(hook);
}
inline static bool RemovePreMmapHook(PreMmapHook hook) {
return MallocHook_RemovePreMmapHook(hook);
}
inline static void InvokePreMmapHook(const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset);
// The MmapReplacement is invoked with mmap's arguments and place to put the
// result into after the PreMmapHook but before the mmap/mmap64 call is
// actually made.
// The MmapReplacement should return true if it handled the call, or false
// if it is still necessary to call mmap/mmap64.
// This should be used only by experts, and users must be be
// extremely careful to avoid recursive calls to mmap. The replacement
// should be async signal safe.
// Only one MmapReplacement is supported. After setting an MmapReplacement
// you must call RemoveMmapReplacement before calling SetMmapReplacement
// again.
typedef MallocHook_MmapReplacement MmapReplacement;
inline static bool SetMmapReplacement(MmapReplacement hook) {
return MallocHook_SetMmapReplacement(hook);
}
inline static bool RemoveMmapReplacement(MmapReplacement hook) {
return MallocHook_RemoveMmapReplacement(hook);
}
inline static bool InvokeMmapReplacement(const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset,
void** result);
// The MmapHook is invoked with mmap's return value and arguments whenever
// a region of memory has been just mapped.
// It may be passed MAP_FAILED if the mmap failed.
typedef MallocHook_MmapHook MmapHook;
inline static bool AddMmapHook(MmapHook hook) {
return MallocHook_AddMmapHook(hook);
}
inline static bool RemoveMmapHook(MmapHook hook) {
return MallocHook_RemoveMmapHook(hook);
}
inline static void InvokeMmapHook(const void* result,
const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset);
// The MunmapReplacement is invoked with munmap's arguments and place to put
// the result into just before the munmap call is actually made.
// The MunmapReplacement should return true if it handled the call, or false
// if it is still necessary to call munmap.
// This should be used only by experts. The replacement should be
// async signal safe.
// Only one MunmapReplacement is supported. After setting an
// MunmapReplacement you must call RemoveMunmapReplacement before
// calling SetMunmapReplacement again.
typedef MallocHook_MunmapReplacement MunmapReplacement;
inline static bool SetMunmapReplacement(MunmapReplacement hook) {
return MallocHook_SetMunmapReplacement(hook);
}
inline static bool RemoveMunmapReplacement(MunmapReplacement hook) {
return MallocHook_RemoveMunmapReplacement(hook);
}
inline static bool InvokeMunmapReplacement(const void* start,
size_t size,
int* result);
// The MunmapHook is invoked with munmap's arguments just before the munmap
// call is actually made.
// TODO(maxim): Rename this to PreMunmapHook for consistency with PreMmapHook
// and PreSbrkHook.
typedef MallocHook_MunmapHook MunmapHook;
inline static bool AddMunmapHook(MunmapHook hook) {
return MallocHook_AddMunmapHook(hook);
}
inline static bool RemoveMunmapHook(MunmapHook hook) {
return MallocHook_RemoveMunmapHook(hook);
}
inline static void InvokeMunmapHook(const void* start, size_t size);
// The MremapHook is invoked with mremap's return value and arguments
// whenever a region of memory has been just remapped.
typedef MallocHook_MremapHook MremapHook;
inline static bool AddMremapHook(MremapHook hook) {
return MallocHook_AddMremapHook(hook);
}
inline static bool RemoveMremapHook(MremapHook hook) {
return MallocHook_RemoveMremapHook(hook);
}
inline static void InvokeMremapHook(const void* result,
const void* old_addr,
size_t old_size,
size_t new_size,
int flags,
const void* new_addr);
// The PreSbrkHook is invoked with sbrk's argument just before sbrk is called
// -- except when the increment is 0. This is because sbrk(0) is often called
// to get the top of the memory stack, and is not actually a
// memory-allocation call. It may be useful in memory-limited contexts,
// to catch allocations that will exceed the limit and take outside
// actions to increase such a limit.
typedef MallocHook_PreSbrkHook PreSbrkHook;
inline static bool AddPreSbrkHook(PreSbrkHook hook) {
return MallocHook_AddPreSbrkHook(hook);
}
inline static bool RemovePreSbrkHook(PreSbrkHook hook) {
return MallocHook_RemovePreSbrkHook(hook);
}
inline static void InvokePreSbrkHook(ptrdiff_t increment);
// The SbrkHook is invoked with sbrk's result and argument whenever sbrk
// has just executed -- except when the increment is 0.
// This is because sbrk(0) is often called to get the top of the memory stack,
// and is not actually a memory-allocation call.
typedef MallocHook_SbrkHook SbrkHook;
inline static bool AddSbrkHook(SbrkHook hook) {
return MallocHook_AddSbrkHook(hook);
}
inline static bool RemoveSbrkHook(SbrkHook hook) {
return MallocHook_RemoveSbrkHook(hook);
}
inline static void InvokeSbrkHook(const void* result, ptrdiff_t increment);
// Pointer to a absl::GetStackTrace implementation, following the API in
// base/stacktrace.h.
using GetStackTraceFn = int (*)(void**, int, int);
// Get the current stack trace. Try to skip all routines up to and
// including the caller of MallocHook::Invoke*.
// Use "skip_count" (similarly to absl::GetStackTrace from stacktrace.h)
// as a hint about how many routines to skip if better information
// is not available.
// Stack trace is filled into *result up to the size of max_depth.
// The actual number of stack frames filled is returned.
inline static int GetCallerStackTrace(void** result, int max_depth,
int skip_count,
GetStackTraceFn get_stack_trace_fn) {
return MallocHook_GetCallerStackTrace(result, max_depth, skip_count,
get_stack_trace_fn);
}
#if ABSL_HAVE_MMAP
// Unhooked versions of mmap() and munmap(). These should be used
// only by experts, since they bypass heapchecking, etc.
// Note: These do not run hooks, but they still use the MmapReplacement
// and MunmapReplacement.
static void* UnhookedMMap(void* start, size_t size, int protection, int flags,
int fd, off_t offset);
static int UnhookedMUnmap(void* start, size_t size);
#endif
private:
// Slow path versions of Invoke*Hook.
static void InvokeNewHookSlow(const void* ptr,
size_t size) ABSL_ATTRIBUTE_COLD;
static void InvokeDeleteHookSlow(const void* ptr) ABSL_ATTRIBUTE_COLD;
static void InvokeSampledNewHookSlow(const SampledAlloc* sampled_alloc)
ABSL_ATTRIBUTE_COLD;
static void InvokeSampledDeleteHookSlow(AllocHandle handle)
ABSL_ATTRIBUTE_COLD;
static void InvokePreMmapHookSlow(const void* start, size_t size,
int protection, int flags, int fd,
off_t offset) ABSL_ATTRIBUTE_COLD;
static void InvokeMmapHookSlow(const void* result, const void* start,
size_t size, int protection, int flags, int fd,
off_t offset) ABSL_ATTRIBUTE_COLD;
static bool InvokeMmapReplacementSlow(const void* start, size_t size,
int protection, int flags, int fd,
off_t offset,
void** result) ABSL_ATTRIBUTE_COLD;
static void InvokeMunmapHookSlow(const void* ptr,
size_t size) ABSL_ATTRIBUTE_COLD;
static bool InvokeMunmapReplacementSlow(const void* ptr, size_t size,
int* result) ABSL_ATTRIBUTE_COLD;
static void InvokeMremapHookSlow(const void* result, const void* old_addr,
size_t old_size, size_t new_size, int flags,
const void* new_addr) ABSL_ATTRIBUTE_COLD;
static void InvokePreSbrkHookSlow(ptrdiff_t increment) ABSL_ATTRIBUTE_COLD;
static void InvokeSbrkHookSlow(const void* result,
ptrdiff_t increment) ABSL_ATTRIBUTE_COLD;
};
} // namespace base_internal
} // namespace absl
#endif // ABSL_BASE_INTERNAL_MALLOC_HOOK_H_

View file

@ -0,0 +1,131 @@
/*
* Copyright 2017 The Abseil Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* C shims for the C++ malloc_hook.h. See malloc_hook.h for details
* on how to use these.
*/
#ifndef ABSL_BASE_INTERNAL_MALLOC_HOOK_C_H_
#define ABSL_BASE_INTERNAL_MALLOC_HOOK_C_H_
#include <stddef.h>
#include <stdint.h>
#include <sys/types.h>
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
/* Get the current stack trace. Try to skip all routines up to and
* including the caller of MallocHook::Invoke*.
* Use "skip_count" (similarly to absl::GetStackTrace from stacktrace.h)
* as a hint about how many routines to skip if better information
* is not available.
*/
typedef int (*MallocHook_GetStackTraceFn)(void**, int, int);
int MallocHook_GetCallerStackTrace(void** result, int max_depth, int skip_count,
MallocHook_GetStackTraceFn fn);
/* All the MallocHook_{Add,Remove}*Hook functions below return 1 on success
* and 0 on failure.
*/
typedef void (*MallocHook_NewHook)(const void* ptr, size_t size);
int MallocHook_AddNewHook(MallocHook_NewHook hook);
int MallocHook_RemoveNewHook(MallocHook_NewHook hook);
typedef void (*MallocHook_DeleteHook)(const void* ptr);
int MallocHook_AddDeleteHook(MallocHook_DeleteHook hook);
int MallocHook_RemoveDeleteHook(MallocHook_DeleteHook hook);
typedef int64_t MallocHook_AllocHandle;
typedef struct {
/* See malloc_hook.h for documentation for this struct. */
MallocHook_AllocHandle handle;
size_t allocated_size;
int stack_depth;
const void* stack;
} MallocHook_SampledAlloc;
typedef void (*MallocHook_SampledNewHook)(
const MallocHook_SampledAlloc* sampled_alloc);
int MallocHook_AddSampledNewHook(MallocHook_SampledNewHook hook);
int MallocHook_RemoveSampledNewHook(MallocHook_SampledNewHook hook);
typedef void (*MallocHook_SampledDeleteHook)(MallocHook_AllocHandle handle);
int MallocHook_AddSampledDeleteHook(MallocHook_SampledDeleteHook hook);
int MallocHook_RemoveSampledDeleteHook(MallocHook_SampledDeleteHook hook);
typedef void (*MallocHook_PreMmapHook)(const void *start,
size_t size,
int protection,
int flags,
int fd,
off_t offset);
int MallocHook_AddPreMmapHook(MallocHook_PreMmapHook hook);
int MallocHook_RemovePreMmapHook(MallocHook_PreMmapHook hook);
typedef void (*MallocHook_MmapHook)(const void* result,
const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset);
int MallocHook_AddMmapHook(MallocHook_MmapHook hook);
int MallocHook_RemoveMmapHook(MallocHook_MmapHook hook);
typedef int (*MallocHook_MmapReplacement)(const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset,
void** result);
int MallocHook_SetMmapReplacement(MallocHook_MmapReplacement hook);
int MallocHook_RemoveMmapReplacement(MallocHook_MmapReplacement hook);
typedef void (*MallocHook_MunmapHook)(const void* start, size_t size);
int MallocHook_AddMunmapHook(MallocHook_MunmapHook hook);
int MallocHook_RemoveMunmapHook(MallocHook_MunmapHook hook);
typedef int (*MallocHook_MunmapReplacement)(const void* start,
size_t size,
int* result);
int MallocHook_SetMunmapReplacement(MallocHook_MunmapReplacement hook);
int MallocHook_RemoveMunmapReplacement(MallocHook_MunmapReplacement hook);
typedef void (*MallocHook_MremapHook)(const void* result,
const void* old_addr,
size_t old_size,
size_t new_size,
int flags,
const void* new_addr);
int MallocHook_AddMremapHook(MallocHook_MremapHook hook);
int MallocHook_RemoveMremapHook(MallocHook_MremapHook hook);
typedef void (*MallocHook_PreSbrkHook)(ptrdiff_t increment);
int MallocHook_AddPreSbrkHook(MallocHook_PreSbrkHook hook);
int MallocHook_RemovePreSbrkHook(MallocHook_PreSbrkHook hook);
typedef void (*MallocHook_SbrkHook)(const void* result, ptrdiff_t increment);
int MallocHook_AddSbrkHook(MallocHook_SbrkHook hook);
int MallocHook_RemoveSbrkHook(MallocHook_SbrkHook hook);
#ifdef __cplusplus
} /* extern "C" */
#endif /* __cplusplus */
#endif /* ABSL_BASE_INTERNAL_MALLOC_HOOK_C_H_ */

View file

@ -0,0 +1,198 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///
// This has the implementation details of malloc_hook that are needed
// to use malloc-hook inside the tcmalloc system. It does not hold
// any of the client-facing calls that are used to add new hooks.
//
// IWYU pragma: private, include "base/malloc_hook-inl.h"
#ifndef ABSL_BASE_INTERNAL_MALLOC_HOOK_INVOKE_H_
#define ABSL_BASE_INTERNAL_MALLOC_HOOK_INVOKE_H_
#include <sys/types.h>
#include <atomic>
#include <cstddef>
#include "absl/base/internal/malloc_hook.h"
namespace absl {
namespace base_internal {
// Maximum of 7 hooks means that HookList is 8 words.
static constexpr int kHookListMaxValues = 7;
// HookList: a class that provides synchronized insertions and removals and
// lockless traversal. Most of the implementation is in malloc_hook.cc.
template <typename T>
struct HookList {
static_assert(sizeof(T) <= sizeof(intptr_t), "T_should_fit_in_intptr_t");
// Adds value to the list. Note that duplicates are allowed. Thread-safe and
// blocking (acquires hooklist_spinlock). Returns true on success; false
// otherwise (failures include invalid value and no space left).
bool Add(T value);
// Removes the first entry matching value from the list. Thread-safe and
// blocking (acquires hooklist_spinlock). Returns true on success; false
// otherwise (failures include invalid value and no value found).
bool Remove(T value);
// Store up to n values of the list in output_array, and return the number of
// elements stored. Thread-safe and non-blocking. This is fast (one memory
// access) if the list is empty.
int Traverse(T* output_array, int n) const;
// Fast inline implementation for fast path of Invoke*Hook.
bool empty() const {
// empty() is only used as an optimization to determine if we should call
// Traverse which has proper acquire loads. Memory reordering around a
// call to empty will either lead to an unnecessary Traverse call, or will
// miss invoking hooks, neither of which is a problem.
return priv_end.load(std::memory_order_relaxed) == 0;
}
// This internal data is not private so that the class is an aggregate and can
// be initialized by the linker. Don't access this directly. Use the
// INIT_HOOK_LIST macro in malloc_hook.cc.
// One more than the index of the last valid element in priv_data. During
// 'Remove' this may be past the last valid element in priv_data, but
// subsequent values will be 0.
std::atomic<int> priv_end;
std::atomic<intptr_t> priv_data[kHookListMaxValues];
};
extern template struct HookList<MallocHook::NewHook>;
extern HookList<MallocHook::NewHook> new_hooks_;
extern HookList<MallocHook::DeleteHook> delete_hooks_;
extern HookList<MallocHook::SampledNewHook> sampled_new_hooks_;
extern HookList<MallocHook::SampledDeleteHook> sampled_delete_hooks_;
extern HookList<MallocHook::PreMmapHook> premmap_hooks_;
extern HookList<MallocHook::MmapHook> mmap_hooks_;
extern HookList<MallocHook::MmapReplacement> mmap_replacement_;
extern HookList<MallocHook::MunmapHook> munmap_hooks_;
extern HookList<MallocHook::MunmapReplacement> munmap_replacement_;
extern HookList<MallocHook::MremapHook> mremap_hooks_;
extern HookList<MallocHook::PreSbrkHook> presbrk_hooks_;
extern HookList<MallocHook::SbrkHook> sbrk_hooks_;
inline void MallocHook::InvokeNewHook(const void* ptr, size_t size) {
if (!absl::base_internal::new_hooks_.empty()) {
InvokeNewHookSlow(ptr, size);
}
}
inline void MallocHook::InvokeDeleteHook(const void* ptr) {
if (!absl::base_internal::delete_hooks_.empty()) {
InvokeDeleteHookSlow(ptr);
}
}
inline void MallocHook::InvokeSampledNewHook(
const SampledAlloc* sampled_alloc) {
if (!absl::base_internal::sampled_new_hooks_.empty()) {
InvokeSampledNewHookSlow(sampled_alloc);
}
}
inline void MallocHook::InvokeSampledDeleteHook(AllocHandle handle) {
if (!absl::base_internal::sampled_delete_hooks_.empty()) {
InvokeSampledDeleteHookSlow(handle);
}
}
inline void MallocHook::InvokePreMmapHook(const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset) {
if (!absl::base_internal::premmap_hooks_.empty()) {
InvokePreMmapHookSlow(start, size, protection, flags, fd, offset);
}
}
inline void MallocHook::InvokeMmapHook(const void* result,
const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset) {
if (!absl::base_internal::mmap_hooks_.empty()) {
InvokeMmapHookSlow(result, start, size, protection, flags, fd, offset);
}
}
inline bool MallocHook::InvokeMmapReplacement(const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset,
void** result) {
if (!absl::base_internal::mmap_replacement_.empty()) {
return InvokeMmapReplacementSlow(start, size,
protection, flags,
fd, offset,
result);
}
return false;
}
inline void MallocHook::InvokeMunmapHook(const void* start, size_t size) {
if (!absl::base_internal::munmap_hooks_.empty()) {
InvokeMunmapHookSlow(start, size);
}
}
inline bool MallocHook::InvokeMunmapReplacement(
const void* start, size_t size, int* result) {
if (!absl::base_internal::mmap_replacement_.empty()) {
return InvokeMunmapReplacementSlow(start, size, result);
}
return false;
}
inline void MallocHook::InvokeMremapHook(const void* result,
const void* old_addr,
size_t old_size,
size_t new_size,
int flags,
const void* new_addr) {
if (!absl::base_internal::mremap_hooks_.empty()) {
InvokeMremapHookSlow(result, old_addr, old_size, new_size, flags, new_addr);
}
}
inline void MallocHook::InvokePreSbrkHook(ptrdiff_t increment) {
if (!absl::base_internal::presbrk_hooks_.empty() && increment != 0) {
InvokePreSbrkHookSlow(increment);
}
}
inline void MallocHook::InvokeSbrkHook(const void* result,
ptrdiff_t increment) {
if (!absl::base_internal::sbrk_hooks_.empty() && increment != 0) {
InvokeSbrkHookSlow(result, increment);
}
}
} // namespace base_internal
} // namespace absl
#endif // ABSL_BASE_INTERNAL_MALLOC_HOOK_INVOKE_H_

View file

@ -0,0 +1,236 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// We define mmap() and mmap64(), which somewhat reimplements libc's mmap
// syscall stubs. Unfortunately libc only exports the stubs via weak symbols
// (which we're overriding with our mmap64() and mmap() wrappers) so we can't
// just call through to them.
#ifndef __linux__
# error Should only be including malloc_hook_mmap_linux.h on linux systems.
#endif
#include <sys/mman.h>
#include <sys/types.h>
#ifdef __BIONIC__
#include <sys/syscall.h>
#else
#include <syscall.h>
#endif
#include <linux/unistd.h>
#include <unistd.h>
#include <cerrno>
#include <cstdarg>
#include <cstdint>
#ifdef __mips__
// Include definitions of the ABI currently in use.
#ifdef __BIONIC__
// Android doesn't have sgidefs.h, but does have asm/sgidefs.h, which has the
// definitions we need.
#include <asm/sgidefs.h>
#else
#include <sgidefs.h>
#endif // __BIONIC__
#endif // __mips__
// SYS_mmap, SYS_munmap, and SYS_mremap are not defined in Android.
#ifdef __BIONIC__
extern "C" void *__mmap2(void *, size_t, int, int, int, long);
#if defined(__NR_mmap) && !defined(SYS_mmap)
#define SYS_mmap __NR_mmap
#endif
#ifndef SYS_munmap
#define SYS_munmap __NR_munmap
#endif
#ifndef SYS_mremap
#define SYS_mremap __NR_mremap
#endif
#endif // __BIONIC__
// Platform specific logic extracted from
// https://chromium.googlesource.com/linux-syscall-support/+/master/linux_syscall_support.h
static inline void* do_mmap64(void* start, size_t length, int prot,
int flags, int fd, off64_t offset) __THROW {
#if defined(__i386__) || \
defined(__ARM_ARCH_3__) || defined(__ARM_EABI__) || \
(defined(__mips__) && _MIPS_SIM == _MIPS_SIM_ABI32) || \
(defined(__PPC__) && !defined(__PPC64__)) || \
(defined(__s390__) && !defined(__s390x__))
// On these architectures, implement mmap with mmap2.
static int pagesize = 0;
if (pagesize == 0) {
pagesize = getpagesize();
}
if (offset < 0 || offset % pagesize != 0) {
errno = EINVAL;
return MAP_FAILED;
}
#ifdef __BIONIC__
// SYS_mmap2 has problems on Android API level <= 16.
// Workaround by invoking __mmap2() instead.
return __mmap2(start, length, prot, flags, fd, offset / pagesize);
#else
return reinterpret_cast<void*>(
syscall(SYS_mmap2, start, length, prot, flags, fd,
static_cast<off_t>(offset / pagesize)));
#endif
#elif defined(__s390x__)
// On s390x, mmap() arguments are passed in memory.
uint32_t buf[6] = {
reinterpret_cast<uint32_t>(start), static_cast<uint32_t>(length),
static_cast<uint32_t>(prot), static_cast<uint32_t>(flags),
static_cast<uint32_t>(fd), static_cast<uint32_t>(offset)};
return reintrepret_cast<void*>(syscall(SYS_mmap, buf));
#elif defined(__x86_64__)
// The x32 ABI has 32 bit longs, but the syscall interface is 64 bit.
// We need to explicitly cast to an unsigned 64 bit type to avoid implicit
// sign extension. We can't cast pointers directly because those are
// 32 bits, and gcc will dump ugly warnings about casting from a pointer
// to an integer of a different size. We also need to make sure __off64_t
// isn't truncated to 32-bits under x32.
#define MMAP_SYSCALL_ARG(x) ((uint64_t)(uintptr_t)(x))
return reinterpret_cast<void*>(
syscall(SYS_mmap, MMAP_SYSCALL_ARG(start), MMAP_SYSCALL_ARG(length),
MMAP_SYSCALL_ARG(prot), MMAP_SYSCALL_ARG(flags),
MMAP_SYSCALL_ARG(fd), static_cast<uint64_t>(offset)));
#undef MMAP_SYSCALL_ARG
#else // Remaining 64-bit aritectures.
static_assert(sizeof(unsigned long) == 8, "Platform is not 64-bit");
return reinterpret_cast<void*>(
syscall(SYS_mmap, start, length, prot, flags, fd, offset));
#endif
}
// We use do_mmap64 abstraction to put MallocHook::InvokeMmapHook
// calls right into mmap and mmap64, so that the stack frames in the caller's
// stack are at the same offsets for all the calls of memory allocating
// functions.
// Put all callers of MallocHook::Invoke* in this module into
// malloc_hook section,
// so that MallocHook::GetCallerStackTrace can function accurately:
// Make sure mmap doesn't get #define'd away by <sys/mman.h>
# undef mmap
extern "C" {
ABSL_ATTRIBUTE_SECTION(malloc_hook)
void* mmap64(void* start, size_t length, int prot, int flags, int fd,
off64_t offset) __THROW;
ABSL_ATTRIBUTE_SECTION(malloc_hook)
void* mmap(void* start, size_t length, int prot, int flags, int fd,
off_t offset) __THROW;
ABSL_ATTRIBUTE_SECTION(malloc_hook)
int munmap(void* start, size_t length) __THROW;
ABSL_ATTRIBUTE_SECTION(malloc_hook)
void* mremap(void* old_addr, size_t old_size, size_t new_size, int flags,
...) __THROW;
ABSL_ATTRIBUTE_SECTION(malloc_hook) void* sbrk(ptrdiff_t increment) __THROW;
}
extern "C" void* mmap64(void *start, size_t length, int prot, int flags,
int fd, off64_t offset) __THROW {
absl::base_internal::MallocHook::InvokePreMmapHook(start, length, prot, flags,
fd, offset);
void *result;
if (!absl::base_internal::MallocHook::InvokeMmapReplacement(
start, length, prot, flags, fd, offset, &result)) {
result = do_mmap64(start, length, prot, flags, fd, offset);
}
absl::base_internal::MallocHook::InvokeMmapHook(result, start, length, prot,
flags, fd, offset);
return result;
}
# if !defined(__USE_FILE_OFFSET64) || !defined(__REDIRECT_NTH)
extern "C" void* mmap(void *start, size_t length, int prot, int flags,
int fd, off_t offset) __THROW {
absl::base_internal::MallocHook::InvokePreMmapHook(start, length, prot, flags,
fd, offset);
void *result;
if (!absl::base_internal::MallocHook::InvokeMmapReplacement(
start, length, prot, flags, fd, offset, &result)) {
result = do_mmap64(start, length, prot, flags, fd,
static_cast<size_t>(offset)); // avoid sign extension
}
absl::base_internal::MallocHook::InvokeMmapHook(result, start, length, prot,
flags, fd, offset);
return result;
}
# endif // !defined(__USE_FILE_OFFSET64) || !defined(__REDIRECT_NTH)
extern "C" int munmap(void* start, size_t length) __THROW {
absl::base_internal::MallocHook::InvokeMunmapHook(start, length);
int result;
if (!absl::base_internal::MallocHook::InvokeMunmapReplacement(start, length,
&result)) {
result = syscall(SYS_munmap, start, length);
}
return result;
}
extern "C" void* mremap(void* old_addr, size_t old_size, size_t new_size,
int flags, ...) __THROW {
va_list ap;
va_start(ap, flags);
void *new_address = va_arg(ap, void *);
va_end(ap);
void* result = reinterpret_cast<void*>(
syscall(SYS_mremap, old_addr, old_size, new_size, flags, new_address));
absl::base_internal::MallocHook::InvokeMremapHook(
result, old_addr, old_size, new_size, flags, new_address);
return result;
}
// sbrk cannot be intercepted on Android as there is no mechanism to
// invoke the original sbrk (since there is no __sbrk as with glibc).
#if !defined(__BIONIC__)
// libc's version:
extern "C" void* __sbrk(ptrdiff_t increment);
extern "C" void* sbrk(ptrdiff_t increment) __THROW {
absl::base_internal::MallocHook::InvokePreSbrkHook(increment);
void *result = __sbrk(increment);
absl::base_internal::MallocHook::InvokeSbrkHook(result, increment);
return result;
}
#endif // !defined(__BIONIC__)
namespace absl {
namespace base_internal {
/*static*/void* MallocHook::UnhookedMMap(void *start, size_t length, int prot,
int flags, int fd, off_t offset) {
void* result;
if (!MallocHook::InvokeMmapReplacement(
start, length, prot, flags, fd, offset, &result)) {
result = do_mmap64(start, length, prot, flags, fd, offset);
}
return result;
}
/*static*/int MallocHook::UnhookedMUnmap(void *start, size_t length) {
int result;
if (!MallocHook::InvokeMunmapReplacement(start, length, &result)) {
result = syscall(SYS_munmap, start, length);
}
return result;
}
} // namespace base_internal
} // namespace absl

View file

@ -0,0 +1,48 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_BASE_INTERNAL_PER_THREAD_TLS_H_
#define ABSL_BASE_INTERNAL_PER_THREAD_TLS_H_
// This header defines two macros:
// If the platform supports thread-local storage:
// ABSL_PER_THREAD_TLS_KEYWORD is the C keyword needed to declare a
// thread-local variable ABSL_PER_THREAD_TLS is 1
//
// Otherwise:
// ABSL_PER_THREAD_TLS_KEYWORD is empty
// ABSL_PER_THREAD_TLS is 0
//
// Microsoft C supports thread-local storage.
// GCC supports it if the appropriate version of glibc is available,
// which the programme can indicate by defining ABSL_HAVE_TLS
#include "absl/base/port.h" // For ABSL_HAVE_TLS
#if defined(ABSL_PER_THREAD_TLS)
#error ABSL_PER_THREAD_TLS cannot be directly set
#elif defined(ABSL_PER_THREAD_TLS_KEYWORD)
#error ABSL_PER_THREAD_TLS_KEYWORD cannot be directly set
#elif defined(ABSL_HAVE_TLS)
#define ABSL_PER_THREAD_TLS_KEYWORD __thread
#define ABSL_PER_THREAD_TLS 1
#elif defined(_MSC_VER)
#define ABSL_PER_THREAD_TLS_KEYWORD __declspec(thread)
#define ABSL_PER_THREAD_TLS 1
#else
#define ABSL_PER_THREAD_TLS_KEYWORD
#define ABSL_PER_THREAD_TLS 0
#endif
#endif // ABSL_BASE_INTERNAL_PER_THREAD_TLS_H_

View file

@ -0,0 +1,225 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <atomic>
#include <cassert>
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include "absl/base/config.h"
#include "absl/base/internal/atomic_hook.h"
#include "absl/base/internal/log_severity.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/port.h"
// We know how to perform low-level writes to stderr in POSIX and Windows. For
// these platforms, we define the token ABSL_LOW_LEVEL_WRITE_SUPPORTED.
// Much of raw_logging.cc becomes a no-op when we can't output messages,
// although a FATAL ABSL_RAW_LOG message will still abort the process.
// ABSL_HAVE_POSIX_WRITE is defined when the platform provides posix write()
// (as from unistd.h)
//
// This preprocessor token is also defined in raw_io.cc. If you need to copy
// this, consider moving both to config.h instead.
#if defined(__linux__) || defined(__APPLE__) || defined(__Fuchsia__) || \
defined(__GENCLAVE__)
#include <unistd.h>
#define ABSL_HAVE_POSIX_WRITE 1
#define ABSL_LOW_LEVEL_WRITE_SUPPORTED 1
#else
#undef ABSL_HAVE_POSIX_WRITE
#endif
// ABSL_HAVE_SYSCALL_WRITE is defined when the platform provides the syscall
// syscall(SYS_write, /*int*/ fd, /*char* */ buf, /*size_t*/ len);
// for low level operations that want to avoid libc.
#if defined(__linux__) && !defined(__ANDROID__)
#include <sys/syscall.h>
#define ABSL_HAVE_SYSCALL_WRITE 1
#define ABSL_LOW_LEVEL_WRITE_SUPPORTED 1
#else
#undef ABSL_HAVE_SYSCALL_WRITE
#endif
#ifdef _WIN32
#include <io.h>
#define ABSL_HAVE_RAW_IO 1
#define ABSL_LOW_LEVEL_WRITE_SUPPORTED 1
#else
#undef ABSL_HAVE_RAW_IO
#endif
// TODO(gfalcon): We want raw-logging to work on as many platforms as possible.
// Explicitly #error out when not ABSL_LOW_LEVEL_WRITE_SUPPORTED, except for a
// whitelisted set of platforms for which we expect not to be able to raw log.
ABSL_CONST_INIT static absl::base_internal::AtomicHook<
absl::raw_logging_internal::LogPrefixHook> log_prefix_hook;
ABSL_CONST_INIT static absl::base_internal::AtomicHook<
absl::raw_logging_internal::AbortHook> abort_hook;
#ifdef ABSL_LOW_LEVEL_WRITE_SUPPORTED
static const char kTruncated[] = " ... (message truncated)\n";
// sprintf the format to the buffer, adjusting *buf and *size to reflect the
// consumed bytes, and return whether the message fit without truncation. If
// truncation occurred, if possible leave room in the buffer for the message
// kTruncated[].
inline static bool VADoRawLog(char** buf, int* size,
const char* format, va_list ap) {
int n = vsnprintf(*buf, *size, format, ap);
bool result = true;
if (n < 0 || n > *size) {
result = false;
if (static_cast<size_t>(*size) > sizeof(kTruncated)) {
n = *size - sizeof(kTruncated); // room for truncation message
} else {
n = 0; // no room for truncation message
}
}
*size -= n;
*buf += n;
return result;
}
#endif // ABSL_LOW_LEVEL_WRITE_SUPPORTED
static constexpr int kLogBufSize = 3000;
namespace absl {
namespace raw_logging_internal {
void SafeWriteToStderr(const char *s, size_t len);
} // namespace raw_logging_internal
} // namespace absl
namespace {
// CAVEAT: vsnprintf called from *DoRawLog below has some (exotic) code paths
// that invoke malloc() and getenv() that might acquire some locks.
// If this becomes a problem we should reimplement a subset of vsnprintf
// that does not need locks and malloc.
// E.g. google3/third_party/clearsilver/core/util/snprintf.c
// looks like such a reimplementation.
// Helper for RawLog below.
// *DoRawLog writes to *buf of *size and move them past the written portion.
// It returns true iff there was no overflow or error.
bool DoRawLog(char** buf, int* size, const char* format, ...)
ABSL_PRINTF_ATTRIBUTE(3, 4);
bool DoRawLog(char** buf, int* size, const char* format, ...) {
va_list ap;
va_start(ap, format);
int n = vsnprintf(*buf, *size, format, ap);
va_end(ap);
if (n < 0 || n > *size) return false;
*size -= n;
*buf += n;
return true;
}
void RawLogVA(absl::LogSeverity severity, const char* file, int line,
const char* format, va_list ap) {
char buffer[kLogBufSize];
char* buf = buffer;
int size = sizeof(buffer);
#ifdef ABSL_LOW_LEVEL_WRITE_SUPPORTED
bool enabled = true;
#else
bool enabled = false;
#endif
#ifdef ABSL_MIN_LOG_LEVEL
if (static_cast<int>(severity) < ABSL_MIN_LOG_LEVEL &&
severity < absl::LogSeverity::kFatal) {
enabled = false;
}
#endif
auto log_prefix_hook_ptr = log_prefix_hook.Load();
if (log_prefix_hook_ptr) {
enabled = log_prefix_hook_ptr(severity, file, line, &buf, &size);
} else {
if (enabled) {
DoRawLog(&buf, &size, "[%s : %d] RAW: ", file, line);
}
}
const char* const prefix_end = buf;
#ifdef ABSL_LOW_LEVEL_WRITE_SUPPORTED
if (enabled) {
bool no_chop = VADoRawLog(&buf, &size, format, ap);
if (no_chop) {
DoRawLog(&buf, &size, "\n");
} else {
DoRawLog(&buf, &size, "%s", kTruncated);
}
absl::raw_logging_internal::SafeWriteToStderr(buffer, strlen(buffer));
}
#else
static_cast<void>(format);
static_cast<void>(ap);
#endif
// Abort the process after logging a FATAL message, even if the output itself
// was suppressed.
if (severity == absl::LogSeverity::kFatal) {
abort_hook(file, line, buffer, prefix_end, buffer + kLogBufSize);
abort();
}
}
} // namespace
namespace absl {
namespace raw_logging_internal {
// Writes the provided buffer directly to stderr, in a safe, low-level manner.
//
// In POSIX this means calling write(), which is async-signal safe and does
// not malloc. If the platform supports the SYS_write syscall, we invoke that
// directly to side-step any libc interception.
void SafeWriteToStderr(const char *s, size_t len) {
#if defined(ABSL_HAVE_SYSCALL_WRITE)
syscall(SYS_write, STDERR_FILENO, s, len);
#elif defined(ABSL_HAVE_POSIX_WRITE)
write(STDERR_FILENO, s, len);
#elif defined(ABSL_HAVE_RAW_IO)
_write(/* stderr */ 2, s, len);
#else
// stderr logging unsupported on this platform
(void) s;
(void) len;
#endif
}
void RawLog(absl::LogSeverity severity, const char* file, int line,
const char* format, ...) {
va_list ap;
va_start(ap, format);
RawLogVA(severity, file, line, format, ap);
va_end(ap);
}
bool RawLoggingFullySupported() {
#ifdef ABSL_LOW_LEVEL_WRITE_SUPPORTED
return true;
#else // !ABSL_LOW_LEVEL_WRITE_SUPPORTED
return false;
#endif // !ABSL_LOW_LEVEL_WRITE_SUPPORTED
}
} // namespace raw_logging_internal
} // namespace absl

View file

@ -0,0 +1,129 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Thread-safe logging routines that do not allocate any memory or
// acquire any locks, and can therefore be used by low-level memory
// allocation, synchronization, and signal-handling code.
#ifndef ABSL_BASE_INTERNAL_RAW_LOGGING_H_
#define ABSL_BASE_INTERNAL_RAW_LOGGING_H_
#include "absl/base/internal/log_severity.h"
#include "absl/base/macros.h"
#include "absl/base/port.h"
// This is similar to LOG(severity) << format..., but
// * it is to be used ONLY by low-level modules that can't use normal LOG()
// * it is designed to be a low-level logger that does not allocate any
// memory and does not need any locks, hence:
// * it logs straight and ONLY to STDERR w/o buffering
// * it uses an explicit printf-format and arguments list
// * it will silently chop off really long message strings
// Usage example:
// ABSL_RAW_LOG(ERROR, "Failed foo with %i: %s", status, error);
// This will print an almost standard log line like this to stderr only:
// E0821 211317 file.cc:123] RAW: Failed foo with 22: bad_file
#define ABSL_RAW_LOG(severity, ...) \
do { \
constexpr const char* absl_raw_logging_internal_basename = \
::absl::raw_logging_internal::Basename(__FILE__, \
sizeof(__FILE__) - 1); \
::absl::raw_logging_internal::RawLog(ABSL_RAW_LOGGING_INTERNAL_##severity, \
absl_raw_logging_internal_basename, \
__LINE__, __VA_ARGS__); \
} while (0)
// Similar to CHECK(condition) << message, but for low-level modules:
// we use only ABSL_RAW_LOG that does not allocate memory.
// We do not want to provide args list here to encourage this usage:
// if (!cond) ABSL_RAW_LOG(FATAL, "foo ...", hard_to_compute_args);
// so that the args are not computed when not needed.
#define ABSL_RAW_CHECK(condition, message) \
do { \
if (ABSL_PREDICT_FALSE(!(condition))) { \
ABSL_RAW_LOG(FATAL, "Check %s failed: %s", #condition, message); \
} \
} while (0)
#define ABSL_RAW_LOGGING_INTERNAL_INFO ::absl::LogSeverity::kInfo
#define ABSL_RAW_LOGGING_INTERNAL_WARNING ::absl::LogSeverity::kWarning
#define ABSL_RAW_LOGGING_INTERNAL_ERROR ::absl::LogSeverity::kError
#define ABSL_RAW_LOGGING_INTERNAL_FATAL ::absl::LogSeverity::kFatal
#define ABSL_RAW_LOGGING_INTERNAL_LEVEL(severity) \
::absl::NormalizeLogSeverity(severity)
namespace absl {
namespace raw_logging_internal {
// Helper function to implement ABSL_RAW_LOG
// Logs format... at "severity" level, reporting it
// as called from file:line.
// This does not allocate memory or acquire locks.
void RawLog(absl::LogSeverity severity, const char* file, int line,
const char* format, ...) ABSL_PRINTF_ATTRIBUTE(4, 5);
// compile-time function to get the "base" filename, that is, the part of
// a filename after the last "/" or "\" path separator. The search starts at
// the end of the std::string; the second parameter is the length of the std::string.
constexpr const char* Basename(const char* fname, int offset) {
return offset == 0 || fname[offset - 1] == '/' || fname[offset - 1] == '\\'
? fname + offset
: Basename(fname, offset - 1);
}
// For testing only.
// Returns true if raw logging is fully supported. When it is not
// fully supported, no messages will be emitted, but a log at FATAL
// severity will cause an abort.
//
// TODO(gfalcon): Come up with a better name for this method.
bool RawLoggingFullySupported();
// Function type for a raw_logging customization hook for suppressing messages
// by severity, and for writing custom prefixes on non-suppressed messages.
//
// The installed hook is called for every raw log invocation. The message will
// be logged to stderr only if the hook returns true. FATAL errors will cause
// the process to abort, even if writing to stderr is suppressed. The hook is
// also provided with an output buffer, where it can write a custom log message
// prefix.
//
// The raw_logging system does not allocate memory or grab locks. User-provided
// hooks must avoid these operations, and must not throw exceptions.
//
// 'severity' is the severity level of the message being written.
// 'file' and 'line' are the file and line number where the ABSL_RAW_LOG macro
// was located.
// 'buffer' and 'buf_size' are pointers to the buffer and buffer size. If the
// hook writes a prefix, it must increment *buffer and decrement *buf_size
// accordingly.
using LogPrefixHook = bool (*)(absl::LogSeverity severity, const char* file,
int line, char** buffer, int* buf_size);
// Function type for a raw_logging customization hook called to abort a process
// when a FATAL message is logged. If the provided AbortHook() returns, the
// logging system will call abort().
//
// 'file' and 'line' are the file and line number where the ABSL_RAW_LOG macro
// was located.
// The null-terminated logged message lives in the buffer between 'buf_start'
// and 'buf_end'. 'prefix_end' points to the first non-prefix character of the
// buffer (as written by the LogPrefixHook.)
using AbortHook = void (*)(const char* file, int line, const char* buf_start,
const char* prefix_end, const char* buf_end);
} // namespace raw_logging_internal
} // namespace absl
#endif // ABSL_BASE_INTERNAL_RAW_LOGGING_H_

View file

@ -0,0 +1,54 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Core interfaces and definitions used by by low-level //base interfaces such
// as SpinLock.
#ifndef ABSL_BASE_INTERNAL_SCHEDULING_MODE_H_
#define ABSL_BASE_INTERNAL_SCHEDULING_MODE_H_
namespace absl {
namespace base_internal {
// Used to describe how a thread may be scheduled. Typically associated with
// the declaration of a resource supporting synchronized access.
//
// SCHEDULE_COOPERATIVE_AND_KERNEL:
// Specifies that when waiting, a cooperative thread (e.g. a Fiber) may
// reschedule (using base::scheduling semantics); allowing other cooperative
// threads to proceed.
//
// SCHEDULE_KERNEL_ONLY: (Also described as "non-cooperative")
// Specifies that no cooperative scheduling semantics may be used, even if the
// current thread is itself cooperatively scheduled. This means that
// cooperative threads will NOT allow other cooperative threads to execute in
// their place while waiting for a resource of this type. Host operating system
// semantics (e.g. a futex) may still be used.
//
// When optional, clients should strongly prefer SCHEDULE_COOPERATIVE_AND_KERNEL
// by default. SCHEDULE_KERNEL_ONLY should only be used for resources on which
// base::scheduling (e.g. the implementation of a Scheduler) may depend.
//
// NOTE: Cooperative resources may not be nested below non-cooperative ones.
// This means that it is invalid to to acquire a SCHEDULE_COOPERATIVE_AND_KERNEL
// resource if a SCHEDULE_KERNEL_ONLY resource is already held.
enum SchedulingMode {
SCHEDULE_KERNEL_ONLY = 0, // Allow scheduling only the host OS.
SCHEDULE_COOPERATIVE_AND_KERNEL, // Also allow cooperative scheduling.
};
} // namespace base_internal
} // namespace absl
#endif // ABSL_BASE_INTERNAL_SCHEDULING_MODE_H_

View file

@ -0,0 +1,243 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/spinlock.h"
#include <algorithm>
#include <atomic>
#include "absl/base/casts.h"
#include "absl/base/internal/atomic_hook.h"
#include "absl/base/internal/cycleclock.h"
#include "absl/base/internal/spinlock_wait.h"
#include "absl/base/internal/sysinfo.h" /* For NumCPUs() */
// Description of lock-word:
// 31..00: [............................3][2][1][0]
//
// [0]: kSpinLockHeld
// [1]: kSpinLockCooperative
// [2]: kSpinLockDisabledScheduling
// [31..3]: ONLY kSpinLockSleeper OR
// Wait time in cycles >> PROFILE_TIMESTAMP_SHIFT
//
// Detailed descriptions:
//
// Bit [0]: The lock is considered held iff kSpinLockHeld is set.
//
// Bit [1]: Eligible waiters (e.g. Fibers) may co-operatively reschedule when
// contended iff kSpinLockCooperative is set.
//
// Bit [2]: This bit is exclusive from bit [1]. It is used only by a
// non-cooperative lock. When set, indicates that scheduling was
// successfully disabled when the lock was acquired. May be unset,
// even if non-cooperative, if a ThreadIdentity did not yet exist at
// time of acquisition.
//
// Bit [3]: If this is the only upper bit ([31..3]) set then this lock was
// acquired without contention, however, at least one waiter exists.
//
// Otherwise, bits [31..3] represent the time spent by the current lock
// holder to acquire the lock. There may be outstanding waiter(s).
namespace absl {
namespace base_internal {
static int adaptive_spin_count = 0;
namespace {
struct SpinLock_InitHelper {
SpinLock_InitHelper() {
// On multi-cpu machines, spin for longer before yielding
// the processor or sleeping. Reduces idle time significantly.
if (base_internal::NumCPUs() > 1) {
adaptive_spin_count = 1000;
}
}
};
// Hook into global constructor execution:
// We do not do adaptive spinning before that,
// but nothing lock-intensive should be going on at that time.
static SpinLock_InitHelper init_helper;
ABSL_CONST_INIT static base_internal::AtomicHook<void (*)(const void *lock,
int64_t wait_cycles)>
submit_profile_data;
} // namespace
void RegisterSpinLockProfiler(void (*fn)(const void *contendedlock,
int64_t wait_cycles)) {
submit_profile_data.Store(fn);
}
static inline bool IsCooperative(
base_internal::SchedulingMode scheduling_mode) {
return scheduling_mode == base_internal::SCHEDULE_COOPERATIVE_AND_KERNEL;
}
// Uncommon constructors.
SpinLock::SpinLock(base_internal::SchedulingMode mode)
: lockword_(IsCooperative(mode) ? kSpinLockCooperative : 0) {
ABSL_TSAN_MUTEX_CREATE(this, 0);
}
SpinLock::SpinLock(base_internal::LinkerInitialized,
base_internal::SchedulingMode mode) {
ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_linker_init);
if (IsCooperative(mode)) {
InitLinkerInitializedAndCooperative();
}
// Otherwise, lockword_ is already initialized.
}
// Static (linker initialized) spinlocks always start life as functional
// non-cooperative locks. When their static constructor does run, it will call
// this initializer to augment the lockword with the cooperative bit. By
// actually taking the lock when we do this we avoid the need for an atomic
// operation in the regular unlock path.
//
// SlowLock() must be careful to re-test for this bit so that any outstanding
// waiters may be upgraded to cooperative status.
void SpinLock::InitLinkerInitializedAndCooperative() {
Lock();
lockword_.fetch_or(kSpinLockCooperative, std::memory_order_relaxed);
Unlock();
}
// Monitor the lock to see if its value changes within some time period
// (adaptive_spin_count loop iterations). A timestamp indicating
// when the thread initially started waiting for the lock is passed in via
// the initial_wait_timestamp value. The total wait time in cycles for the
// lock is returned in the wait_cycles parameter. The last value read
// from the lock is returned from the method.
uint32_t SpinLock::SpinLoop(int64_t initial_wait_timestamp,
uint32_t *wait_cycles) {
int c = adaptive_spin_count;
uint32_t lock_value;
do {
lock_value = lockword_.load(std::memory_order_relaxed);
} while ((lock_value & kSpinLockHeld) != 0 && --c > 0);
uint32_t spin_loop_wait_cycles =
EncodeWaitCycles(initial_wait_timestamp, CycleClock::Now());
*wait_cycles = spin_loop_wait_cycles;
return TryLockInternal(lock_value, spin_loop_wait_cycles);
}
void SpinLock::SlowLock() {
// The lock was not obtained initially, so this thread needs to wait for
// it. Record the current timestamp in the local variable wait_start_time
// so the total wait time can be stored in the lockword once this thread
// obtains the lock.
int64_t wait_start_time = CycleClock::Now();
uint32_t wait_cycles;
uint32_t lock_value = SpinLoop(wait_start_time, &wait_cycles);
int lock_wait_call_count = 0;
while ((lock_value & kSpinLockHeld) != 0) {
// If the lock is currently held, but not marked as having a sleeper, mark
// it as having a sleeper.
if ((lock_value & kWaitTimeMask) == 0) {
// Here, just "mark" that the thread is going to sleep. Don't store the
// lock wait time in the lock as that will cause the current lock
// owner to think it experienced contention.
if (lockword_.compare_exchange_strong(
lock_value, lock_value | kSpinLockSleeper,
std::memory_order_acquire, std::memory_order_relaxed)) {
// Successfully transitioned to kSpinLockSleeper. Pass
// kSpinLockSleeper to the SpinLockWait routine to properly indicate
// the last lock_value observed.
lock_value |= kSpinLockSleeper;
} else if ((lock_value & kSpinLockHeld) == 0) {
// Lock is free again, so try and acquire it before sleeping. The
// new lock state will be the number of cycles this thread waited if
// this thread obtains the lock.
lock_value = TryLockInternal(lock_value, wait_cycles);
continue; // Skip the delay at the end of the loop.
}
}
base_internal::SchedulingMode scheduling_mode;
if ((lock_value & kSpinLockCooperative) != 0) {
scheduling_mode = base_internal::SCHEDULE_COOPERATIVE_AND_KERNEL;
} else {
scheduling_mode = base_internal::SCHEDULE_KERNEL_ONLY;
}
// SpinLockDelay() calls into fiber scheduler, we need to see
// synchronization there to avoid false positives.
ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0);
// Wait for an OS specific delay.
base_internal::SpinLockDelay(&lockword_, lock_value, ++lock_wait_call_count,
scheduling_mode);
ABSL_TSAN_MUTEX_POST_DIVERT(this, 0);
// Spin again after returning from the wait routine to give this thread
// some chance of obtaining the lock.
lock_value = SpinLoop(wait_start_time, &wait_cycles);
}
}
void SpinLock::SlowUnlock(uint32_t lock_value) {
base_internal::SpinLockWake(&lockword_,
false); // wake waiter if necessary
// If our acquisition was contended, collect contentionz profile info. We
// reserve a unitary wait time to represent that a waiter exists without our
// own acquisition having been contended.
if ((lock_value & kWaitTimeMask) != kSpinLockSleeper) {
const uint64_t wait_cycles = DecodeWaitCycles(lock_value);
ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0);
submit_profile_data(this, wait_cycles);
ABSL_TSAN_MUTEX_POST_DIVERT(this, 0);
}
}
// We use the upper 29 bits of the lock word to store the time spent waiting to
// acquire this lock. This is reported by contentionz profiling. Since the
// lower bits of the cycle counter wrap very quickly on high-frequency
// processors we divide to reduce the granularity to 2^PROFILE_TIMESTAMP_SHIFT
// sized units. On a 4Ghz machine this will lose track of wait times greater
// than (2^29/4 Ghz)*128 =~ 17.2 seconds. Such waits should be extremely rare.
enum { PROFILE_TIMESTAMP_SHIFT = 7 };
enum { LOCKWORD_RESERVED_SHIFT = 3 }; // We currently reserve the lower 3 bits.
uint32_t SpinLock::EncodeWaitCycles(int64_t wait_start_time,
int64_t wait_end_time) {
static const int64_t kMaxWaitTime =
std::numeric_limits<uint32_t>::max() >> LOCKWORD_RESERVED_SHIFT;
int64_t scaled_wait_time =
(wait_end_time - wait_start_time) >> PROFILE_TIMESTAMP_SHIFT;
// Return a representation of the time spent waiting that can be stored in
// the lock word's upper bits. bit_cast is required as Atomic32 is signed.
const uint32_t clamped = static_cast<uint32_t>(
std::min(scaled_wait_time, kMaxWaitTime) << LOCKWORD_RESERVED_SHIFT);
// bump up value if necessary to avoid returning kSpinLockSleeper.
const uint32_t after_spinlock_sleeper =
kSpinLockSleeper + (1 << LOCKWORD_RESERVED_SHIFT);
return clamped == kSpinLockSleeper ? after_spinlock_sleeper : clamped;
}
uint64_t SpinLock::DecodeWaitCycles(uint32_t lock_value) {
// Cast to uint32_t first to ensure bits [63:32] are cleared.
const uint64_t scaled_wait_time =
static_cast<uint32_t>(lock_value & kWaitTimeMask);
return scaled_wait_time
<< (PROFILE_TIMESTAMP_SHIFT - LOCKWORD_RESERVED_SHIFT);
}
} // namespace base_internal
} // namespace absl

View file

@ -0,0 +1,227 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Most users requiring mutual exclusion should use Mutex.
// SpinLock is provided for use in three situations:
// - for use in code that Mutex itself depends on
// - to get a faster fast-path release under low contention (without an
// atomic read-modify-write) In return, SpinLock has worse behaviour under
// contention, which is why Mutex is preferred in most situations.
// - for async signal safety (see below)
// SpinLock is async signal safe. If a spinlock is used within a signal
// handler, all code that acquires the lock must ensure that the signal cannot
// arrive while they are holding the lock. Typically, this is done by blocking
// the signal.
#ifndef ABSL_BASE_INTERNAL_SPINLOCK_H_
#define ABSL_BASE_INTERNAL_SPINLOCK_H_
#include <atomic>
#include "absl/base/dynamic_annotations.h"
#include "absl/base/internal/low_level_scheduling.h"
#include "absl/base/internal/tsan_mutex_interface.h"
#include "absl/base/port.h"
#include "absl/base/thread_annotations.h"
namespace absl {
namespace base_internal {
class LOCKABLE SpinLock {
public:
SpinLock() : lockword_(kSpinLockCooperative) {
ABSL_TSAN_MUTEX_CREATE(this, 0);
}
// Special constructor for use with static SpinLock objects. E.g.,
//
// static SpinLock lock(base_internal::kLinkerInitialized);
//
// When intialized using this constructor, we depend on the fact
// that the linker has already initialized the memory appropriately.
// A SpinLock constructed like this can be freely used from global
// initializers without worrying about the order in which global
// initializers run.
explicit SpinLock(base_internal::LinkerInitialized) {
// Does nothing; lockword_ is already initialized
ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_linker_init);
}
// Constructors that allow non-cooperative spinlocks to be created for use
// inside thread schedulers. Normal clients should not use these.
explicit SpinLock(base_internal::SchedulingMode mode);
SpinLock(base_internal::LinkerInitialized,
base_internal::SchedulingMode mode);
~SpinLock() { ABSL_TSAN_MUTEX_DESTROY(this, 0); }
// Acquire this SpinLock.
inline void Lock() EXCLUSIVE_LOCK_FUNCTION() {
ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
if (!TryLockImpl()) {
SlowLock();
}
ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
}
// Try to acquire this SpinLock without blocking and return true if the
// acquisition was successful. If the lock was not acquired, false is
// returned. If this SpinLock is free at the time of the call, TryLock
// will return true with high probability.
inline bool TryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true) {
ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock);
bool res = TryLockImpl();
ABSL_TSAN_MUTEX_POST_LOCK(
this, __tsan_mutex_try_lock | (res ? 0 : __tsan_mutex_try_lock_failed),
0);
return res;
}
// Release this SpinLock, which must be held by the calling thread.
inline void Unlock() UNLOCK_FUNCTION() {
ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0);
uint32_t lock_value = lockword_.load(std::memory_order_relaxed);
lockword_.store(lock_value & kSpinLockCooperative,
std::memory_order_release);
if ((lock_value & kSpinLockDisabledScheduling) != 0) {
base_internal::SchedulingGuard::EnableRescheduling(true);
}
if ((lock_value & kWaitTimeMask) != 0) {
// Collect contentionz profile info, and speed the wakeup of any waiter.
// The wait_cycles value indicates how long this thread spent waiting
// for the lock.
SlowUnlock(lock_value);
}
ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0);
}
// Determine if the lock is held. When the lock is held by the invoking
// thread, true will always be returned. Intended to be used as
// CHECK(lock.IsHeld()).
inline bool IsHeld() const {
return (lockword_.load(std::memory_order_relaxed) & kSpinLockHeld) != 0;
}
protected:
// These should not be exported except for testing.
// Store number of cycles between wait_start_time and wait_end_time in a
// lock value.
static uint32_t EncodeWaitCycles(int64_t wait_start_time,
int64_t wait_end_time);
// Extract number of wait cycles in a lock value.
static uint64_t DecodeWaitCycles(uint32_t lock_value);
// Provide access to protected method above. Use for testing only.
friend struct SpinLockTest;
private:
// lockword_ is used to store the following:
//
// bit[0] encodes whether a lock is being held.
// bit[1] encodes whether a lock uses cooperative scheduling.
// bit[2] encodes whether a lock disables scheduling.
// bit[3:31] encodes time a lock spent on waiting as a 29-bit unsigned int.
enum { kSpinLockHeld = 1 };
enum { kSpinLockCooperative = 2 };
enum { kSpinLockDisabledScheduling = 4 };
enum { kSpinLockSleeper = 8 };
enum { kWaitTimeMask = // Includes kSpinLockSleeper.
~(kSpinLockHeld | kSpinLockCooperative | kSpinLockDisabledScheduling) };
uint32_t TryLockInternal(uint32_t lock_value, uint32_t wait_cycles);
void InitLinkerInitializedAndCooperative();
void SlowLock() ABSL_ATTRIBUTE_COLD;
void SlowUnlock(uint32_t lock_value) ABSL_ATTRIBUTE_COLD;
uint32_t SpinLoop(int64_t initial_wait_timestamp, uint32_t* wait_cycles);
inline bool TryLockImpl() {
uint32_t lock_value = lockword_.load(std::memory_order_relaxed);
return (TryLockInternal(lock_value, 0) & kSpinLockHeld) == 0;
}
std::atomic<uint32_t> lockword_;
SpinLock(const SpinLock&) = delete;
SpinLock& operator=(const SpinLock&) = delete;
};
// Corresponding locker object that arranges to acquire a spinlock for
// the duration of a C++ scope.
class SCOPED_LOCKABLE SpinLockHolder {
public:
inline explicit SpinLockHolder(SpinLock* l) EXCLUSIVE_LOCK_FUNCTION(l)
: lock_(l) {
l->Lock();
}
inline ~SpinLockHolder() UNLOCK_FUNCTION() { lock_->Unlock(); }
SpinLockHolder(const SpinLockHolder&) = delete;
SpinLockHolder& operator=(const SpinLockHolder&) = delete;
private:
SpinLock* lock_;
};
// Register a hook for profiling support.
//
// The function pointer registered here will be called whenever a spinlock is
// contended. The callback is given an opaque handle to the contended spinlock
// and the number of wait cycles. This is thread-safe, but only a single
// profiler can be registered. It is an error to call this function multiple
// times with different arguments.
void RegisterSpinLockProfiler(void (*fn)(const void* lock,
int64_t wait_cycles));
//------------------------------------------------------------------------------
// Public interface ends here.
//------------------------------------------------------------------------------
// If (result & kSpinLockHeld) == 0, then *this was successfully locked.
// Otherwise, returns last observed value for lockword_.
inline uint32_t SpinLock::TryLockInternal(uint32_t lock_value,
uint32_t wait_cycles) {
if ((lock_value & kSpinLockHeld) != 0) {
return lock_value;
}
uint32_t sched_disabled_bit = 0;
if ((lock_value & kSpinLockCooperative) == 0) {
// For non-cooperative locks we must make sure we mark ourselves as
// non-reschedulable before we attempt to CompareAndSwap.
if (base_internal::SchedulingGuard::DisableRescheduling()) {
sched_disabled_bit = kSpinLockDisabledScheduling;
}
}
if (lockword_.compare_exchange_strong(
lock_value,
kSpinLockHeld | lock_value | wait_cycles | sched_disabled_bit,
std::memory_order_acquire, std::memory_order_relaxed)) {
} else {
base_internal::SchedulingGuard::EnableRescheduling(sched_disabled_bit);
}
return lock_value;
}
} // namespace base_internal
} // namespace absl
#endif // ABSL_BASE_INTERNAL_SPINLOCK_H_

View file

@ -0,0 +1,46 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// This file is a Posix-specific part of spinlock_wait.cc
#include <sched.h>
#include <atomic>
#include <ctime>
#include <cerrno>
#include "absl/base/internal/scheduling_mode.h"
#include "absl/base/port.h"
extern "C" {
ABSL_ATTRIBUTE_WEAK void AbslInternalSpinLockDelay(
std::atomic<uint32_t>* /* lock_word */, uint32_t /* value */, int loop,
absl::base_internal::SchedulingMode /* mode */) {
int save_errno = errno;
if (loop == 0) {
} else if (loop == 1) {
sched_yield();
} else {
struct timespec tm;
tm.tv_sec = 0;
tm.tv_nsec = absl::base_internal::SpinLockSuggestedDelayNS(loop);
nanosleep(&tm, nullptr);
}
errno = save_errno;
}
ABSL_ATTRIBUTE_WEAK void AbslInternalSpinLockWake(
std::atomic<uint32_t>* /* lock_word */, bool /* all */) {}
} // extern "C"

View file

@ -0,0 +1,77 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The OS-specific header included below must provide two calls:
// base::subtle::SpinLockDelay() and base::subtle::SpinLockWake().
// See spinlock_wait.h for the specs.
#include <atomic>
#include <cstdint>
#include "absl/base/internal/spinlock_wait.h"
#if defined(_WIN32)
#include "absl/base/internal/spinlock_win32.inc"
#else
#include "absl/base/internal/spinlock_posix.inc"
#endif
namespace absl {
namespace base_internal {
// See spinlock_wait.h for spec.
uint32_t SpinLockWait(std::atomic<uint32_t> *w, int n,
const SpinLockWaitTransition trans[],
base_internal::SchedulingMode scheduling_mode) {
for (int loop = 0; ; loop++) {
uint32_t v = w->load(std::memory_order_acquire);
int i;
for (i = 0; i != n && v != trans[i].from; i++) {
}
if (i == n) {
SpinLockDelay(w, v, loop, scheduling_mode); // no matching transition
} else if (trans[i].to == v || // null transition
w->compare_exchange_strong(v, trans[i].to,
std::memory_order_acquire,
std::memory_order_relaxed)) {
if (trans[i].done) return v;
}
}
}
static std::atomic<uint64_t> delay_rand;
// Return a suggested delay in nanoseconds for iteration number "loop"
int SpinLockSuggestedDelayNS(int loop) {
// Weak pseudo-random number generator to get some spread between threads
// when many are spinning.
uint64_t r = delay_rand.load(std::memory_order_relaxed);
r = 0x5deece66dLL * r + 0xb; // numbers from nrand48()
delay_rand.store(r, std::memory_order_relaxed);
r <<= 16; // 48-bit random number now in top 48-bits.
if (loop < 0 || loop > 32) { // limit loop to 0..32
loop = 32;
}
// loop>>3 cannot exceed 4 because loop cannot exceed 32.
// Select top 20..24 bits of lower 48 bits,
// giving approximately 0ms to 16ms.
// Mean is exponential in loop for first 32 iterations, then 8ms.
// The futex path multiplies this by 16, since we expect explicit wakeups
// almost always on that path.
return r >> (44 - (loop >> 3));
}
} // namespace base_internal
} // namespace absl

View file

@ -0,0 +1,94 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_BASE_INTERNAL_SPINLOCK_WAIT_H_
#define ABSL_BASE_INTERNAL_SPINLOCK_WAIT_H_
// Operations to make atomic transitions on a word, and to allow
// waiting for those transitions to become possible.
// This file is used internally in spinlock.cc and once.cc, and a few other
// places listing in //base:spinlock_wait_users. If you need to use it outside
// of //base, please request permission to be added to that list.
#include <atomic>
#include "absl/base/internal/scheduling_mode.h"
namespace absl {
namespace base_internal {
// SpinLockWait() waits until it can perform one of several transitions from
// "from" to "to". It returns when it performs a transition where done==true.
struct SpinLockWaitTransition {
uint32_t from;
uint32_t to;
bool done;
};
// Wait until *w can transition from trans[i].from to trans[i].to for some i
// satisfying 0<=i<n && trans[i].done, atomically make the transition,
// then return the old value of *w. Make any other atomic transitions
// where !trans[i].done, but continue waiting.
uint32_t SpinLockWait(std::atomic<uint32_t> *w, int n,
const SpinLockWaitTransition trans[],
SchedulingMode scheduling_mode);
// If possible, wake some thread that has called SpinLockDelay(w, ...). If
// "all" is true, wake all such threads. This call is a hint, and on some
// systems it may be a no-op; threads calling SpinLockDelay() will always wake
// eventually even if SpinLockWake() is never called.
void SpinLockWake(std::atomic<uint32_t> *w, bool all);
// Wait for an appropriate spin delay on iteration "loop" of a
// spin loop on location *w, whose previously observed value was "value".
// SpinLockDelay() may do nothing, may yield the CPU, may sleep a clock tick,
// or may wait for a delay that can be truncated by a call to SpinLockWake(w).
// In all cases, it must return in bounded time even if SpinLockWake() is not
// called.
void SpinLockDelay(std::atomic<uint32_t> *w, uint32_t value, int loop,
base_internal::SchedulingMode scheduling_mode);
// Helper used by AbslInternalSpinLockDelay.
// Returns a suggested delay in nanoseconds for iteration number "loop".
int SpinLockSuggestedDelayNS(int loop);
} // namespace base_internal
} // namespace absl
// In some build configurations we pass --detect-odr-violations to the
// gold linker. This causes it to flag weak symbol overrides as ODR
// violations. Because ODR only applies to C++ and not C,
// --detect-odr-violations ignores symbols not mangled with C++ names.
// By changing our extension points to be extern "C", we dodge this
// check.
extern "C" {
void AbslInternalSpinLockWake(std::atomic<uint32_t> *w, bool all);
void AbslInternalSpinLockDelay(
std::atomic<uint32_t> *w, uint32_t value, int loop,
absl::base_internal::SchedulingMode scheduling_mode);
}
inline void absl::base_internal::SpinLockWake(std::atomic<uint32_t> *w,
bool all) {
AbslInternalSpinLockWake(w, all);
}
inline void absl::base_internal::SpinLockDelay(
std::atomic<uint32_t> *w, uint32_t value, int loop,
base_internal::SchedulingMode scheduling_mode) {
AbslInternalSpinLockDelay(w, value, loop, scheduling_mode);
}
#endif // ABSL_BASE_INTERNAL_SPINLOCK_WAIT_H_

View file

@ -0,0 +1,37 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// This file is a Win32-specific part of spinlock_wait.cc
#include <windows.h>
#include <atomic>
#include "absl/base/internal/scheduling_mode.h"
extern "C" {
void AbslInternalSpinLockDelay(std::atomic<uint32_t>* /* lock_word */,
uint32_t /* value */, int loop,
absl::base_internal::SchedulingMode /* mode */) {
if (loop == 0) {
} else if (loop == 1) {
Sleep(0);
} else {
Sleep(absl::base_internal::SpinLockSuggestedDelayNS(loop) / 1000000);
}
}
void AbslInternalSpinLockWake(std::atomic<uint32_t>* /* lock_word */,
bool /* all */) {}
} // extern "C"

View file

@ -0,0 +1,370 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/sysinfo.h"
#ifdef _WIN32
#include <shlwapi.h>
#include <windows.h>
#else
#include <fcntl.h>
#include <pthread.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#endif
#ifdef __linux__
#include <sys/syscall.h>
#endif
#ifdef __APPLE__
#include <sys/sysctl.h>
#endif
#include <string.h>
#include <cassert>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <limits>
#include <thread> // NOLINT(build/c++11)
#include <utility>
#include <vector>
#include "absl/base/call_once.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"
#include "absl/base/internal/unscaledcycleclock.h"
#include "absl/base/thread_annotations.h"
namespace absl {
namespace base_internal {
static once_flag init_system_info_once;
static int num_cpus = 0;
static double nominal_cpu_frequency = 1.0; // 0.0 might be dangerous.
static int GetNumCPUs() {
#if defined(__myriad2__) || defined(__GENCLAVE__)
// TODO(b/28296132): Calling std::thread::hardware_concurrency() induces a
// link error on myriad2 builds.
// TODO(b/62709537): Support std::thread::hardware_concurrency() in gEnclalve.
return 1;
#else
// Other possibilities:
// - Read /sys/devices/system/cpu/online and use cpumask_parse()
// - sysconf(_SC_NPROCESSORS_ONLN)
return std::thread::hardware_concurrency();
#endif
}
#if defined(_WIN32)
static double GetNominalCPUFrequency() {
DWORD data;
DWORD data_size = sizeof(data);
#pragma comment(lib, "shlwapi.lib") // For SHGetValue().
if (SUCCEEDED(
SHGetValueA(HKEY_LOCAL_MACHINE,
"HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0",
"~MHz", nullptr, &data, &data_size))) {
return data * 1e6; // Value is MHz.
}
return 1.0;
}
#elif defined(CTL_HW) && defined(HW_CPU_FREQ)
static double GetNominalCPUFrequency() {
unsigned freq;
size_t size = sizeof(freq);
int mib[2] = {CTL_HW, HW_CPU_FREQ};
if (sysctl(mib, 2, &freq, &size, nullptr, 0) == 0) {
return static_cast<double>(freq);
}
return 1.0;
}
#else
// Helper function for reading a long from a file. Returns true if successful
// and the memory location pointed to by value is set to the value read.
static bool ReadLongFromFile(const char *file, long *value) {
bool ret = false;
int fd = open(file, O_RDONLY);
if (fd != -1) {
char line[1024];
char *err;
memset(line, '\0', sizeof(line));
int len = read(fd, line, sizeof(line) - 1);
if (len <= 0) {
ret = false;
} else {
const long temp_value = strtol(line, &err, 10);
if (line[0] != '\0' && (*err == '\n' || *err == '\0')) {
*value = temp_value;
ret = true;
}
}
close(fd);
}
return ret;
}
#if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY)
// Reads a monotonic time source and returns a value in
// nanoseconds. The returned value uses an arbitrary epoch, not the
// Unix epoch.
static int64_t ReadMonotonicClockNanos() {
struct timespec t;
#ifdef CLOCK_MONOTONIC_RAW
int rc = clock_gettime(CLOCK_MONOTONIC_RAW, &t);
#else
int rc = clock_gettime(CLOCK_MONOTONIC, &t);
#endif
if (rc != 0) {
perror("clock_gettime() failed");
abort();
}
return int64_t{t.tv_sec} * 1000000000 + t.tv_nsec;
}
class UnscaledCycleClockWrapperForInitializeFrequency {
public:
static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); }
};
struct TimeTscPair {
int64_t time; // From ReadMonotonicClockNanos().
int64_t tsc; // From UnscaledCycleClock::Now().
};
// Returns a pair of values (monotonic kernel time, TSC ticks) that
// approximately correspond to each other. This is accomplished by
// doing several reads and picking the reading with the lowest
// latency. This approach is used to minimize the probability that
// our thread was preempted between clock reads.
static TimeTscPair GetTimeTscPair() {
int64_t best_latency = std::numeric_limits<int64_t>::max();
TimeTscPair best;
for (int i = 0; i < 10; ++i) {
int64_t t0 = ReadMonotonicClockNanos();
int64_t tsc = UnscaledCycleClockWrapperForInitializeFrequency::Now();
int64_t t1 = ReadMonotonicClockNanos();
int64_t latency = t1 - t0;
if (latency < best_latency) {
best_latency = latency;
best.time = t0;
best.tsc = tsc;
}
}
return best;
}
// Measures and returns the TSC frequency by taking a pair of
// measurements approximately `sleep_nanoseconds` apart.
static double MeasureTscFrequencyWithSleep(int sleep_nanoseconds) {
auto t0 = GetTimeTscPair();
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = sleep_nanoseconds;
while (nanosleep(&ts, &ts) != 0 && errno == EINTR) {}
auto t1 = GetTimeTscPair();
double elapsed_ticks = t1.tsc - t0.tsc;
double elapsed_time = (t1.time - t0.time) * 1e-9;
return elapsed_ticks / elapsed_time;
}
// Measures and returns the TSC frequency by calling
// MeasureTscFrequencyWithSleep(), doubling the sleep interval until the
// frequency measurement stabilizes.
static double MeasureTscFrequency() {
double last_measurement = -1.0;
int sleep_nanoseconds = 1000000; // 1 millisecond.
for (int i = 0; i < 8; ++i) {
double measurement = MeasureTscFrequencyWithSleep(sleep_nanoseconds);
if (measurement * 0.99 < last_measurement &&
last_measurement < measurement * 1.01) {
// Use the current measurement if it is within 1% of the
// previous measurement.
return measurement;
}
last_measurement = measurement;
sleep_nanoseconds *= 2;
}
return last_measurement;
}
#endif // ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY
static double GetNominalCPUFrequency() {
long freq = 0;
// Google's production kernel has a patch to export the TSC
// frequency through sysfs. If the kernel is exporting the TSC
// frequency use that. There are issues where cpuinfo_max_freq
// cannot be relied on because the BIOS may be exporting an invalid
// p-state (on x86) or p-states may be used to put the processor in
// a new mode (turbo mode). Essentially, those frequencies cannot
// always be relied upon. The same reasons apply to /proc/cpuinfo as
// well.
if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &freq)) {
return freq * 1e3; // Value is kHz.
}
#if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY)
// On these platforms, the TSC frequency is the nominal CPU
// frequency. But without having the kernel export it directly
// though /sys/devices/system/cpu/cpu0/tsc_freq_khz, there is no
// other way to reliably get the TSC frequency, so we have to
// measure it ourselves. Some CPUs abuse cpuinfo_max_freq by
// exporting "fake" frequencies for implementing new features. For
// example, Intel's turbo mode is enabled by exposing a p-state
// value with a higher frequency than that of the real TSC
// rate. Because of this, we prefer to measure the TSC rate
// ourselves on i386 and x86-64.
return MeasureTscFrequency();
#else
// If CPU scaling is in effect, we want to use the *maximum*
// frequency, not whatever CPU speed some random processor happens
// to be using now.
if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq",
&freq)) {
return freq * 1e3; // Value is kHz.
}
return 1.0;
#endif // !ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY
}
#endif
// InitializeSystemInfo() may be called before main() and before
// malloc is properly initialized, therefore this must not allocate
// memory.
static void InitializeSystemInfo() {
num_cpus = GetNumCPUs();
nominal_cpu_frequency = GetNominalCPUFrequency();
}
int NumCPUs() {
base_internal::LowLevelCallOnce(&init_system_info_once, InitializeSystemInfo);
return num_cpus;
}
double NominalCPUFrequency() {
base_internal::LowLevelCallOnce(&init_system_info_once, InitializeSystemInfo);
return nominal_cpu_frequency;
}
#if defined(_WIN32)
pid_t GetTID() {
return GetCurrentThreadId();
}
#elif defined(__linux__)
#ifndef SYS_gettid
#define SYS_gettid __NR_gettid
#endif
pid_t GetTID() {
return syscall(SYS_gettid);
}
#else
// Fallback implementation of GetTID using pthread_getspecific.
static once_flag tid_once;
static pthread_key_t tid_key;
static absl::base_internal::SpinLock tid_lock(
absl::base_internal::kLinkerInitialized);
// We set a bit per thread in this array to indicate that an ID is in
// use. ID 0 is unused because it is the default value returned by
// pthread_getspecific().
static std::vector<uint32_t>* tid_array GUARDED_BY(tid_lock) = nullptr;
static constexpr int kBitsPerWord = 32; // tid_array is uint32_t.
// Returns the TID to tid_array.
static void FreeTID(void *v) {
intptr_t tid = reinterpret_cast<intptr_t>(v);
int word = tid / kBitsPerWord;
uint32_t mask = ~(1u << (tid % kBitsPerWord));
absl::base_internal::SpinLockHolder lock(&tid_lock);
assert(0 <= word && static_cast<size_t>(word) < tid_array->size());
(*tid_array)[word] &= mask;
}
static void InitGetTID() {
if (pthread_key_create(&tid_key, FreeTID) != 0) {
// The logging system calls GetTID() so it can't be used here.
perror("pthread_key_create failed");
abort();
}
// Initialize tid_array.
absl::base_internal::SpinLockHolder lock(&tid_lock);
tid_array = new std::vector<uint32_t>(1);
(*tid_array)[0] = 1; // ID 0 is never-allocated.
}
// Return a per-thread small integer ID from pthread's thread-specific data.
pid_t GetTID() {
absl::call_once(tid_once, InitGetTID);
intptr_t tid = reinterpret_cast<intptr_t>(pthread_getspecific(tid_key));
if (tid != 0) {
return tid;
}
int bit; // tid_array[word] = 1u << bit;
size_t word;
{
// Search for the first unused ID.
absl::base_internal::SpinLockHolder lock(&tid_lock);
// First search for a word in the array that is not all ones.
word = 0;
while (word < tid_array->size() && ~(*tid_array)[word] == 0) {
++word;
}
if (word == tid_array->size()) {
tid_array->push_back(0); // No space left, add kBitsPerWord more IDs.
}
// Search for a zero bit in the word.
bit = 0;
while (bit < kBitsPerWord && (((*tid_array)[word] >> bit) & 1) != 0) {
++bit;
}
tid = (word * kBitsPerWord) + bit;
(*tid_array)[word] |= 1u << bit; // Mark the TID as allocated.
}
if (pthread_setspecific(tid_key, reinterpret_cast<void *>(tid)) != 0) {
perror("pthread_setspecific failed");
abort();
}
return static_cast<pid_t>(tid);
}
#endif
} // namespace base_internal
} // namespace absl

View file

@ -0,0 +1,64 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// This file includes routines to find out characteristics
// of the machine a program is running on. It is undoubtedly
// system-dependent.
// Functions listed here that accept a pid_t as an argument act on the
// current process if the pid_t argument is 0
// All functions here are thread-hostile due to file caching unless
// commented otherwise.
#ifndef ABSL_BASE_INTERNAL_SYSINFO_H_
#define ABSL_BASE_INTERNAL_SYSINFO_H_
#ifndef _WIN32
#include <sys/types.h>
#else
#include <intsafe.h>
#endif
#include "absl/base/port.h"
namespace absl {
namespace base_internal {
// Nominal core processor cycles per second of each processor. This is _not_
// necessarily the frequency of the CycleClock counter (see cycleclock.h)
// Thread-safe.
double NominalCPUFrequency();
// Number of logical processors (hyperthreads) in system. See
// //base/cpuid/cpuid.h for more CPU-related info. Thread-safe.
int NumCPUs();
// Return the thread id of the current thread, as told by the system.
// No two currently-live threads implemented by the OS shall have the same ID.
// Thread ids of exited threads may be reused. Multiple user-level threads
// may have the same thread ID if multiplexed on the same OS thread.
//
// On Linux, you may send a signal to the resulting ID with kill(). However,
// it is recommended for portability that you use pthread_kill() instead.
#ifdef _WIN32
// On Windows, process id and thread id are of the same type according to
// the return types of GetProcessId() and GetThreadId() are both DWORD.
using pid_t = DWORD;
#endif
pid_t GetTID();
} // namespace base_internal
} // namespace absl
#endif // ABSL_BASE_INTERNAL_SYSINFO_H_

View file

@ -0,0 +1,99 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/sysinfo.h"
#ifndef _WIN32
#include <sys/types.h>
#include <unistd.h>
#endif
#include <thread> // NOLINT(build/c++11)
#include <unordered_set>
#include <vector>
#include "gtest/gtest.h"
#include "absl/synchronization/barrier.h"
#include "absl/synchronization/mutex.h"
namespace absl {
namespace base_internal {
namespace {
TEST(SysinfoTest, NumCPUs) {
EXPECT_NE(NumCPUs(), 0)
<< "NumCPUs() should not have the default value of 0";
}
TEST(SysinfoTest, NominalCPUFrequency) {
#if !(defined(__aarch64__) && defined(__linux__))
EXPECT_GE(NominalCPUFrequency(), 1000.0)
<< "NominalCPUFrequency() did not return a reasonable value";
#else
// TODO(b/37919252): Aarch64 cannot read the CPU frequency from sysfs, so we
// get back 1.0. Fix once the value is available.
EXPECT_EQ(NominalCPUFrequency(), 1.0)
<< "CPU frequency detection was fixed! Please update unittest and "
"b/37919252";
#endif
}
TEST(SysinfoTest, GetTID) {
EXPECT_EQ(GetTID(), GetTID()); // Basic compile and equality test.
#ifdef __native_client__
// Native Client has a race condition bug that leads to memory
// exaustion when repeatedly creating and joining threads.
// https://bugs.chromium.org/p/nativeclient/issues/detail?id=1027
return;
#endif
// Test that TIDs are unique to each thread.
// Uses a few loops to exercise implementations that reallocate IDs.
for (int i = 0; i < 32; ++i) {
constexpr int kNumThreads = 64;
Barrier all_threads_done(kNumThreads);
std::vector<std::thread> threads;
Mutex mutex;
std::unordered_set<pid_t> tids;
for (int j = 0; j < kNumThreads; ++j) {
threads.push_back(std::thread([&]() {
pid_t id = GetTID();
{
MutexLock lock(&mutex);
ASSERT_TRUE(tids.find(id) == tids.end());
tids.insert(id);
}
// We can't simply join the threads here. The threads need to
// be alive otherwise the TID might have been reallocated to
// another live thread.
all_threads_done.Block();
}));
}
for (auto& thread : threads) {
thread.join();
}
}
}
#ifdef __linux__
TEST(SysinfoTest, LinuxGetTID) {
// On Linux, for the main thread, GetTID()==getpid() is guaranteed by the API.
EXPECT_EQ(GetTID(), getpid());
}
#endif
} // namespace
} // namespace base_internal
} // namespace absl

View file

@ -0,0 +1,126 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/thread_identity.h"
#ifndef _WIN32
#include <pthread.h>
#include <signal.h>
#endif
#include <atomic>
#include <cassert>
#include <memory>
#include "absl/base/call_once.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"
namespace absl {
namespace base_internal {
#if ABSL_THREAD_IDENTITY_MODE != ABSL_THREAD_IDENTITY_MODE_USE_CPP11
namespace {
// Used to co-ordinate one-time creation of our pthread_key
absl::once_flag init_thread_identity_key_once;
pthread_key_t thread_identity_pthread_key;
std::atomic<bool> pthread_key_initialized(false);
void AllocateThreadIdentityKey(ThreadIdentityReclaimerFunction reclaimer) {
pthread_key_create(&thread_identity_pthread_key, reclaimer);
pthread_key_initialized.store(true, std::memory_order_release);
}
} // namespace
#endif
#if ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_TLS || \
ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_CPP11
// The actual TLS storage for a thread's currently associated ThreadIdentity.
// This is referenced by inline accessors in the header.
// "protected" visibility ensures that if multiple copies of //base exist in a
// process (via dlopen() or similar), references to
// thread_identity_ptr from each copy of the code will refer to
// *different* instances of this ptr. See extensive discussion of this choice
// in cl/90634708
// TODO(ahh): hard deprecate multiple copies of //base; remove this.
#ifdef __GNUC__
__attribute__((visibility("protected")))
#endif // __GNUC__
ABSL_PER_THREAD_TLS_KEYWORD ThreadIdentity* thread_identity_ptr;
#endif // TLS or CPP11
void SetCurrentThreadIdentity(
ThreadIdentity* identity, ThreadIdentityReclaimerFunction reclaimer) {
assert(CurrentThreadIdentityIfPresent() == nullptr);
// Associate our destructor.
// NOTE: This call to pthread_setspecific is currently the only immovable
// barrier to CurrentThreadIdentity() always being async signal safe.
#if ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_POSIX_SETSPECIFIC
// NOTE: Not async-safe. But can be open-coded.
absl::call_once(init_thread_identity_key_once, AllocateThreadIdentityKey,
reclaimer);
// b/18366710:
// We must mask signals around the call to setspecific as with current glibc,
// a concurrent getspecific (needed for GetCurrentThreadIdentityIfPresent())
// may zero our value.
//
// While not officially async-signal safe, getspecific within a signal handler
// is otherwise OK.
sigset_t all_signals;
sigset_t curr_signals;
sigfillset(&all_signals);
pthread_sigmask(SIG_SETMASK, &all_signals, &curr_signals);
pthread_setspecific(thread_identity_pthread_key,
reinterpret_cast<void*>(identity));
pthread_sigmask(SIG_SETMASK, &curr_signals, nullptr);
#elif ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_TLS
// NOTE: Not async-safe. But can be open-coded.
absl::call_once(init_thread_identity_key_once, AllocateThreadIdentityKey,
reclaimer);
pthread_setspecific(thread_identity_pthread_key,
reinterpret_cast<void*>(identity));
thread_identity_ptr = identity;
#elif ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_CPP11
thread_local std::unique_ptr<ThreadIdentity, ThreadIdentityReclaimerFunction>
holder(identity, reclaimer);
thread_identity_ptr = identity;
#else
#error Unimplemented ABSL_THREAD_IDENTITY_MODE
#endif
}
void ClearCurrentThreadIdentity() {
#if ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_TLS || \
ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_CPP11
thread_identity_ptr = nullptr;
#elif ABSL_THREAD_IDENTITY_MODE == \
ABSL_THREAD_IDENTITY_MODE_USE_POSIX_SETSPECIFIC
// pthread_setspecific expected to clear value on destruction
assert(CurrentThreadIdentityIfPresent() == nullptr);
#endif
}
#if ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_POSIX_SETSPECIFIC
ThreadIdentity* CurrentThreadIdentityIfPresent() {
bool initialized = pthread_key_initialized.load(std::memory_order_acquire);
if (!initialized) {
return nullptr;
}
return reinterpret_cast<ThreadIdentity*>(
pthread_getspecific(thread_identity_pthread_key));
}
#endif
} // namespace base_internal
} // namespace absl

View file

@ -0,0 +1,240 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Each active thread has an ThreadIdentity that may represent the thread in
// various level interfaces. ThreadIdentity objects are never deallocated.
// When a thread terminates, its ThreadIdentity object may be reused for a
// thread created later.
#ifndef ABSL_BASE_INTERNAL_THREAD_IDENTITY_H_
#define ABSL_BASE_INTERNAL_THREAD_IDENTITY_H_
#ifndef _WIN32
#include <pthread.h>
// Defines __GOOGLE_GRTE_VERSION__ (via glibc-specific features.h) when
// supported.
#include <unistd.h>
#endif
#include <atomic>
#include <cstdint>
#include "absl/base/internal/per_thread_tls.h"
namespace absl {
struct SynchLocksHeld;
struct SynchWaitParams;
namespace base_internal {
class SpinLock;
struct ThreadIdentity;
// Used by the implementation of base::Mutex and base::CondVar.
struct PerThreadSynch {
// The internal representation of base::Mutex and base::CondVar rely
// on the alignment of PerThreadSynch. Both store the address of the
// PerThreadSynch in the high-order bits of their internal state,
// which means the low kLowZeroBits of the address of PerThreadSynch
// must be zero.
static constexpr int kLowZeroBits = 8;
static constexpr int kAlignment = 1 << kLowZeroBits;
// Returns the associated ThreadIdentity.
// This can be implemented as a cast because we guarantee
// PerThreadSynch is the first element of ThreadIdentity.
ThreadIdentity* thread_identity() {
return reinterpret_cast<ThreadIdentity*>(this);
}
PerThreadSynch *next; // Circular waiter queue; initialized to 0.
PerThreadSynch *skip; // If non-zero, all entries in Mutex queue
// upto and including "skip" have same
// condition as this, and will be woken later
bool may_skip; // if false while on mutex queue, a mutex unlocker
// is using this PerThreadSynch as a terminator. Its
// skip field must not be filled in because the loop
// might then skip over the terminator.
// The wait parameters of the current wait. waitp is null if the
// thread is not waiting. Transitions from null to non-null must
// occur before the enqueue commit point (state = kQueued in
// Enqueue() and CondVarEnqueue()). Transitions from non-null to
// null must occur after the wait is finished (state = kAvailable in
// Mutex::Block() and CondVar::WaitCommon()). This field may be
// changed only by the thread that describes this PerThreadSynch. A
// special case is Fer(), which calls Enqueue() on another thread,
// but with an identical SynchWaitParams pointer, thus leaving the
// pointer unchanged.
SynchWaitParams *waitp;
bool suppress_fatal_errors; // If true, try to proceed even in the face of
// broken invariants. This is used within fatal
// signal handlers to improve the chances of
// debug logging information being output
// successfully.
intptr_t readers; // Number of readers in mutex.
int priority; // Priority of thread (updated every so often).
// When priority will next be read (cycles).
int64_t next_priority_read_cycles;
// State values:
// kAvailable: This PerThreadSynch is available.
// kQueued: This PerThreadSynch is unavailable, it's currently queued on a
// Mutex or CondVar waistlist.
//
// Transitions from kQueued to kAvailable require a release
// barrier. This is needed as a waiter may use "state" to
// independently observe that it's no longer queued.
//
// Transitions from kAvailable to kQueued require no barrier, they
// are externally ordered by the Mutex.
enum State {
kAvailable,
kQueued
};
std::atomic<State> state;
bool maybe_unlocking; // Valid at head of Mutex waiter queue;
// true if UnlockSlow could be searching
// for a waiter to wake. Used for an optimization
// in Enqueue(). true is always a valid value.
// Can be reset to false when the unlocker or any
// writer releases the lock, or a reader fully releases
// the lock. It may not be set to false by a reader
// that decrements the count to non-zero.
// protected by mutex spinlock
bool wake; // This thread is to be woken from a Mutex.
// If "x" is on a waiter list for a mutex, "x->cond_waiter" is true iff the
// waiter is waiting on the mutex as part of a CV Wait or Mutex Await.
//
// The value of "x->cond_waiter" is meaningless if "x" is not on a
// Mutex waiter list.
bool cond_waiter;
// Locks held; used during deadlock detection.
// Allocated in Synch_GetAllLocks() and freed in ReclaimThreadIdentity().
SynchLocksHeld *all_locks;
};
struct ThreadIdentity {
// Must be the first member. The Mutex implementation requires that
// the PerThreadSynch object associated with each thread is
// PerThreadSynch::kAlignment aligned. We provide this alignment on
// ThreadIdentity itself.
PerThreadSynch per_thread_synch;
// Private: Reserved for absl::synchronization_internal::Waiter.
struct WaiterState {
char data[128];
} waiter_state;
// Used by PerThreadSem::{Get,Set}ThreadBlockedCounter().
std::atomic<int>* blocked_count_ptr;
// The following variables are mostly read/written just by the
// thread itself. The only exception is that these are read by
// a ticker thread as a hint.
std::atomic<int> ticker; // Tick counter, incremented once per second.
std::atomic<int> wait_start; // Ticker value when thread started waiting.
std::atomic<bool> is_idle; // Has thread become idle yet?
ThreadIdentity* next;
};
// Returns the ThreadIdentity object representing the calling thread; guaranteed
// to be unique for its lifetime. The returned object will remain valid for the
// program's lifetime; although it may be re-assigned to a subsequent thread.
// If one does not exist, return nullptr instead.
//
// Does not malloc(*), and is async-signal safe.
// [*] Technically pthread_setspecific() does malloc on first use; however this
// is handled internally within tcmalloc's initialization already.
//
// New ThreadIdentity objects can be constructed and associated with a thread
// by calling GetOrCreateCurrentThreadIdentity() in per-thread-sem.h.
ThreadIdentity* CurrentThreadIdentityIfPresent();
using ThreadIdentityReclaimerFunction = void (*)(void*);
// Sets the current thread identity to the given value. 'reclaimer' is a
// pointer to the global function for cleaning up instances on thread
// destruction.
void SetCurrentThreadIdentity(ThreadIdentity* identity,
ThreadIdentityReclaimerFunction reclaimer);
// Removes the currently associated ThreadIdentity from the running thread.
// This must be called from inside the ThreadIdentityReclaimerFunction, and only
// from that function.
void ClearCurrentThreadIdentity();
// May be chosen at compile time via: -DABSL_FORCE_THREAD_IDENTITY_MODE=<mode
// index>
#ifdef ABSL_THREAD_IDENTITY_MODE_USE_POSIX_SETSPECIFIC
#error ABSL_THREAD_IDENTITY_MODE_USE_POSIX_SETSPECIFIC cannot be direcly set
#else
#define ABSL_THREAD_IDENTITY_MODE_USE_POSIX_SETSPECIFIC 0
#endif
#ifdef ABSL_THREAD_IDENTITY_MODE_USE_TLS
#error ABSL_THREAD_IDENTITY_MODE_USE_TLS cannot be direcly set
#else
#define ABSL_THREAD_IDENTITY_MODE_USE_TLS 1
#endif
#ifdef ABSL_THREAD_IDENTITY_MODE_USE_CPP11
#error ABSL_THREAD_IDENTITY_MODE_USE_CPP11 cannot be direcly set
#else
#define ABSL_THREAD_IDENTITY_MODE_USE_CPP11 2
#endif
#ifdef ABSL_THREAD_IDENTITY_MODE
#error ABSL_THREAD_IDENTITY_MODE cannot be direcly set
#elif defined(ABSL_FORCE_THREAD_IDENTITY_MODE)
#define ABSL_THREAD_IDENTITY_MODE ABSL_FORCE_THREAD_IDENTITY_MODE
#elif defined(_WIN32)
#define ABSL_THREAD_IDENTITY_MODE ABSL_THREAD_IDENTITY_MODE_USE_CPP11
#elif ABSL_PER_THREAD_TLS && defined(__GOOGLE_GRTE_VERSION__) && \
(__GOOGLE_GRTE_VERSION__ >= 20140228L)
// Support for async-safe TLS was specifically added in GRTEv4. It's not
// present in the upstream eglibc.
// Note: Current default for production systems.
#define ABSL_THREAD_IDENTITY_MODE ABSL_THREAD_IDENTITY_MODE_USE_TLS
#else
#define ABSL_THREAD_IDENTITY_MODE \
ABSL_THREAD_IDENTITY_MODE_USE_POSIX_SETSPECIFIC
#endif
#if ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_TLS || \
ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_CPP11
extern ABSL_PER_THREAD_TLS_KEYWORD ThreadIdentity* thread_identity_ptr;
inline ThreadIdentity* CurrentThreadIdentityIfPresent() {
return thread_identity_ptr;
}
#elif ABSL_THREAD_IDENTITY_MODE != \
ABSL_THREAD_IDENTITY_MODE_USE_POSIX_SETSPECIFIC
#error Unknown ABSL_THREAD_IDENTITY_MODE
#endif
} // namespace base_internal
} // namespace absl
#endif // ABSL_BASE_INTERNAL_THREAD_IDENTITY_H_

View file

@ -0,0 +1,124 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/thread_identity.h"
#include <thread> // NOLINT(build/c++11)
#include <vector>
#include "gtest/gtest.h"
#include "absl/base/internal/spinlock.h"
#include "absl/synchronization/internal/per_thread_sem.h"
#include "absl/synchronization/mutex.h"
namespace absl {
namespace base_internal {
namespace {
// protects num_identities_reused
static absl::base_internal::SpinLock map_lock(
absl::base_internal::kLinkerInitialized);
static int num_identities_reused;
static const void* const kCheckNoIdentity = reinterpret_cast<void*>(1);
static void TestThreadIdentityCurrent(const void* assert_no_identity) {
ThreadIdentity* identity;
// We have to test this conditionally, because if the test framework relies
// on Abseil, then some previous action may have already allocated an
// identity.
if (assert_no_identity == kCheckNoIdentity) {
identity = CurrentThreadIdentityIfPresent();
EXPECT_TRUE(identity == nullptr);
}
identity = synchronization_internal::GetOrCreateCurrentThreadIdentity();
EXPECT_TRUE(identity != nullptr);
ThreadIdentity* identity_no_init;
identity_no_init = CurrentThreadIdentityIfPresent();
EXPECT_TRUE(identity == identity_no_init);
// Check that per_thread_synch is correctly aligned.
EXPECT_EQ(0, reinterpret_cast<intptr_t>(&identity->per_thread_synch) %
PerThreadSynch::kAlignment);
EXPECT_EQ(identity, identity->per_thread_synch.thread_identity());
absl::base_internal::SpinLockHolder l(&map_lock);
num_identities_reused++;
}
TEST(ThreadIdentityTest, BasicIdentityWorks) {
// This tests for the main() thread.
TestThreadIdentityCurrent(nullptr);
}
TEST(ThreadIdentityTest, BasicIdentityWorksThreaded) {
// Now try the same basic test with multiple threads being created and
// destroyed. This makes sure that:
// - New threads are created without a ThreadIdentity.
// - We re-allocate ThreadIdentity objects from the free-list.
// - If a thread implementation chooses to recycle threads, that
// correct re-initialization occurs.
static const int kNumLoops = 3;
static const int kNumThreads = 400;
for (int iter = 0; iter < kNumLoops; iter++) {
std::vector<std::thread> threads;
for (int i = 0; i < kNumThreads; ++i) {
threads.push_back(
std::thread(TestThreadIdentityCurrent, kCheckNoIdentity));
}
for (auto& thread : threads) {
thread.join();
}
}
// We should have recycled ThreadIdentity objects above; while (external)
// library threads allocating their own identities may preclude some
// reuse, we should have sufficient repetitions to exclude this.
EXPECT_LT(kNumThreads, num_identities_reused);
}
TEST(ThreadIdentityTest, ReusedThreadIdentityMutexTest) {
// This test repeatly creates and joins a series of threads, each of
// which acquires and releases shared Mutex locks. This verifies
// Mutex operations work correctly under a reused
// ThreadIdentity. Note that the most likely failure mode of this
// test is a crash or deadlock.
static const int kNumLoops = 10;
static const int kNumThreads = 12;
static const int kNumMutexes = 3;
static const int kNumLockLoops = 5;
Mutex mutexes[kNumMutexes];
for (int iter = 0; iter < kNumLoops; ++iter) {
std::vector<std::thread> threads;
for (int thread = 0; thread < kNumThreads; ++thread) {
threads.push_back(std::thread([&]() {
for (int l = 0; l < kNumLockLoops; ++l) {
for (int m = 0; m < kNumMutexes; ++m) {
MutexLock lock(&mutexes[m]);
}
}
}));
}
for (auto& thread : threads) {
thread.join();
}
}
}
} // namespace
} // namespace base_internal
} // namespace absl

View file

@ -0,0 +1,106 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/throw_delegate.h"
#include <cstdlib>
#include <functional>
#include <new>
#include <stdexcept>
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
namespace absl {
namespace base_internal {
namespace {
template <typename T>
[[noreturn]] void Throw(const T& error) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw error;
#else
ABSL_RAW_LOG(ERROR, "%s", error.what());
abort();
#endif
}
} // namespace
void ThrowStdLogicError(const std::string& what_arg) {
Throw(std::logic_error(what_arg));
}
void ThrowStdLogicError(const char* what_arg) {
Throw(std::logic_error(what_arg));
}
void ThrowStdInvalidArgument(const std::string& what_arg) {
Throw(std::invalid_argument(what_arg));
}
void ThrowStdInvalidArgument(const char* what_arg) {
Throw(std::invalid_argument(what_arg));
}
void ThrowStdDomainError(const std::string& what_arg) {
Throw(std::domain_error(what_arg));
}
void ThrowStdDomainError(const char* what_arg) {
Throw(std::domain_error(what_arg));
}
void ThrowStdLengthError(const std::string& what_arg) {
Throw(std::length_error(what_arg));
}
void ThrowStdLengthError(const char* what_arg) {
Throw(std::length_error(what_arg));
}
void ThrowStdOutOfRange(const std::string& what_arg) {
Throw(std::out_of_range(what_arg));
}
void ThrowStdOutOfRange(const char* what_arg) {
Throw(std::out_of_range(what_arg));
}
void ThrowStdRuntimeError(const std::string& what_arg) {
Throw(std::runtime_error(what_arg));
}
void ThrowStdRuntimeError(const char* what_arg) {
Throw(std::runtime_error(what_arg));
}
void ThrowStdRangeError(const std::string& what_arg) {
Throw(std::range_error(what_arg));
}
void ThrowStdRangeError(const char* what_arg) {
Throw(std::range_error(what_arg));
}
void ThrowStdOverflowError(const std::string& what_arg) {
Throw(std::overflow_error(what_arg));
}
void ThrowStdOverflowError(const char* what_arg) {
Throw(std::overflow_error(what_arg));
}
void ThrowStdUnderflowError(const std::string& what_arg) {
Throw(std::underflow_error(what_arg));
}
void ThrowStdUnderflowError(const char* what_arg) {
Throw(std::underflow_error(what_arg));
}
void ThrowStdBadFunctionCall() { Throw(std::bad_function_call()); }
void ThrowStdBadAlloc() { Throw(std::bad_alloc()); }
} // namespace base_internal
} // namespace absl

View file

@ -0,0 +1,71 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#ifndef ABSL_BASE_INTERNAL_THROW_DELEGATE_H_
#define ABSL_BASE_INTERNAL_THROW_DELEGATE_H_
#include <string>
namespace absl {
namespace base_internal {
// Helper functions that allow throwing exceptions consistently from anywhere.
// The main use case is for header-based libraries (eg templates), as they will
// be built by many different targets with their own compiler options.
// In particular, this will allow a safe way to throw exceptions even if the
// caller is compiled with -fno-exceptions. This is intended for implementing
// things like map<>::at(), which the standard documents as throwing an
// exception on error.
//
// Using other techniques like #if tricks could lead to ODR violations.
//
// You shouldn't use it unless you're writing code that you know will be built
// both with and without exceptions and you need to conform to an interface
// that uses exceptions.
[[noreturn]] void ThrowStdLogicError(const std::string& what_arg);
[[noreturn]] void ThrowStdLogicError(const char* what_arg);
[[noreturn]] void ThrowStdInvalidArgument(const std::string& what_arg);
[[noreturn]] void ThrowStdInvalidArgument(const char* what_arg);
[[noreturn]] void ThrowStdDomainError(const std::string& what_arg);
[[noreturn]] void ThrowStdDomainError(const char* what_arg);
[[noreturn]] void ThrowStdLengthError(const std::string& what_arg);
[[noreturn]] void ThrowStdLengthError(const char* what_arg);
[[noreturn]] void ThrowStdOutOfRange(const std::string& what_arg);
[[noreturn]] void ThrowStdOutOfRange(const char* what_arg);
[[noreturn]] void ThrowStdRuntimeError(const std::string& what_arg);
[[noreturn]] void ThrowStdRuntimeError(const char* what_arg);
[[noreturn]] void ThrowStdRangeError(const std::string& what_arg);
[[noreturn]] void ThrowStdRangeError(const char* what_arg);
[[noreturn]] void ThrowStdOverflowError(const std::string& what_arg);
[[noreturn]] void ThrowStdOverflowError(const char* what_arg);
[[noreturn]] void ThrowStdUnderflowError(const std::string& what_arg);
[[noreturn]] void ThrowStdUnderflowError(const char* what_arg);
[[noreturn]] void ThrowStdBadFunctionCall();
[[noreturn]] void ThrowStdBadAlloc();
// ThrowStdBadArrayNewLength() cannot be consistently supported because
// std::bad_array_new_length is missing in libstdc++ until 4.9.0.
// https://gcc.gnu.org/onlinedocs/gcc-4.8.3/libstdc++/api/a01379_source.html
// https://gcc.gnu.org/onlinedocs/gcc-4.9.0/libstdc++/api/a01327_source.html
// libcxx (as of 3.2) and msvc (as of 2015) both have it.
// [[noreturn]] void ThrowStdBadArrayNewLength();
} // namespace base_internal
} // namespace absl
#endif // ABSL_BASE_INTERNAL_THROW_DELEGATE_H_

View file

@ -0,0 +1,51 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// This file is intended solely for spinlock.h.
// It provides ThreadSanitizer annotations for custom mutexes.
// See <sanitizer/tsan_interface.h> for meaning of these annotations.
#ifndef ABSL_BASE_INTERNAL_TSAN_MUTEX_INTERFACE_H_
#define ABSL_BASE_INTERNAL_TSAN_MUTEX_INTERFACE_H_
#ifdef THREAD_SANITIZER
#include <sanitizer/tsan_interface.h>
#define ABSL_TSAN_MUTEX_CREATE __tsan_mutex_create
#define ABSL_TSAN_MUTEX_DESTROY __tsan_mutex_destroy
#define ABSL_TSAN_MUTEX_PRE_LOCK __tsan_mutex_pre_lock
#define ABSL_TSAN_MUTEX_POST_LOCK __tsan_mutex_post_lock
#define ABSL_TSAN_MUTEX_PRE_UNLOCK __tsan_mutex_pre_unlock
#define ABSL_TSAN_MUTEX_POST_UNLOCK __tsan_mutex_post_unlock
#define ABSL_TSAN_MUTEX_PRE_SIGNAL __tsan_mutex_pre_signal
#define ABSL_TSAN_MUTEX_POST_SIGNAL __tsan_mutex_post_signal
#define ABSL_TSAN_MUTEX_PRE_DIVERT __tsan_mutex_pre_divert
#define ABSL_TSAN_MUTEX_POST_DIVERT __tsan_mutex_post_divert
#else
#define ABSL_TSAN_MUTEX_CREATE(...)
#define ABSL_TSAN_MUTEX_DESTROY(...)
#define ABSL_TSAN_MUTEX_PRE_LOCK(...)
#define ABSL_TSAN_MUTEX_POST_LOCK(...)
#define ABSL_TSAN_MUTEX_PRE_UNLOCK(...)
#define ABSL_TSAN_MUTEX_POST_UNLOCK(...)
#define ABSL_TSAN_MUTEX_PRE_SIGNAL(...)
#define ABSL_TSAN_MUTEX_POST_SIGNAL(...)
#define ABSL_TSAN_MUTEX_PRE_DIVERT(...)
#define ABSL_TSAN_MUTEX_POST_DIVERT(...)
#endif
#endif // ABSL_BASE_INTERNAL_TSAN_MUTEX_INTERFACE_H_

View file

@ -0,0 +1,256 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#ifndef ABSL_BASE_INTERNAL_UNALIGNED_ACCESS_H_
#define ABSL_BASE_INTERNAL_UNALIGNED_ACCESS_H_
#include <string.h>
#include <cstdint>
#include "absl/base/attributes.h"
// unaligned APIs
// Portable handling of unaligned loads, stores, and copies.
// On some platforms, like ARM, the copy functions can be more efficient
// then a load and a store.
//
// It is possible to implement all of these these using constant-length memcpy
// calls, which is portable and will usually be inlined into simple loads and
// stores if the architecture supports it. However, such inlining usually
// happens in a pass that's quite late in compilation, which means the resulting
// loads and stores cannot participate in many other optimizations, leading to
// overall worse code.
// The unaligned API is C++ only. The declarations use C++ features
// (namespaces, inline) which are absent or incompatible in C.
#if defined(__cplusplus)
#if defined(ADDRESS_SANITIZER) || defined(THREAD_SANITIZER) ||\
defined(MEMORY_SANITIZER)
// Consider we have an unaligned load/store of 4 bytes from address 0x...05.
// AddressSanitizer will treat it as a 3-byte access to the range 05:07 and
// will miss a bug if 08 is the first unaddressable byte.
// ThreadSanitizer will also treat this as a 3-byte access to 05:07 and will
// miss a race between this access and some other accesses to 08.
// MemorySanitizer will correctly propagate the shadow on unaligned stores
// and correctly report bugs on unaligned loads, but it may not properly
// update and report the origin of the uninitialized memory.
// For all three tools, replacing an unaligned access with a tool-specific
// callback solves the problem.
// Make sure uint16_t/uint32_t/uint64_t are defined.
#include <stdint.h>
extern "C" {
uint16_t __sanitizer_unaligned_load16(const void *p);
uint32_t __sanitizer_unaligned_load32(const void *p);
uint64_t __sanitizer_unaligned_load64(const void *p);
void __sanitizer_unaligned_store16(void *p, uint16_t v);
void __sanitizer_unaligned_store32(void *p, uint32_t v);
void __sanitizer_unaligned_store64(void *p, uint64_t v);
} // extern "C"
namespace absl {
inline uint16_t UnalignedLoad16(const void *p) {
return __sanitizer_unaligned_load16(p);
}
inline uint32_t UnalignedLoad32(const void *p) {
return __sanitizer_unaligned_load32(p);
}
inline uint64_t UnalignedLoad64(const void *p) {
return __sanitizer_unaligned_load64(p);
}
inline void UnalignedStore16(void *p, uint16_t v) {
__sanitizer_unaligned_store16(p, v);
}
inline void UnalignedStore32(void *p, uint32_t v) {
__sanitizer_unaligned_store32(p, v);
}
inline void UnalignedStore64(void *p, uint64_t v) {
__sanitizer_unaligned_store64(p, v);
}
} // namespace absl
#define ABSL_INTERNAL_UNALIGNED_LOAD16(_p) (absl::UnalignedLoad16(_p))
#define ABSL_INTERNAL_UNALIGNED_LOAD32(_p) (absl::UnalignedLoad32(_p))
#define ABSL_INTERNAL_UNALIGNED_LOAD64(_p) (absl::UnalignedLoad64(_p))
#define ABSL_INTERNAL_UNALIGNED_STORE16(_p, _val) \
(absl::UnalignedStore16(_p, _val))
#define ABSL_INTERNAL_UNALIGNED_STORE32(_p, _val) \
(absl::UnalignedStore32(_p, _val))
#define ABSL_INTERNAL_UNALIGNED_STORE64(_p, _val) \
(absl::UnalignedStore64(_p, _val))
#elif defined(__x86_64__) || defined(_M_X64) || defined(__i386) || \
defined(_M_IX86) || defined(__ppc__) || defined(__PPC__) || \
defined(__ppc64__) || defined(__PPC64__)
// x86 and x86-64 can perform unaligned loads/stores directly;
// modern PowerPC hardware can also do unaligned integer loads and stores;
// but note: the FPU still sends unaligned loads and stores to a trap handler!
#define ABSL_INTERNAL_UNALIGNED_LOAD16(_p) \
(*reinterpret_cast<const uint16_t *>(_p))
#define ABSL_INTERNAL_UNALIGNED_LOAD32(_p) \
(*reinterpret_cast<const uint32_t *>(_p))
#define ABSL_INTERNAL_UNALIGNED_LOAD64(_p) \
(*reinterpret_cast<const uint64_t *>(_p))
#define ABSL_INTERNAL_UNALIGNED_STORE16(_p, _val) \
(*reinterpret_cast<uint16_t *>(_p) = (_val))
#define ABSL_INTERNAL_UNALIGNED_STORE32(_p, _val) \
(*reinterpret_cast<uint32_t *>(_p) = (_val))
#define ABSL_INTERNAL_UNALIGNED_STORE64(_p, _val) \
(*reinterpret_cast<uint64_t *>(_p) = (_val))
#elif defined(__arm__) && \
!defined(__ARM_ARCH_5__) && \
!defined(__ARM_ARCH_5T__) && \
!defined(__ARM_ARCH_5TE__) && \
!defined(__ARM_ARCH_5TEJ__) && \
!defined(__ARM_ARCH_6__) && \
!defined(__ARM_ARCH_6J__) && \
!defined(__ARM_ARCH_6K__) && \
!defined(__ARM_ARCH_6Z__) && \
!defined(__ARM_ARCH_6ZK__) && \
!defined(__ARM_ARCH_6T2__)
// ARMv7 and newer support native unaligned accesses, but only of 16-bit
// and 32-bit values (not 64-bit); older versions either raise a fatal signal,
// do an unaligned read and rotate the words around a bit, or do the reads very
// slowly (trip through kernel mode). There's no simple #define that says just
// “ARMv7 or higher”, so we have to filter away all ARMv5 and ARMv6
// sub-architectures. Newer gcc (>= 4.6) set an __ARM_FEATURE_ALIGNED #define,
// so in time, maybe we can move on to that.
//
// This is a mess, but there's not much we can do about it.
//
// To further complicate matters, only LDR instructions (single reads) are
// allowed to be unaligned, not LDRD (two reads) or LDM (many reads). Unless we
// explicitly tell the compiler that these accesses can be unaligned, it can and
// will combine accesses. On armcc, the way to signal this is done by accessing
// through the type (uint32_t __packed *), but GCC has no such attribute
// (it ignores __attribute__((packed)) on individual variables). However,
// we can tell it that a _struct_ is unaligned, which has the same effect,
// so we do that.
namespace absl {
namespace internal {
struct Unaligned16Struct {
uint16_t value;
uint8_t dummy; // To make the size non-power-of-two.
} ABSL_ATTRIBUTE_PACKED;
struct Unaligned32Struct {
uint32_t value;
uint8_t dummy; // To make the size non-power-of-two.
} ABSL_ATTRIBUTE_PACKED;
} // namespace internal
} // namespace absl
#define ABSL_INTERNAL_UNALIGNED_LOAD16(_p) \
((reinterpret_cast<const ::absl::internal::Unaligned16Struct *>(_p))->value)
#define ABSL_INTERNAL_UNALIGNED_LOAD32(_p) \
((reinterpret_cast<const ::absl::internal::Unaligned32Struct *>(_p))->value)
#define ABSL_INTERNAL_UNALIGNED_STORE16(_p, _val) \
((reinterpret_cast< ::absl::internal::Unaligned16Struct *>(_p))->value = \
(_val))
#define ABSL_INTERNAL_UNALIGNED_STORE32(_p, _val) \
((reinterpret_cast< ::absl::internal::Unaligned32Struct *>(_p))->value = \
(_val))
namespace absl {
inline uint64_t UnalignedLoad64(const void *p) {
uint64_t t;
memcpy(&t, p, sizeof t);
return t;
}
inline void UnalignedStore64(void *p, uint64_t v) { memcpy(p, &v, sizeof v); }
} // namespace absl
#define ABSL_INTERNAL_UNALIGNED_LOAD64(_p) (absl::UnalignedLoad64(_p))
#define ABSL_INTERNAL_UNALIGNED_STORE64(_p, _val) \
(absl::UnalignedStore64(_p, _val))
#else
// ABSL_INTERNAL_NEED_ALIGNED_LOADS is defined when the underlying platform
// doesn't support unaligned access.
#define ABSL_INTERNAL_NEED_ALIGNED_LOADS
// These functions are provided for architectures that don't support
// unaligned loads and stores.
namespace absl {
inline uint16_t UnalignedLoad16(const void *p) {
uint16_t t;
memcpy(&t, p, sizeof t);
return t;
}
inline uint32_t UnalignedLoad32(const void *p) {
uint32_t t;
memcpy(&t, p, sizeof t);
return t;
}
inline uint64_t UnalignedLoad64(const void *p) {
uint64_t t;
memcpy(&t, p, sizeof t);
return t;
}
inline void UnalignedStore16(void *p, uint16_t v) { memcpy(p, &v, sizeof v); }
inline void UnalignedStore32(void *p, uint32_t v) { memcpy(p, &v, sizeof v); }
inline void UnalignedStore64(void *p, uint64_t v) { memcpy(p, &v, sizeof v); }
} // namespace absl
#define ABSL_INTERNAL_UNALIGNED_LOAD16(_p) (absl::UnalignedLoad16(_p))
#define ABSL_INTERNAL_UNALIGNED_LOAD32(_p) (absl::UnalignedLoad32(_p))
#define ABSL_INTERNAL_UNALIGNED_LOAD64(_p) (absl::UnalignedLoad64(_p))
#define ABSL_INTERNAL_UNALIGNED_STORE16(_p, _val) \
(absl::UnalignedStore16(_p, _val))
#define ABSL_INTERNAL_UNALIGNED_STORE32(_p, _val) \
(absl::UnalignedStore32(_p, _val))
#define ABSL_INTERNAL_UNALIGNED_STORE64(_p, _val) \
(absl::UnalignedStore64(_p, _val))
#endif
#endif // defined(__cplusplus), end of unaligned API
#endif // ABSL_BASE_INTERNAL_UNALIGNED_ACCESS_H_

View file

@ -0,0 +1,101 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/unscaledcycleclock.h"
#if ABSL_USE_UNSCALED_CYCLECLOCK
#if defined(_WIN32)
#include <intrin.h>
#endif
#if defined(__powerpc__) || defined(__ppc__)
#include <sys/platform/ppc.h>
#endif
#include "absl/base/internal/sysinfo.h"
namespace absl {
namespace base_internal {
#if defined(__i386__)
int64_t UnscaledCycleClock::Now() {
int64_t ret;
__asm__ volatile("rdtsc" : "=A"(ret));
return ret;
}
double UnscaledCycleClock::Frequency() {
return base_internal::NominalCPUFrequency();
}
#elif defined(__x86_64__)
int64_t UnscaledCycleClock::Now() {
uint64_t low, high;
__asm__ volatile("rdtsc" : "=a"(low), "=d"(high));
return (high << 32) | low;
}
double UnscaledCycleClock::Frequency() {
return base_internal::NominalCPUFrequency();
}
#elif defined(__powerpc__) || defined(__ppc__)
int64_t UnscaledCycleClock::Now() {
return __ppc_get_timebase();
}
double UnscaledCycleClock::Frequency() {
return __ppc_get_timebase_freq();
}
#elif defined(__aarch64__)
// System timer of ARMv8 runs at a different frequency than the CPU's.
// The frequency is fixed, typically in the range 1-50MHz. It can be
// read at CNTFRQ special register. We assume the OS has set up
// the virtual timer properly.
int64_t UnscaledCycleClock::Now() {
int64_t virtual_timer_value;
asm volatile("mrs %0, cntvct_el0" : "=r"(virtual_timer_value));
return virtual_timer_value;
}
double UnscaledCycleClock::Frequency() {
uint64_t aarch64_timer_frequency;
asm volatile("mrs %0, cntfrq_el0" : "=r"(aarch64_timer_frequency));
return aarch64_timer_frequency;
}
#elif defined(_M_IX86) || defined(_M_X64)
#pragma intrinsic(__rdtsc)
int64_t UnscaledCycleClock::Now() {
return __rdtsc();
}
double UnscaledCycleClock::Frequency() {
return base_internal::NominalCPUFrequency();
}
#endif
} // namespace base_internal
} // namespace absl
#endif // ABSL_USE_UNSCALED_CYCLECLOCK

View file

@ -0,0 +1,118 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// UnscaledCycleClock
// An UnscaledCycleClock yields the value and frequency of a cycle counter
// that increments at a rate that is approximately constant.
// This class is for internal / whitelisted use only, you should consider
// using CycleClock instead.
//
// Notes:
// The cycle counter frequency is not necessarily the core clock frequency.
// That is, CycleCounter cycles are not necessarily "CPU cycles".
//
// An arbitrary offset may have been added to the counter at power on.
//
// On some platforms, the rate and offset of the counter may differ
// slightly when read from different CPUs of a multiprocessor. Usually,
// we try to ensure that the operating system adjusts values periodically
// so that values agree approximately. If you need stronger guarantees,
// consider using alternate interfaces.
//
// The CPU is not required to maintain the ordering of a cycle counter read
// with respect to surrounding instructions.
#ifndef ABSL_BASE_INTERNAL_UNSCALEDCYCLECLOCK_H_
#define ABSL_BASE_INTERNAL_UNSCALEDCYCLECLOCK_H_
#include <cstdint>
#if defined(__APPLE__)
#include <TargetConditionals.h>
#endif
#include "absl/base/port.h"
// The following platforms have an implementation of a hardware counter.
#if defined(__i386__) || defined(__x86_64__) || defined(__aarch64__) || \
defined(__powerpc__) || defined(__ppc__) || \
defined(_M_IX86) || defined(_M_X64)
#define ABSL_HAVE_UNSCALED_CYCLECLOCK_IMPLEMENTATION 1
#else
#define ABSL_HAVE_UNSCALED_CYCLECLOCK_IMPLEMENTATION 0
#endif
// The following platforms often disable access to the hardware
// counter (through a sandbox) even if the underlying hardware has a
// usable counter. The CycleTimer interface also requires a *scaled*
// CycleClock that runs at atleast 1 MHz. We've found some Android
// ARM64 devices where this is not the case, so we disable it by
// default on Android ARM64.
#if defined(__native_client__) || TARGET_OS_IPHONE || \
(defined(__ANDROID__) && defined(__aarch64__))
#define ABSL_USE_UNSCALED_CYCLECLOCK_DEFAULT 0
#else
#define ABSL_USE_UNSCALED_CYCLECLOCK_DEFAULT 1
#endif
// UnscaledCycleClock is an optional internal feature.
// Use "#if ABSL_USE_UNSCALED_CYCLECLOCK" to test for its presence.
// Can be overridden at compile-time via -DABSL_USE_UNSCALED_CYCLECLOCK=0|1
#if !defined(ABSL_USE_UNSCALED_CYCLECLOCK)
#define ABSL_USE_UNSCALED_CYCLECLOCK \
(ABSL_HAVE_UNSCALED_CYCLECLOCK_IMPLEMENTATION && \
ABSL_USE_UNSCALED_CYCLECLOCK_DEFAULT)
#endif
#if ABSL_USE_UNSCALED_CYCLECLOCK
// This macro can be used to test if UnscaledCycleClock::Frequency()
// is NominalCPUFrequency() on a particular platform.
#if (defined(__i386__) || defined(__x86_64__) || \
defined(_M_IX86) || defined(_M_X64))
#define ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY
#endif
namespace absl {
namespace time_internal {
class UnscaledCycleClockWrapperForGetCurrentTime;
} // namespace time_internal
namespace base_internal {
class CycleClock;
class UnscaledCycleClockWrapperForInitializeFrequency;
class UnscaledCycleClock {
private:
UnscaledCycleClock() = delete;
// Return the value of a cycle counter that counts at a rate that is
// approximately constant.
static int64_t Now();
// Return the how much UnscaledCycleClock::Now() increases per second.
// This is not necessarily the core CPU clock frequency.
// It may be the nominal value report by the kernel, rather than a measured
// value.
static double Frequency();
// Whitelisted friends.
friend class base_internal::CycleClock;
friend class time_internal::UnscaledCycleClockWrapperForGetCurrentTime;
friend class base_internal::UnscaledCycleClockWrapperForInitializeFrequency;
};
} // namespace base_internal
} // namespace absl
#endif // ABSL_USE_UNSCALED_CYCLECLOCK
#endif // ABSL_BASE_INTERNAL_UNSCALEDCYCLECLOCK_H_

199
absl/base/invoke_test.cc Normal file
View file

@ -0,0 +1,199 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/invoke.h"
#include <functional>
#include <memory>
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
namespace absl {
namespace base_internal {
namespace {
int Function(int a, int b) { return a - b; }
int Sink(std::unique_ptr<int> p) {
return *p;
}
std::unique_ptr<int> Factory(int n) {
return make_unique<int>(n);
}
void NoOp() {}
struct ConstFunctor {
int operator()(int a, int b) const { return a - b; }
};
struct MutableFunctor {
int operator()(int a, int b) { return a - b; }
};
struct EphemeralFunctor {
int operator()(int a, int b) && { return a - b; }
};
struct OverloadedFunctor {
template <typename... Args>
std::string operator()(const Args&... args) & {
return StrCat("&", args...);
}
template <typename... Args>
std::string operator()(const Args&... args) const& {
return StrCat("const&", args...);
}
template <typename... Args>
std::string operator()(const Args&... args) && {
return StrCat("&&", args...);
}
};
struct Class {
int Method(int a, int b) { return a - b; }
int ConstMethod(int a, int b) const { return a - b; }
int member;
};
struct FlipFlop {
int ConstMethod() const { return member; }
FlipFlop operator*() const { return {-member}; }
int member;
};
// CallMaybeWithArg(f) resolves either to Invoke(f) or Invoke(f, 42), depending
// on which one is valid.
template <typename F>
decltype(Invoke(std::declval<const F&>())) CallMaybeWithArg(const F& f) {
return Invoke(f);
}
template <typename F>
decltype(Invoke(std::declval<const F&>(), 42)) CallMaybeWithArg(const F& f) {
return Invoke(f, 42);
}
TEST(InvokeTest, Function) {
EXPECT_EQ(1, Invoke(Function, 3, 2));
EXPECT_EQ(1, Invoke(&Function, 3, 2));
}
TEST(InvokeTest, NonCopyableArgument) {
EXPECT_EQ(42, Invoke(Sink, make_unique<int>(42)));
}
TEST(InvokeTest, NonCopyableResult) {
EXPECT_THAT(Invoke(Factory, 42), ::testing::Pointee(42));
}
TEST(InvokeTest, VoidResult) {
Invoke(NoOp);
}
TEST(InvokeTest, ConstFunctor) {
EXPECT_EQ(1, Invoke(ConstFunctor(), 3, 2));
}
TEST(InvokeTest, MutableFunctor) {
MutableFunctor f;
EXPECT_EQ(1, Invoke(f, 3, 2));
EXPECT_EQ(1, Invoke(MutableFunctor(), 3, 2));
}
TEST(InvokeTest, EphemeralFunctor) {
EphemeralFunctor f;
EXPECT_EQ(1, Invoke(std::move(f), 3, 2));
EXPECT_EQ(1, Invoke(EphemeralFunctor(), 3, 2));
}
TEST(InvokeTest, OverloadedFunctor) {
OverloadedFunctor f;
const OverloadedFunctor& cf = f;
EXPECT_EQ("&", Invoke(f));
EXPECT_EQ("& 42", Invoke(f, " 42"));
EXPECT_EQ("const&", Invoke(cf));
EXPECT_EQ("const& 42", Invoke(cf, " 42"));
EXPECT_EQ("&&", Invoke(std::move(f)));
EXPECT_EQ("&& 42", Invoke(std::move(f), " 42"));
}
TEST(InvokeTest, ReferenceWrapper) {
ConstFunctor cf;
MutableFunctor mf;
EXPECT_EQ(1, Invoke(std::cref(cf), 3, 2));
EXPECT_EQ(1, Invoke(std::ref(cf), 3, 2));
EXPECT_EQ(1, Invoke(std::ref(mf), 3, 2));
}
TEST(InvokeTest, MemberFunction) {
std::unique_ptr<Class> p(new Class);
std::unique_ptr<const Class> cp(new Class);
EXPECT_EQ(1, Invoke(&Class::Method, p, 3, 2));
EXPECT_EQ(1, Invoke(&Class::Method, p.get(), 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, p, 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, p.get(), 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, *p, 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, cp, 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, cp.get(), 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, *cp, 3, 2));
EXPECT_EQ(1, Invoke(&Class::Method, make_unique<Class>(), 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, make_unique<Class>(), 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, make_unique<const Class>(), 3, 2));
}
TEST(InvokeTest, DataMember) {
std::unique_ptr<Class> p(new Class{42});
std::unique_ptr<const Class> cp(new Class{42});
EXPECT_EQ(42, Invoke(&Class::member, p));
EXPECT_EQ(42, Invoke(&Class::member, *p));
EXPECT_EQ(42, Invoke(&Class::member, p.get()));
Invoke(&Class::member, p) = 42;
Invoke(&Class::member, p.get()) = 42;
EXPECT_EQ(42, Invoke(&Class::member, cp));
EXPECT_EQ(42, Invoke(&Class::member, *cp));
EXPECT_EQ(42, Invoke(&Class::member, cp.get()));
}
TEST(InvokeTest, FlipFlop) {
FlipFlop obj = {42};
// This call could resolve to (obj.*&FlipFlop::ConstMethod)() or
// ((*obj).*&FlipFlop::ConstMethod)(). We verify that it's the former.
EXPECT_EQ(42, Invoke(&FlipFlop::ConstMethod, obj));
EXPECT_EQ(42, Invoke(&FlipFlop::member, obj));
}
TEST(InvokeTest, SfinaeFriendly) {
CallMaybeWithArg(NoOp);
EXPECT_THAT(CallMaybeWithArg(Factory), ::testing::Pointee(42));
}
} // namespace
} // namespace base_internal
} // namespace absl

201
absl/base/macros.h Normal file
View file

@ -0,0 +1,201 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: macros.h
// -----------------------------------------------------------------------------
//
// This header file defines the set of language macros used within Abseil code.
// For the set of macros used to determine supported compilers and platforms,
// see absl/base/config.h instead.
//
// This code is compiled directly on many platforms, including client
// platforms like Windows, Mac, and embedded systems. Before making
// any changes here, make sure that you're not breaking any platforms.
//
#ifndef ABSL_BASE_MACROS_H_
#define ABSL_BASE_MACROS_H_
#include <cstddef>
#include "absl/base/port.h"
// ABSL_ARRAYSIZE()
//
// Returns the # of elements in an array as a compile-time constant, which can
// be used in defining new arrays. If you use this macro on a pointer by
// mistake, you will get a compile-time error.
//
// Note: this template function declaration is used in defining arraysize.
// Note that the function doesn't need an implementation, as we only
// use its type.
namespace absl {
namespace macros_internal {
template <typename T, size_t N>
char (&ArraySizeHelper(T (&array)[N]))[N];
} // namespace macros_internal
} // namespace absl
#define ABSL_ARRAYSIZE(array) \
(sizeof(::absl::macros_internal::ArraySizeHelper(array)))
// kLinkerInitialized
//
// An enum used only as a constructor argument to indicate that a variable has
// static storage duration, and that the constructor should do nothing to its
// state. Use of this macro indicates to the reader that it is legal to
// declare a static instance of the class, provided the constructor is given
// the absl::base_internal::kLinkerInitialized argument.
//
// Normally, it is unsafe to declare a static variable that has a constructor or
// a destructor because invocation order is undefined. However, if the type can
// be zero-initialized (which the loader does for static variables) into a valid
// state and the type's destructor does not affect storage, then a constructor
// for static initialization can be declared.
//
// Example:
// // Declaration
// explicit MyClass(absl::base_internal:LinkerInitialized x) {}
//
// // Invocation
// static MyClass my_global(absl::base_internal::kLinkerInitialized);
namespace absl {
namespace base_internal {
enum LinkerInitialized {
kLinkerInitialized = 0,
};
} // namespace base_internal
} // namespace absl
// ABSL_FALLTHROUGH_INTENDED
//
// Annotates implicit fall-through between switch labels, allowing a case to
// indicate intentional fallthrough and turn off warnings about any lack of a
// `break` statement. The ABSL_FALLTHROUGH_INTENDED macro should be followed by
// a semicolon and can be used in most places where `break` can, provided that
// no statements exist between it and the next switch label.
//
// Example:
//
// switch (x) {
// case 40:
// case 41:
// if (truth_is_out_there) {
// ++x;
// ABSL_FALLTHROUGH_INTENDED; // Use instead of/along with annotations
// // in comments
// } else {
// return x;
// }
// case 42:
// ...
//
// Notes: when compiled with clang in C++11 mode, the ABSL_FALLTHROUGH_INTENDED
// macro is expanded to the [[clang::fallthrough]] attribute, which is analysed
// when performing switch labels fall-through diagnostic
// (`-Wimplicit-fallthrough`). See clang documentation on language extensions
// for details:
// http://clang.llvm.org/docs/AttributeReference.html#fallthrough-clang-fallthrough
//
// When used with unsupported compilers, the ABSL_FALLTHROUGH_INTENDED macro
// has no effect on diagnostics. In any case this macro has no effect on runtime
// behavior and performance of code.
#ifdef ABSL_FALLTHROUGH_INTENDED
#error "ABSL_FALLTHROUGH_INTENDED should not be defined."
#endif
// TODO(zhangxy): Use c++17 standard [[fallthrough]] macro, when supported.
#if defined(__clang__) && defined(__has_warning)
#if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
#define ABSL_FALLTHROUGH_INTENDED [[clang::fallthrough]]
#endif
#elif defined(__GNUC__) && __GNUC__ >= 7
#define ABSL_FALLTHROUGH_INTENDED [[gnu::fallthrough]]
#endif
#ifndef ABSL_FALLTHROUGH_INTENDED
#define ABSL_FALLTHROUGH_INTENDED \
do { \
} while (0)
#endif
// ABSL_DEPRECATED()
//
// Marks a deprecated class, struct, enum, function, method and variable
// declarations. The macro argument is used as a custom diagnostic message (e.g.
// suggestion of a better alternative).
//
// Example:
//
// class ABSL_DEPRECATED("Use Bar instead") Foo {...};
// ABSL_DEPRECATED("Use Baz instead") void Bar() {...}
//
// Every usage of a deprecated entity will trigger a warning when compiled with
// clang's `-Wdeprecated-declarations` option. This option is turned off by
// default, but the warnings will be reported by go/clang-tidy.
#if defined(__clang__) && __cplusplus >= 201103L && defined(__has_warning)
#define ABSL_DEPRECATED(message) __attribute__((deprecated(message)))
#endif
#ifndef ABSL_DEPRECATED
#define ABSL_DEPRECATED(message)
#endif
// ABSL_BAD_CALL_IF()
//
// Used on a function overload to trap bad calls: any call that matches the
// overload will cause a compile-time error. This macro uses a clang-specific
// "enable_if" attribute, as described at
// http://clang.llvm.org/docs/AttributeReference.html#enable-if
//
// Overloads which use this macro should be bracketed by
// `#ifdef ABSL_BAD_CALL_IF`.
//
// Example:
//
// int isdigit(int c);
// #ifdef ABSL_BAD_CALL_IF
// int isdigit(int c)
// ABSL_BAD_CALL_IF(c <= -1 || c > 255,
// "'c' must have the value of an unsigned char or EOF");
// #endif // ABSL_BAD_CALL_IF
#if defined(__clang__)
# if __has_attribute(enable_if)
# define ABSL_BAD_CALL_IF(expr, msg) \
__attribute__((enable_if(expr, "Bad call trap"), unavailable(msg)))
# endif
#endif
// ABSL_ASSERT()
//
// In C++11, `assert` can't be used portably within constexpr functions.
// ABSL_ASSERT functions as a runtime assert but works in C++11 constexpr
// functions. Example:
//
// constexpr double Divide(double a, double b) {
// return ABSL_ASSERT(b != 0), a / b;
// }
//
// This macro is inspired by
// https://akrzemi1.wordpress.com/2017/05/18/asserts-in-constexpr-functions/
#if defined(NDEBUG)
#define ABSL_ASSERT(expr) (false ? (void)(expr) : (void)0)
#else
#define ABSL_ASSERT(expr) \
(ABSL_PREDICT_TRUE((expr)) ? (void)0 : [] { assert(false && #expr); }())
#endif
#endif // ABSL_BASE_MACROS_H_

164
absl/base/optimization.h Normal file
View file

@ -0,0 +1,164 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: optimization.h
// -----------------------------------------------------------------------------
//
// This header file defines portable macros for performance optimization.
#ifndef ABSL_BASE_OPTIMIZATION_H_
#define ABSL_BASE_OPTIMIZATION_H_
#include "absl/base/config.h"
// ABSL_BLOCK_TAIL_CALL_OPTIMIZATION
//
// Instructs the compiler to avoid optimizing tail-call recursion. Use of this
// macro is useful when you wish to preserve the existing function order within
// a stack trace for logging, debugging, or profiling purposes.
//
// Example:
//
// int f() {
// int result = g();
// ABSL_BLOCK_TAIL_CALL_OPTIMIZATION();
// return result;
// }
#if defined(__pnacl__)
#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; }
#elif defined(__clang__)
// Clang will not tail call given inline volatile assembly.
#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("")
#elif defined(__GNUC__)
// GCC will not tail call given inline volatile assembly.
#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("")
#elif defined(_MSC_VER)
// The __nop() intrinsic blocks the optimisation.
#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __nop()
#else
#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; }
#endif
// ABSL_CACHELINE_SIZE
//
// Explicitly defines the size of the L1 cache for purposes of alignment.
// Setting the cacheline size allows you to specify that certain objects be
// aligned on a cacheline boundary with `ABSL_CACHELINE_ALIGNED` declarations.
// (See below.)
//
// NOTE: this macro should be replaced with the following C++17 features, when
// those are generally available:
//
// * `std::hardware_constructive_interference_size`
// * `std::hardware_destructive_interference_size`
//
// See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html
// for more information.
#if defined(__GNUC__)
// Cache line alignment
#if defined(__i386__) || defined(__x86_64__)
#define ABSL_CACHELINE_SIZE 64
#elif defined(__powerpc64__)
#define ABSL_CACHELINE_SIZE 128
#elif defined(__aarch64__)
// We would need to read special register ctr_el0 to find out L1 dcache size.
// This value is a good estimate based on a real aarch64 machine.
#define ABSL_CACHELINE_SIZE 64
#elif defined(__arm__)
// Cache line sizes for ARM: These values are not strictly correct since
// cache line sizes depend on implementations, not architectures. There
// are even implementations with cache line sizes configurable at boot
// time.
#if defined(__ARM_ARCH_5T__)
#define ABSL_CACHELINE_SIZE 32
#elif defined(__ARM_ARCH_7A__)
#define ABSL_CACHELINE_SIZE 64
#endif
#endif
#ifndef ABSL_CACHELINE_SIZE
// A reasonable default guess. Note that overestimates tend to waste more
// space, while underestimates tend to waste more time.
#define ABSL_CACHELINE_SIZE 64
#endif
// ABSL_CACHELINE_ALIGNED
//
// Indicates that the declared object be cache aligned using
// `ABSL_CACHELINE_SIZE` (see above). Cacheline aligning objects allows you to
// load a set of related objects in the L1 cache for performance improvements.
// Cacheline aligning objects properly allows constructive memory sharing and
// prevents destructive (or "false") memory sharing.
//
// NOTE: this macro should be replaced with usage of `alignas()` using
// `std::hardware_constructive_interference_size` and/or
// `std::hardware_destructive_interference_size` when available within C++17.
//
// See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html
// for more information.
//
// On some compilers, `ABSL_CACHELINE_ALIGNED` expands to
// `__attribute__((aligned(ABSL_CACHELINE_SIZE)))`. For compilers where this is
// not known to work, the macro expands to nothing.
//
// No further guarantees are made here. The result of applying the macro
// to variables and types is always implementation-defined.
//
// WARNING: It is easy to use this attribute incorrectly, even to the point
// of causing bugs that are difficult to diagnose, crash, etc. It does not
// of itself guarantee that objects are aligned to a cache line.
//
// Recommendations:
//
// 1) Consult compiler documentation; this comment is not kept in sync as
// toolchains evolve.
// 2) Verify your use has the intended effect. This often requires inspecting
// the generated machine code.
// 3) Prefer applying this attribute to individual variables. Avoid
// applying it to types. This tends to localize the effect.
#define ABSL_CACHELINE_ALIGNED __attribute__((aligned(ABSL_CACHELINE_SIZE)))
#else // not GCC
#define ABSL_CACHELINE_SIZE 64
#define ABSL_CACHELINE_ALIGNED
#endif
// ABSL_PREDICT_TRUE, ABSL_PREDICT_FALSE
//
// Enables the compiler to prioritize compilation using static analysis for
// likely paths within a boolean branch.
//
// Example:
//
// if (ABSL_PREDICT_TRUE(expression)) {
// return result; // Faster if more likely
// } else {
// return 0;
// }
//
// Compilers can use the information that a certain branch is not likely to be
// taken (for instance, a CHECK failure) to optimize for the common case in
// the absence of better information (ie. compiling gcc with `-fprofile-arcs`).
#if ABSL_HAVE_BUILTIN(__builtin_expect) || \
(defined(__GNUC__) && !defined(__clang__))
#define ABSL_PREDICT_FALSE(x) (__builtin_expect(x, 0))
#define ABSL_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1))
#else
#define ABSL_PREDICT_FALSE(x) x
#define ABSL_PREDICT_TRUE(x) x
#endif
#endif // ABSL_BASE_OPTIMIZATION_H_

99
absl/base/policy_checks.h Normal file
View file

@ -0,0 +1,99 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: policy_checks.h
// -----------------------------------------------------------------------------
//
// This header enforces a minimum set of policies at build time, such as the
// supported compiler and library versions. Unsupported configurations are
// reported with `#error`. This enforcement is best effort, so successfully
// compiling this header does not guarantee a supported configuration.
#ifndef ABSL_BASE_POLICY_CHECKS_H_
#define ABSL_BASE_POLICY_CHECKS_H_
// Included for the __GLIBC_PREREQ macro used below.
#include <limits.h>
// Included for the _STLPORT_VERSION macro used below.
#if defined(__cplusplus)
#include <cstddef>
#endif
// -----------------------------------------------------------------------------
// Operating System Check
// -----------------------------------------------------------------------------
#if defined(__CYGWIN__)
#error "Cygwin is not supported."
#endif
// -----------------------------------------------------------------------------
// Compiler Check
// -----------------------------------------------------------------------------
// We support MSVC++ 14.0 update 2 and later.
// This minimum will go up.
#if defined(_MSC_FULL_VER) && _MSC_FULL_VER < 190023918
#error "This package requires Visual Studio 2015 Update 2 or higher"
#endif
// We support gcc 4.7 and later.
// This minimum will go up.
#if defined(__GNUC__) && !defined(__clang__)
#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 7)
#error "This package requires gcc 4.7 or higher"
#endif
#endif
// We support Apple Xcode clang 4.2.1 (version 421.11.65) and later.
// This corresponds to Apple Xcode version 4.5.
// This minimum will go up.
#if defined(__apple_build_version__) && __apple_build_version__ < 4211165
#error "This package requires __apple_build_version__ of 4211165 or higher"
#endif
// -----------------------------------------------------------------------------
// C++ Version Check
// -----------------------------------------------------------------------------
// Enforce C++11 as the minimum. Note that Visual Studio has not
// advanced __cplusplus despite being good enough for our purposes, so
// so we exempt it from the check.
#if defined(__cplusplus) && !defined(_MSC_VER)
#if __cplusplus < 201103L
#error "C++ versions less than C++11 are not supported."
#endif
#endif
// -----------------------------------------------------------------------------
// Standard Library Check
// -----------------------------------------------------------------------------
// We have chosen glibc 2.12 as the minimum as it was tagged for release
// in May, 2010 and includes some functionality used in Google software
// (for instance pthread_setname_np):
// https://sourceware.org/ml/libc-alpha/2010-05/msg00000.html
#ifdef __GLIBC_PREREQ
#if !__GLIBC_PREREQ(2, 12)
#error "Minimum required version of glibc is 2.12."
#endif
#endif
#if defined(_STLPORT_VERSION)
#error "STLPort is not supported."
#endif
#endif // ABSL_BASE_POLICY_CHECKS_H_

26
absl/base/port.h Normal file
View file

@ -0,0 +1,26 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// This files is a forwarding header for other headers containing various
// portability macros and functions.
// This file is used for both C and C++!
#ifndef ABSL_BASE_PORT_H_
#define ABSL_BASE_PORT_H_
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/optimization.h"
#endif // ABSL_BASE_PORT_H_

View file

@ -0,0 +1,50 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This test serves primarily as a compilation test for base/raw_logging.h.
// Raw logging testing is covered by logging_unittest.cc, which is not as
// portable as this test.
#include "absl/base/internal/raw_logging.h"
#include "gtest/gtest.h"
namespace {
TEST(RawLoggingCompilationTest, Log) {
ABSL_RAW_LOG(INFO, "RAW INFO: %d", 1);
ABSL_RAW_LOG(ERROR, "RAW ERROR: %d", 1);
}
TEST(RawLoggingCompilationTest, PassingCheck) {
ABSL_RAW_CHECK(true, "RAW CHECK");
}
// Not all platforms support output from raw log, so we don't verify any
// particular output for RAW check failures (expecting the empty std::string
// accomplishes this). This test is primarily a compilation test, but we
// are verifying process death when EXPECT_DEATH works for a platform.
const char kExpectedDeathOutput[] = "";
TEST(RawLoggingDeathTest, FailingCheck) {
EXPECT_DEATH_IF_SUPPORTED(ABSL_RAW_CHECK(1 == 0, "explanation"),
kExpectedDeathOutput);
}
TEST(RawLoggingDeathTest, LogFatal) {
EXPECT_DEATH_IF_SUPPORTED(ABSL_RAW_LOG(FATAL, "my dog has fleas"),
kExpectedDeathOutput);
}
} // namespace

View file

@ -0,0 +1,265 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// A bunch of threads repeatedly hash an array of ints protected by a
// spinlock. If the spinlock is working properly, all elements of the
// array should be equal at the end of the test.
#include <cstdint>
#include <limits>
#include <random>
#include <thread> // NOLINT(build/c++11)
#include <vector>
#include "gtest/gtest.h"
#include "absl/base/internal/low_level_scheduling.h"
#include "absl/base/internal/spinlock.h"
#include "absl/base/internal/sysinfo.h"
#include "absl/synchronization/blocking_counter.h"
#include "absl/synchronization/notification.h"
constexpr int32_t kNumThreads = 10;
constexpr int32_t kIters = 1000;
namespace absl {
namespace base_internal {
// This is defined outside of anonymous namespace so that it can be
// a friend of SpinLock to access protected methods for testing.
struct SpinLockTest {
static uint32_t EncodeWaitCycles(int64_t wait_start_time,
int64_t wait_end_time) {
return SpinLock::EncodeWaitCycles(wait_start_time, wait_end_time);
}
static uint64_t DecodeWaitCycles(uint32_t lock_value) {
return SpinLock::DecodeWaitCycles(lock_value);
}
};
namespace {
static constexpr int kArrayLength = 10;
static uint32_t values[kArrayLength];
static SpinLock static_spinlock(base_internal::kLinkerInitialized);
static SpinLock static_cooperative_spinlock(
base_internal::kLinkerInitialized,
base_internal::SCHEDULE_COOPERATIVE_AND_KERNEL);
static SpinLock static_noncooperative_spinlock(
base_internal::kLinkerInitialized, base_internal::SCHEDULE_KERNEL_ONLY);
// Simple integer hash function based on the public domain lookup2 hash.
// http://burtleburtle.net/bob/c/lookup2.c
static uint32_t Hash32(uint32_t a, uint32_t c) {
uint32_t b = 0x9e3779b9UL; // The golden ratio; an arbitrary value.
a -= b; a -= c; a ^= (c >> 13);
b -= c; b -= a; b ^= (a << 8);
c -= a; c -= b; c ^= (b >> 13);
a -= b; a -= c; a ^= (c >> 12);
b -= c; b -= a; b ^= (a << 16);
c -= a; c -= b; c ^= (b >> 5);
a -= b; a -= c; a ^= (c >> 3);
b -= c; b -= a; b ^= (a << 10);
c -= a; c -= b; c ^= (b >> 15);
return c;
}
static void TestFunction(int thread_salt, SpinLock* spinlock) {
for (int i = 0; i < kIters; i++) {
SpinLockHolder h(spinlock);
for (int j = 0; j < kArrayLength; j++) {
const int index = (j + thread_salt) % kArrayLength;
values[index] = Hash32(values[index], thread_salt);
std::this_thread::yield();
}
}
}
static void ThreadedTest(SpinLock* spinlock) {
std::vector<std::thread> threads;
for (int i = 0; i < kNumThreads; ++i) {
threads.push_back(std::thread(TestFunction, i, spinlock));
}
for (auto& thread : threads) {
thread.join();
}
SpinLockHolder h(spinlock);
for (int i = 1; i < kArrayLength; i++) {
EXPECT_EQ(values[0], values[i]);
}
}
TEST(SpinLock, StackNonCooperativeDisablesScheduling) {
SpinLock spinlock(base_internal::SCHEDULE_KERNEL_ONLY);
spinlock.Lock();
EXPECT_FALSE(base_internal::SchedulingGuard::ReschedulingIsAllowed());
spinlock.Unlock();
}
TEST(SpinLock, StaticNonCooperativeDisablesScheduling) {
static_noncooperative_spinlock.Lock();
EXPECT_FALSE(base_internal::SchedulingGuard::ReschedulingIsAllowed());
static_noncooperative_spinlock.Unlock();
}
TEST(SpinLock, WaitCyclesEncoding) {
// These are implementation details not exported by SpinLock.
const int kProfileTimestampShift = 7;
const int kLockwordReservedShift = 3;
const uint32_t kSpinLockSleeper = 8;
// We should be able to encode up to (1^kMaxCycleBits - 1) without clamping
// but the lower kProfileTimestampShift will be dropped.
const int kMaxCyclesShift =
32 - kLockwordReservedShift + kProfileTimestampShift;
const uint64_t kMaxCycles = (int64_t{1} << kMaxCyclesShift) - 1;
// These bits should be zero after encoding.
const uint32_t kLockwordReservedMask = (1 << kLockwordReservedShift) - 1;
// These bits are dropped when wait cycles are encoded.
const uint64_t kProfileTimestampMask = (1 << kProfileTimestampShift) - 1;
// Test a bunch of random values
std::default_random_engine generator;
// Shift to avoid overflow below.
std::uniform_int_distribution<uint64_t> time_distribution(
0, std::numeric_limits<uint64_t>::max() >> 4);
std::uniform_int_distribution<uint64_t> cycle_distribution(0, kMaxCycles);
for (int i = 0; i < 100; i++) {
int64_t start_time = time_distribution(generator);
int64_t cycles = cycle_distribution(generator);
int64_t end_time = start_time + cycles;
uint32_t lock_value = SpinLockTest::EncodeWaitCycles(start_time, end_time);
EXPECT_EQ(0, lock_value & kLockwordReservedMask);
uint64_t decoded = SpinLockTest::DecodeWaitCycles(lock_value);
EXPECT_EQ(0, decoded & kProfileTimestampMask);
EXPECT_EQ(cycles & ~kProfileTimestampMask, decoded);
}
// Test corner cases
int64_t start_time = time_distribution(generator);
EXPECT_EQ(0, SpinLockTest::EncodeWaitCycles(start_time, start_time));
EXPECT_EQ(0, SpinLockTest::DecodeWaitCycles(0));
EXPECT_EQ(0, SpinLockTest::DecodeWaitCycles(kLockwordReservedMask));
EXPECT_EQ(kMaxCycles & ~kProfileTimestampMask,
SpinLockTest::DecodeWaitCycles(~kLockwordReservedMask));
// Check that we cannot produce kSpinLockSleeper during encoding.
int64_t sleeper_cycles =
kSpinLockSleeper << (kProfileTimestampShift - kLockwordReservedShift);
uint32_t sleeper_value =
SpinLockTest::EncodeWaitCycles(start_time, start_time + sleeper_cycles);
EXPECT_NE(sleeper_value, kSpinLockSleeper);
// Test clamping
uint32_t max_value =
SpinLockTest::EncodeWaitCycles(start_time, start_time + kMaxCycles);
uint64_t max_value_decoded = SpinLockTest::DecodeWaitCycles(max_value);
uint64_t expected_max_value_decoded = kMaxCycles & ~kProfileTimestampMask;
EXPECT_EQ(expected_max_value_decoded, max_value_decoded);
const int64_t step = (1 << kProfileTimestampShift);
uint32_t after_max_value =
SpinLockTest::EncodeWaitCycles(start_time, start_time + kMaxCycles + step);
uint64_t after_max_value_decoded =
SpinLockTest::DecodeWaitCycles(after_max_value);
EXPECT_EQ(expected_max_value_decoded, after_max_value_decoded);
uint32_t before_max_value = SpinLockTest::EncodeWaitCycles(
start_time, start_time + kMaxCycles - step);
uint64_t before_max_value_decoded =
SpinLockTest::DecodeWaitCycles(before_max_value);
EXPECT_GT(expected_max_value_decoded, before_max_value_decoded);
}
TEST(SpinLockWithThreads, StaticSpinLock) {
ThreadedTest(&static_spinlock);
}
TEST(SpinLockWithThreads, StackSpinLock) {
SpinLock spinlock;
ThreadedTest(&spinlock);
}
TEST(SpinLockWithThreads, StackCooperativeSpinLock) {
SpinLock spinlock(base_internal::SCHEDULE_COOPERATIVE_AND_KERNEL);
ThreadedTest(&spinlock);
}
TEST(SpinLockWithThreads, StackNonCooperativeSpinLock) {
SpinLock spinlock(base_internal::SCHEDULE_KERNEL_ONLY);
ThreadedTest(&spinlock);
}
TEST(SpinLockWithThreads, StaticCooperativeSpinLock) {
ThreadedTest(&static_cooperative_spinlock);
}
TEST(SpinLockWithThreads, StaticNonCooperativeSpinLock) {
ThreadedTest(&static_noncooperative_spinlock);
}
TEST(SpinLockWithThreads, DoesNotDeadlock) {
struct Helper {
static void NotifyThenLock(Notification* locked, SpinLock* spinlock,
BlockingCounter* b) {
locked->WaitForNotification(); // Wait for LockThenWait() to hold "s".
b->DecrementCount();
SpinLockHolder l(spinlock);
}
static void LockThenWait(Notification* locked, SpinLock* spinlock,
BlockingCounter* b) {
SpinLockHolder l(spinlock);
locked->Notify();
b->Wait();
}
static void DeadlockTest(SpinLock* spinlock, int num_spinners) {
Notification locked;
BlockingCounter counter(num_spinners);
std::vector<std::thread> threads;
threads.push_back(
std::thread(Helper::LockThenWait, &locked, spinlock, &counter));
for (int i = 0; i < num_spinners; ++i) {
threads.push_back(
std::thread(Helper::NotifyThenLock, &locked, spinlock, &counter));
}
for (auto& thread : threads) {
thread.join();
}
}
};
SpinLock stack_cooperative_spinlock(
base_internal::SCHEDULE_COOPERATIVE_AND_KERNEL);
SpinLock stack_noncooperative_spinlock(base_internal::SCHEDULE_KERNEL_ONLY);
Helper::DeadlockTest(&stack_cooperative_spinlock,
base_internal::NumCPUs() * 2);
Helper::DeadlockTest(&stack_noncooperative_spinlock,
base_internal::NumCPUs() * 2);
Helper::DeadlockTest(&static_cooperative_spinlock,
base_internal::NumCPUs() * 2);
Helper::DeadlockTest(&static_noncooperative_spinlock,
base_internal::NumCPUs() * 2);
}
} // namespace
} // namespace base_internal
} // namespace absl

View file

@ -0,0 +1,247 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: thread_annotations.h
// -----------------------------------------------------------------------------
//
// This header file contains macro definitions for thread safety annotations
// that allow developers to document the locking policies of multi-threaded
// code. The annotations can also help program analysis tools to identify
// potential thread safety issues.
//
//
// These annotations are implemented using compiler attributes. Using the macros
// defined here instead of raw attributes allow for portability and future
// compatibility.
//
// When referring to mutexes in the arguments of the attributes, you should
// use variable names or more complex expressions (e.g. my_object->mutex_)
// that evaluate to a concrete mutex object whenever possible. If the mutex
// you want to refer to is not in scope, you may use a member pointer
// (e.g. &MyClass::mutex_) to refer to a mutex in some (unknown) object.
//
#ifndef ABSL_BASE_THREAD_ANNOTATIONS_H_
#define ABSL_BASE_THREAD_ANNOTATIONS_H_
#if defined(__clang__)
#define THREAD_ANNOTATION_ATTRIBUTE__(x) __attribute__((x))
#else
#define THREAD_ANNOTATION_ATTRIBUTE__(x) // no-op
#endif
// GUARDED_BY()
//
// Documents if a shared variable/field needs to be protected by a mutex.
// GUARDED_BY() allows the user to specify a particular mutex that should be
// held when accessing the annotated variable.
//
// Example:
//
// Mutex mu;
// int p1 GUARDED_BY(mu);
#define GUARDED_BY(x) THREAD_ANNOTATION_ATTRIBUTE__(guarded_by(x))
#define GUARDED_VAR THREAD_ANNOTATION_ATTRIBUTE__(guarded)
// PT_GUARDED_BY()
//
// Documents if the memory location pointed to by a pointer should be guarded
// by a mutex when dereferencing the pointer.
//
// Example:
// Mutex mu;
// int *p1 PT_GUARDED_BY(mu);
//
// Note that a pointer variable to a shared memory location could itself be a
// shared variable.
//
// Example:
//
// // `q`, guarded by `mu1`, points to a shared memory location that is
// // guarded by `mu2`:
// int *q GUARDED_BY(mu1) PT_GUARDED_BY(mu2);
#define PT_GUARDED_BY(x) THREAD_ANNOTATION_ATTRIBUTE__(pt_guarded_by(x))
#define PT_GUARDED_VAR THREAD_ANNOTATION_ATTRIBUTE__(pt_guarded)
// ACQUIRED_AFTER() / ACQUIRED_BEFORE()
//
// Documents the acquisition order between locks that can be held
// simultaneously by a thread. For any two locks that need to be annotated
// to establish an acquisition order, only one of them needs the annotation.
// (i.e. You don't have to annotate both locks with both ACQUIRED_AFTER
// and ACQUIRED_BEFORE.)
//
// Example:
//
// Mutex m1;
// Mutex m2 ACQUIRED_AFTER(m1);
#define ACQUIRED_AFTER(...) \
THREAD_ANNOTATION_ATTRIBUTE__(acquired_after(__VA_ARGS__))
#define ACQUIRED_BEFORE(...) \
THREAD_ANNOTATION_ATTRIBUTE__(acquired_before(__VA_ARGS__))
// EXCLUSIVE_LOCKS_REQUIRED() / SHARED_LOCKS_REQUIRED()
//
// Documents a function that expects a mutex to be held prior to entry.
// The mutex is expected to be held both on entry to, and exit from, the
// function.
//
// Example:
//
// Mutex mu1, mu2;
// int a GUARDED_BY(mu1);
// int b GUARDED_BY(mu2);
//
// void foo() EXCLUSIVE_LOCKS_REQUIRED(mu1, mu2) { ... };
#define EXCLUSIVE_LOCKS_REQUIRED(...) \
THREAD_ANNOTATION_ATTRIBUTE__(exclusive_locks_required(__VA_ARGS__))
#define SHARED_LOCKS_REQUIRED(...) \
THREAD_ANNOTATION_ATTRIBUTE__(shared_locks_required(__VA_ARGS__))
// LOCKS_EXCLUDED()
//
// Documents the locks acquired in the body of the function. These locks
// cannot be held when calling this function (as Abseil's `Mutex` locks are
// non-reentrant).
#define LOCKS_EXCLUDED(...) \
THREAD_ANNOTATION_ATTRIBUTE__(locks_excluded(__VA_ARGS__))
// LOCK_RETURNED()
//
// Documents a function that returns a mutex without acquiring it. For example,
// a public getter method that returns a pointer to a private mutex should
// be annotated with LOCK_RETURNED.
#define LOCK_RETURNED(x) \
THREAD_ANNOTATION_ATTRIBUTE__(lock_returned(x))
// LOCKABLE
//
// Documents if a class/type is a lockable type (such as the `Mutex` class).
#define LOCKABLE \
THREAD_ANNOTATION_ATTRIBUTE__(lockable)
// SCOPED_LOCKABLE
//
// Documents if a class does RAII locking (such as the `MutexLock` class).
// The constructor should use `LOCK_FUNCTION()` to specify the mutex that is
// acquired, and the destructor should use `UNLOCK_FUNCTION()` with no
// arguments; the analysis will assume that the destructor unlocks whatever the
// constructor locked.
#define SCOPED_LOCKABLE \
THREAD_ANNOTATION_ATTRIBUTE__(scoped_lockable)
// EXCLUSIVE_LOCK_FUNCTION()
//
// Documents functions that acquire a lock in the body of a function, and do
// not release it.
#define EXCLUSIVE_LOCK_FUNCTION(...) \
THREAD_ANNOTATION_ATTRIBUTE__(exclusive_lock_function(__VA_ARGS__))
// SHARED_LOCK_FUNCTION()
//
// Documents functions that acquire a shared (reader) lock in the body of a
// function, and do not release it.
#define SHARED_LOCK_FUNCTION(...) \
THREAD_ANNOTATION_ATTRIBUTE__(shared_lock_function(__VA_ARGS__))
// UNLOCK_FUNCTION()
//
// Documents functions that expect a lock to be held on entry to the function,
// and release it in the body of the function.
#define UNLOCK_FUNCTION(...) \
THREAD_ANNOTATION_ATTRIBUTE__(unlock_function(__VA_ARGS__))
// EXCLUSIVE_TRYLOCK_FUNCTION() / SHARED_TRYLOCK_FUNCTION()
//
// Documents functions that try to acquire a lock, and return success or failure
// (or a non-boolean value that can be interpreted as a boolean).
// The first argument should be `true` for functions that return `true` on
// success, or `false` for functions that return `false` on success. The second
// argument specifies the mutex that is locked on success. If unspecified, this
// mutex is assumed to be `this`.
#define EXCLUSIVE_TRYLOCK_FUNCTION(...) \
THREAD_ANNOTATION_ATTRIBUTE__(exclusive_trylock_function(__VA_ARGS__))
#define SHARED_TRYLOCK_FUNCTION(...) \
THREAD_ANNOTATION_ATTRIBUTE__(shared_trylock_function(__VA_ARGS__))
// ASSERT_EXCLUSIVE_LOCK() / ASSERT_SHARED_LOCK()
//
// Documents functions that dynamically check to see if a lock is held, and fail
// if it is not held.
#define ASSERT_EXCLUSIVE_LOCK(...) \
THREAD_ANNOTATION_ATTRIBUTE__(assert_exclusive_lock(__VA_ARGS__))
#define ASSERT_SHARED_LOCK(...) \
THREAD_ANNOTATION_ATTRIBUTE__(assert_shared_lock(__VA_ARGS__))
// NO_THREAD_SAFETY_ANALYSIS
//
// Turns off thread safety checking within the body of a particular function.
// This annotation is used to mark functions that are known to be correct, but
// the locking behavior is more complicated than the analyzer can handle.
#define NO_THREAD_SAFETY_ANALYSIS \
THREAD_ANNOTATION_ATTRIBUTE__(no_thread_safety_analysis)
//------------------------------------------------------------------------------
// Tool-Supplied Annotations
//------------------------------------------------------------------------------
// TS_UNCHECKED should be placed around lock expressions that are not valid
// C++ syntax, but which are present for documentation purposes. These
// annotations will be ignored by the analysis.
#define TS_UNCHECKED(x) ""
// TS_FIXME is used to mark lock expressions that are not valid C++ syntax.
// It is used by automated tools to mark and disable invalid expressions.
// The annotation should either be fixed, or changed to TS_UNCHECKED.
#define TS_FIXME(x) ""
// Like NO_THREAD_SAFETY_ANALYSIS, this turns off checking within the body of
// a particular function. However, this attribute is used to mark functions
// that are incorrect and need to be fixed. It is used by automated tools to
// avoid breaking the build when the analysis is updated.
// Code owners are expected to eventually fix the routine.
#define NO_THREAD_SAFETY_ANALYSIS_FIXME NO_THREAD_SAFETY_ANALYSIS
// Similar to NO_THREAD_SAFETY_ANALYSIS_FIXME, this macro marks a GUARDED_BY
// annotation that needs to be fixed, because it is producing thread safety
// warning. It disables the GUARDED_BY.
#define GUARDED_BY_FIXME(x)
// Disables warnings for a single read operation. This can be used to avoid
// warnings when it is known that the read is not actually involved in a race,
// but the compiler cannot confirm that.
#define TS_UNCHECKED_READ(x) thread_safety_analysis::ts_unchecked_read(x)
namespace thread_safety_analysis {
// Takes a reference to a guarded data member, and returns an unguarded
// reference.
template <typename T>
inline const T& ts_unchecked_read(const T& v) NO_THREAD_SAFETY_ANALYSIS {
return v;
}
template <typename T>
inline T& ts_unchecked_read(T& v) NO_THREAD_SAFETY_ANALYSIS {
return v;
}
} // namespace thread_safety_analysis
#endif // ABSL_BASE_THREAD_ANNOTATIONS_H_

View file

@ -0,0 +1,95 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/throw_delegate.h"
#include <functional>
#include <new>
#include <stdexcept>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace {
using absl::base_internal::ThrowStdLogicError;
using absl::base_internal::ThrowStdInvalidArgument;
using absl::base_internal::ThrowStdDomainError;
using absl::base_internal::ThrowStdLengthError;
using absl::base_internal::ThrowStdOutOfRange;
using absl::base_internal::ThrowStdRuntimeError;
using absl::base_internal::ThrowStdRangeError;
using absl::base_internal::ThrowStdOverflowError;
using absl::base_internal::ThrowStdUnderflowError;
using absl::base_internal::ThrowStdBadFunctionCall;
using absl::base_internal::ThrowStdBadAlloc;
constexpr const char* what_arg = "The quick brown fox jumps over the lazy dog";
template <typename E>
void ExpectThrowChar(void (*f)(const char*)) {
try {
f(what_arg);
FAIL() << "Didn't throw";
} catch (const E& e) {
EXPECT_STREQ(e.what(), what_arg);
}
}
template <typename E>
void ExpectThrowString(void (*f)(const std::string&)) {
try {
f(what_arg);
FAIL() << "Didn't throw";
} catch (const E& e) {
EXPECT_STREQ(e.what(), what_arg);
}
}
template <typename E>
void ExpectThrowNoWhat(void (*f)()) {
try {
f();
FAIL() << "Didn't throw";
} catch (const E& e) {
}
}
TEST(ThrowHelper, Test) {
// Not using EXPECT_THROW because we want to check the .what() message too.
ExpectThrowChar<std::logic_error>(ThrowStdLogicError);
ExpectThrowChar<std::invalid_argument>(ThrowStdInvalidArgument);
ExpectThrowChar<std::domain_error>(ThrowStdDomainError);
ExpectThrowChar<std::length_error>(ThrowStdLengthError);
ExpectThrowChar<std::out_of_range>(ThrowStdOutOfRange);
ExpectThrowChar<std::runtime_error>(ThrowStdRuntimeError);
ExpectThrowChar<std::range_error>(ThrowStdRangeError);
ExpectThrowChar<std::overflow_error>(ThrowStdOverflowError);
ExpectThrowChar<std::underflow_error>(ThrowStdUnderflowError);
ExpectThrowString<std::logic_error>(ThrowStdLogicError);
ExpectThrowString<std::invalid_argument>(ThrowStdInvalidArgument);
ExpectThrowString<std::domain_error>(ThrowStdDomainError);
ExpectThrowString<std::length_error>(ThrowStdLengthError);
ExpectThrowString<std::out_of_range>(ThrowStdOutOfRange);
ExpectThrowString<std::runtime_error>(ThrowStdRuntimeError);
ExpectThrowString<std::range_error>(ThrowStdRangeError);
ExpectThrowString<std::overflow_error>(ThrowStdOverflowError);
ExpectThrowString<std::underflow_error>(ThrowStdUnderflowError);
ExpectThrowNoWhat<std::bad_function_call>(ThrowStdBadFunctionCall);
ExpectThrowNoWhat<std::bad_alloc>(ThrowStdBadAlloc);
}
} // namespace