Initial Commit

This commit is contained in:
misterg 2017-09-19 16:54:40 -04:00
commit c2e7548296
238 changed files with 65475 additions and 0 deletions

39
absl/numeric/BUILD.bazel Normal file
View file

@ -0,0 +1,39 @@
load(
"//absl:copts.bzl",
"ABSL_DEFAULT_COPTS",
"ABSL_TEST_COPTS",
)
load(
"//absl:test_dependencies.bzl",
"GUNIT_MAIN_DEPS_SELECTOR",
)
package(default_visibility = ["//visibility:public"])
licenses(["unencumbered"]) # Owned by Google
cc_library(
name = "int128",
srcs = ["int128.cc"],
hdrs = ["int128.h"],
copts = ABSL_DEFAULT_COPTS,
deps = [
"//absl/base:config",
"//absl/base:core_headers",
],
)
cc_test(
name = "int128_test",
size = "small",
srcs = [
"int128_test.cc",
],
copts = ABSL_TEST_COPTS,
deps = [
":int128",
"//absl/base",
"//absl/base:core_headers",
"//absl/meta:type_traits",
] + select(GUNIT_MAIN_DEPS_SELECTOR),
)

200
absl/numeric/int128.cc Normal file
View file

@ -0,0 +1,200 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/numeric/int128.h"
#include <cassert>
#include <cstdlib>
#include <iomanip>
#include <iostream> // NOLINT(readability/streams)
#include <sstream>
namespace absl {
const uint128 kuint128max = MakeUint128(std::numeric_limits<uint64_t>::max(),
std::numeric_limits<uint64_t>::max());
namespace {
// Returns the 0-based position of the last set bit (i.e., most significant bit)
// in the given uint64_t. The argument may not be 0.
//
// For example:
// Given: 5 (decimal) == 101 (binary)
// Returns: 2
#define STEP(T, n, pos, sh) \
do { \
if ((n) >= (static_cast<T>(1) << (sh))) { \
(n) = (n) >> (sh); \
(pos) |= (sh); \
} \
} while (0)
static inline int Fls64(uint64_t n) {
assert(n != 0);
int pos = 0;
STEP(uint64_t, n, pos, 0x20);
uint32_t n32 = static_cast<uint32_t>(n);
STEP(uint32_t, n32, pos, 0x10);
STEP(uint32_t, n32, pos, 0x08);
STEP(uint32_t, n32, pos, 0x04);
return pos + ((uint64_t{0x3333333322221100} >> (n32 << 2)) & 0x3);
}
#undef STEP
// Like Fls64() above, but returns the 0-based position of the last set bit
// (i.e., most significant bit) in the given uint128. The argument may not be 0.
static inline int Fls128(uint128 n) {
if (uint64_t hi = Uint128High64(n)) {
return Fls64(hi) + 64;
}
return Fls64(Uint128Low64(n));
}
// Long division/modulo for uint128 implemented using the shift-subtract
// division algorithm adapted from:
// http://stackoverflow.com/questions/5386377/division-without-using
void DivModImpl(uint128 dividend, uint128 divisor, uint128* quotient_ret,
uint128* remainder_ret) {
assert(divisor != 0);
if (divisor > dividend) {
*quotient_ret = 0;
*remainder_ret = dividend;
return;
}
if (divisor == dividend) {
*quotient_ret = 1;
*remainder_ret = 0;
return;
}
uint128 denominator = divisor;
uint128 quotient = 0;
// Left aligns the MSB of the denominator and the dividend.
const int shift = Fls128(dividend) - Fls128(denominator);
denominator <<= shift;
// Uses shift-subtract algorithm to divide dividend by denominator. The
// remainder will be left in dividend.
for (int i = 0; i <= shift; ++i) {
quotient <<= 1;
if (dividend >= denominator) {
dividend -= denominator;
quotient |= 1;
}
denominator >>= 1;
}
*quotient_ret = quotient;
*remainder_ret = dividend;
}
template <typename T>
uint128 Initialize128FromFloat(T v) {
// Rounding behavior is towards zero, same as for built-in types.
// Undefined behavior if v is NaN or cannot fit into uint128.
assert(!std::isnan(v) && v > -1 && v < std::ldexp(static_cast<T>(1), 128));
if (v >= std::ldexp(static_cast<T>(1), 64)) {
uint64_t hi = static_cast<uint64_t>(std::ldexp(v, -64));
uint64_t lo = static_cast<uint64_t>(v - std::ldexp(static_cast<T>(hi), 64));
return MakeUint128(hi, lo);
}
return MakeUint128(0, static_cast<uint64_t>(v));
}
} // namespace
uint128::uint128(float v) : uint128(Initialize128FromFloat(v)) {}
uint128::uint128(double v) : uint128(Initialize128FromFloat(v)) {}
uint128::uint128(long double v) : uint128(Initialize128FromFloat(v)) {}
uint128& uint128::operator/=(const uint128& divisor) {
uint128 quotient = 0;
uint128 remainder = 0;
DivModImpl(*this, divisor, &quotient, &remainder);
*this = quotient;
return *this;
}
uint128& uint128::operator%=(const uint128& divisor) {
uint128 quotient = 0;
uint128 remainder = 0;
DivModImpl(*this, divisor, &quotient, &remainder);
*this = remainder;
return *this;
}
std::ostream& operator<<(std::ostream& o, const uint128& b) {
std::ios_base::fmtflags flags = o.flags();
// Select a divisor which is the largest power of the base < 2^64.
uint128 div;
int div_base_log;
switch (flags & std::ios::basefield) {
case std::ios::hex:
div = 0x1000000000000000; // 16^15
div_base_log = 15;
break;
case std::ios::oct:
div = 01000000000000000000000; // 8^21
div_base_log = 21;
break;
default: // std::ios::dec
div = 10000000000000000000u; // 10^19
div_base_log = 19;
break;
}
// Now piece together the uint128 representation from three chunks of
// the original value, each less than "div" and therefore representable
// as a uint64_t.
std::ostringstream os;
std::ios_base::fmtflags copy_mask =
std::ios::basefield | std::ios::showbase | std::ios::uppercase;
os.setf(flags & copy_mask, copy_mask);
uint128 high = b;
uint128 low;
DivModImpl(high, div, &high, &low);
uint128 mid;
DivModImpl(high, div, &high, &mid);
if (Uint128Low64(high) != 0) {
os << Uint128Low64(high);
os << std::noshowbase << std::setfill('0') << std::setw(div_base_log);
os << Uint128Low64(mid);
os << std::setw(div_base_log);
} else if (Uint128Low64(mid) != 0) {
os << Uint128Low64(mid);
os << std::noshowbase << std::setfill('0') << std::setw(div_base_log);
}
os << Uint128Low64(low);
std::string rep = os.str();
// Add the requisite padding.
std::streamsize width = o.width(0);
if (static_cast<size_t>(width) > rep.size()) {
if ((flags & std::ios::adjustfield) == std::ios::left) {
rep.append(width - rep.size(), o.fill());
} else {
rep.insert(0, width - rep.size(), o.fill());
}
}
// Stream the final representation in a single "<<" call.
return o << rep;
}
} // namespace absl

651
absl/numeric/int128.h Normal file
View file

@ -0,0 +1,651 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: int128.h
// -----------------------------------------------------------------------------
//
// This header file defines 128-bit integer types. Currently, this file defines
// `uint128`, an unsigned 128-bit integer; a signed 128-bit integer is
// forthcoming.
#ifndef ABSL_NUMERIC_INT128_H_
#define ABSL_NUMERIC_INT128_H_
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstring>
#include <iosfwd>
#include <limits>
#include "absl/base/config.h"
#include "absl/base/macros.h"
#include "absl/base/port.h"
namespace absl {
// uint128
//
// An unsigned 128-bit integer type. The API is meant to mimic an intrinsic type
// as closely as is practical, including exhibiting undefined behavior in
// analogous cases (e.g. division by zero). This type is intended to be a
// drop-in replacement once C++ supports an intrinsic `uint128_t` type; when
// that occurs, existing uses of `uint128` will continue to work using that new
// type.
//
// Note: code written with this type will continue to compile once `unint128_t`
// is introduced, provided the replacement helper functions
// `Uint128(Low|High)64()` and `MakeUint128()` are made.
//
// A `uint128` supports the following:
//
// * Implicit construction from integral types
// * Explicit conversion to integral types
//
// Additionally, if your compiler supports `__int128`, `uint128` is
// interoperable with that type. (Abseil checks for this compatibility through
// the `ABSL_HAVE_INTRINSIC_INT128` macro.)
//
// However, a `uint128` differs from intrinsic integral types in the following
// ways:
//
// * Errors on implicit conversions that does not preserve value (such as
// loss of precision when converting to float values).
// * Requires explicit construction from and conversion to floating point
// types.
// * Conversion to integral types requires an explicit static_cast() to
// mimic use of the `-Wnarrowing` compiler flag.
//
// Example:
//
// float y = kuint128max; // Error. uint128 cannot be implicitly converted
// // to float.
//
// uint128 v;
// uint64_t i = v // Error
// uint64_t i = static_cast<uint64_t>(v) // OK
//
// NOTE: the alignment requirement of `uint128` is due to change, so users
// should take care to avoid depending on the current 8 byte alignment.
// TODO(strel) Remove alignment note above once alignof(uint128) becomes 16.
class uint128 {
public:
uint128() = default;
// Constructors from arithmetic types
constexpr uint128(int v); // NOLINT(runtime/explicit)
constexpr uint128(unsigned int v); // NOLINT(runtime/explicit)
constexpr uint128(long v); // NOLINT(runtime/int)
constexpr uint128(unsigned long v); // NOLINT(runtime/int)
constexpr uint128(long long v); // NOLINT(runtime/int)
constexpr uint128(unsigned long long v); // NOLINT(runtime/int)
#ifdef ABSL_HAVE_INTRINSIC_INT128
constexpr uint128(__int128 v); // NOLINT(runtime/explicit)
constexpr uint128(unsigned __int128 v); // NOLINT(runtime/explicit)
#endif // ABSL_HAVE_INTRINSIC_INT128
explicit uint128(float v); // NOLINT(runtime/explicit)
explicit uint128(double v); // NOLINT(runtime/explicit)
explicit uint128(long double v); // NOLINT(runtime/explicit)
// Assignment operators from arithmetic types
uint128& operator=(int v);
uint128& operator=(unsigned int v);
uint128& operator=(long v); // NOLINT(runtime/int)
uint128& operator=(unsigned long v); // NOLINT(runtime/int)
uint128& operator=(long long v); // NOLINT(runtime/int)
uint128& operator=(unsigned long long v); // NOLINT(runtime/int)
#ifdef ABSL_HAVE_INTRINSIC_INT128
uint128& operator=(__int128 v);
uint128& operator=(unsigned __int128 v);
#endif // ABSL_HAVE_INTRINSIC_INT128
// Conversion operators to other arithmetic types
constexpr explicit operator bool() const;
constexpr explicit operator char() const;
constexpr explicit operator signed char() const;
constexpr explicit operator unsigned char() const;
constexpr explicit operator char16_t() const;
constexpr explicit operator char32_t() const;
constexpr explicit operator wchar_t() const;
constexpr explicit operator short() const; // NOLINT(runtime/int)
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator unsigned short() const;
constexpr explicit operator int() const;
constexpr explicit operator unsigned int() const;
constexpr explicit operator long() const; // NOLINT(runtime/int)
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator unsigned long() const;
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator long long() const;
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator unsigned long long() const;
#ifdef ABSL_HAVE_INTRINSIC_INT128
constexpr explicit operator __int128() const;
constexpr explicit operator unsigned __int128() const;
#endif // ABSL_HAVE_INTRINSIC_INT128
explicit operator float() const;
explicit operator double() const;
explicit operator long double() const;
// Trivial copy constructor, assignment operator and destructor.
// Arithmetic operators.
uint128& operator+=(const uint128& other);
uint128& operator-=(const uint128& other);
uint128& operator*=(const uint128& other);
// Long division/modulo for uint128.
uint128& operator/=(const uint128& other);
uint128& operator%=(const uint128& other);
uint128 operator++(int);
uint128 operator--(int);
uint128& operator<<=(int);
uint128& operator>>=(int);
uint128& operator&=(const uint128& other);
uint128& operator|=(const uint128& other);
uint128& operator^=(const uint128& other);
uint128& operator++();
uint128& operator--();
// Uint128Low64()
//
// Returns the lower 64-bit value of a `uint128` value.
friend uint64_t Uint128Low64(const uint128& v);
// Uint128High64()
//
// Returns the higher 64-bit value of a `uint128` value.
friend uint64_t Uint128High64(const uint128& v);
// MakeUInt128()
//
// Constructs a `uint128` numeric value from two 64-bit unsigned integers.
// Note that this factory function is the only way to construct a `uint128`
// from integer values greater than 2^64.
//
// Example:
//
// absl::uint128 big = absl::MakeUint128(1, 0);
friend constexpr uint128 MakeUint128(uint64_t top, uint64_t bottom);
private:
constexpr uint128(uint64_t top, uint64_t bottom);
// TODO(strel) Update implementation to use __int128 once all users of
// uint128 are fixed to not depend on alignof(uint128) == 8. Also add
// alignas(16) to class definition to keep alignment consistent across
// platforms.
#if defined(ABSL_IS_LITTLE_ENDIAN)
uint64_t lo_;
uint64_t hi_;
#elif defined(ABSL_IS_BIG_ENDIAN)
uint64_t hi_;
uint64_t lo_;
#else // byte order
#error "Unsupported byte order: must be little-endian or big-endian."
#endif // byte order
};
extern const uint128 kuint128max;
// allow uint128 to be logged
extern std::ostream& operator<<(std::ostream& o, const uint128& b);
// TODO(strel) add operator>>(std::istream&, uint128&)
// Methods to access low and high pieces of 128-bit value.
uint64_t Uint128Low64(const uint128& v);
uint64_t Uint128High64(const uint128& v);
// TODO(b/31950287): Implement signed 128-bit type
// --------------------------------------------------------------------------
// Implementation details follow
// --------------------------------------------------------------------------
inline constexpr uint128 MakeUint128(uint64_t top, uint64_t bottom) {
return uint128(top, bottom);
}
// Assignment from integer types.
inline uint128& uint128::operator=(int v) {
return *this = uint128(v);
}
inline uint128& uint128::operator=(unsigned int v) {
return *this = uint128(v);
}
inline uint128& uint128::operator=(long v) { // NOLINT(runtime/int)
return *this = uint128(v);
}
// NOLINTNEXTLINE(runtime/int)
inline uint128& uint128::operator=(unsigned long v) {
return *this = uint128(v);
}
// NOLINTNEXTLINE(runtime/int)
inline uint128& uint128::operator=(long long v) {
return *this = uint128(v);
}
// NOLINTNEXTLINE(runtime/int)
inline uint128& uint128::operator=(unsigned long long v) {
return *this = uint128(v);
}
#ifdef ABSL_HAVE_INTRINSIC_INT128
inline uint128& uint128::operator=(__int128 v) {
return *this = uint128(v);
}
inline uint128& uint128::operator=(unsigned __int128 v) {
return *this = uint128(v);
}
#endif // ABSL_HAVE_INTRINSIC_INT128
// Shift and arithmetic operators.
inline uint128 operator<<(const uint128& lhs, int amount) {
return uint128(lhs) <<= amount;
}
inline uint128 operator>>(const uint128& lhs, int amount) {
return uint128(lhs) >>= amount;
}
inline uint128 operator+(const uint128& lhs, const uint128& rhs) {
return uint128(lhs) += rhs;
}
inline uint128 operator-(const uint128& lhs, const uint128& rhs) {
return uint128(lhs) -= rhs;
}
inline uint128 operator*(const uint128& lhs, const uint128& rhs) {
return uint128(lhs) *= rhs;
}
inline uint128 operator/(const uint128& lhs, const uint128& rhs) {
return uint128(lhs) /= rhs;
}
inline uint128 operator%(const uint128& lhs, const uint128& rhs) {
return uint128(lhs) %= rhs;
}
inline uint64_t Uint128Low64(const uint128& v) { return v.lo_; }
inline uint64_t Uint128High64(const uint128& v) { return v.hi_; }
// Constructors from integer types.
#if defined(ABSL_IS_LITTLE_ENDIAN)
inline constexpr uint128::uint128(uint64_t top, uint64_t bottom)
: lo_(bottom), hi_(top) {}
inline constexpr uint128::uint128(int v)
: lo_(v), hi_(v < 0 ? std::numeric_limits<uint64_t>::max() : 0) {}
inline constexpr uint128::uint128(long v) // NOLINT(runtime/int)
: lo_(v), hi_(v < 0 ? std::numeric_limits<uint64_t>::max() : 0) {}
inline constexpr uint128::uint128(long long v) // NOLINT(runtime/int)
: lo_(v), hi_(v < 0 ? std::numeric_limits<uint64_t>::max() : 0) {}
inline constexpr uint128::uint128(unsigned int v) : lo_(v), hi_(0) {}
// NOLINTNEXTLINE(runtime/int)
inline constexpr uint128::uint128(unsigned long v) : lo_(v), hi_(0) {}
// NOLINTNEXTLINE(runtime/int)
inline constexpr uint128::uint128(unsigned long long v)
: lo_(v), hi_(0) {}
#ifdef ABSL_HAVE_INTRINSIC_INT128
inline constexpr uint128::uint128(__int128 v)
: lo_(static_cast<uint64_t>(v & ~uint64_t{0})),
hi_(static_cast<uint64_t>(static_cast<unsigned __int128>(v) >> 64)) {}
inline constexpr uint128::uint128(unsigned __int128 v)
: lo_(static_cast<uint64_t>(v & ~uint64_t{0})),
hi_(static_cast<uint64_t>(v >> 64)) {}
#endif // ABSL_HAVE_INTRINSIC_INT128
#elif defined(ABSL_IS_BIG_ENDIAN)
inline constexpr uint128::uint128(uint64_t top, uint64_t bottom)
: hi_(top), lo_(bottom) {}
inline constexpr uint128::uint128(int v)
: hi_(v < 0 ? std::numeric_limits<uint64_t>::max() : 0), lo_(v) {}
inline constexpr uint128::uint128(long v) // NOLINT(runtime/int)
: hi_(v < 0 ? std::numeric_limits<uint64_t>::max() : 0), lo_(v) {}
inline constexpr uint128::uint128(long long v) // NOLINT(runtime/int)
: hi_(v < 0 ? std::numeric_limits<uint64_t>::max() : 0), lo_(v) {}
inline constexpr uint128::uint128(unsigned int v) : hi_(0), lo_(v) {}
// NOLINTNEXTLINE(runtime/int)
inline constexpr uint128::uint128(unsigned long v) : hi_(0), lo_(v) {}
// NOLINTNEXTLINE(runtime/int)
inline constexpr uint128::uint128(unsigned long long v)
: hi_(0), lo_(v) {}
#ifdef ABSL_HAVE_INTRINSIC_INT128
inline constexpr uint128::uint128(__int128 v)
: hi_(static_cast<uint64_t>(static_cast<unsigned __int128>(v) >> 64)),
lo_(static_cast<uint64_t>(v & ~uint64_t{0})) {}
inline constexpr uint128::uint128(unsigned __int128 v)
: hi_(static_cast<uint64_t>(v >> 64)),
lo_(static_cast<uint64_t>(v & ~uint64_t{0})) {}
#endif // ABSL_HAVE_INTRINSIC_INT128
#else // byte order
#error "Unsupported byte order: must be little-endian or big-endian."
#endif // byte order
// Conversion operators to integer types.
inline constexpr uint128::operator bool() const {
return lo_ || hi_;
}
inline constexpr uint128::operator char() const {
return static_cast<char>(lo_);
}
inline constexpr uint128::operator signed char() const {
return static_cast<signed char>(lo_);
}
inline constexpr uint128::operator unsigned char() const {
return static_cast<unsigned char>(lo_);
}
inline constexpr uint128::operator char16_t() const {
return static_cast<char16_t>(lo_);
}
inline constexpr uint128::operator char32_t() const {
return static_cast<char32_t>(lo_);
}
inline constexpr uint128::operator wchar_t() const {
return static_cast<wchar_t>(lo_);
}
// NOLINTNEXTLINE(runtime/int)
inline constexpr uint128::operator short() const {
return static_cast<short>(lo_); // NOLINT(runtime/int)
}
// NOLINTNEXTLINE(runtime/int)
inline constexpr uint128::operator unsigned short() const {
return static_cast<unsigned short>(lo_); // NOLINT(runtime/int)
}
inline constexpr uint128::operator int() const {
return static_cast<int>(lo_);
}
inline constexpr uint128::operator unsigned int() const {
return static_cast<unsigned int>(lo_);
}
// NOLINTNEXTLINE(runtime/int)
inline constexpr uint128::operator long() const {
return static_cast<long>(lo_); // NOLINT(runtime/int)
}
// NOLINTNEXTLINE(runtime/int)
inline constexpr uint128::operator unsigned long() const {
return static_cast<unsigned long>(lo_); // NOLINT(runtime/int)
}
// NOLINTNEXTLINE(runtime/int)
inline constexpr uint128::operator long long() const {
return static_cast<long long>(lo_); // NOLINT(runtime/int)
}
// NOLINTNEXTLINE(runtime/int)
inline constexpr uint128::operator unsigned long long() const {
return static_cast<unsigned long long>(lo_); // NOLINT(runtime/int)
}
#ifdef ABSL_HAVE_INTRINSIC_INT128
inline constexpr uint128::operator __int128() const {
return (static_cast<__int128>(hi_) << 64) + lo_;
}
inline constexpr uint128::operator unsigned __int128() const {
return (static_cast<unsigned __int128>(hi_) << 64) + lo_;
}
#endif // ABSL_HAVE_INTRINSIC_INT128
// Conversion operators to floating point types.
inline uint128::operator float() const {
return static_cast<float>(lo_) + std::ldexp(static_cast<float>(hi_), 64);
}
inline uint128::operator double() const {
return static_cast<double>(lo_) + std::ldexp(static_cast<double>(hi_), 64);
}
inline uint128::operator long double() const {
return static_cast<long double>(lo_) +
std::ldexp(static_cast<long double>(hi_), 64);
}
// Comparison operators.
inline bool operator==(const uint128& lhs, const uint128& rhs) {
return (Uint128Low64(lhs) == Uint128Low64(rhs) &&
Uint128High64(lhs) == Uint128High64(rhs));
}
inline bool operator!=(const uint128& lhs, const uint128& rhs) {
return !(lhs == rhs);
}
inline bool operator<(const uint128& lhs, const uint128& rhs) {
return (Uint128High64(lhs) == Uint128High64(rhs))
? (Uint128Low64(lhs) < Uint128Low64(rhs))
: (Uint128High64(lhs) < Uint128High64(rhs));
}
inline bool operator>(const uint128& lhs, const uint128& rhs) {
return (Uint128High64(lhs) == Uint128High64(rhs))
? (Uint128Low64(lhs) > Uint128Low64(rhs))
: (Uint128High64(lhs) > Uint128High64(rhs));
}
inline bool operator<=(const uint128& lhs, const uint128& rhs) {
return (Uint128High64(lhs) == Uint128High64(rhs))
? (Uint128Low64(lhs) <= Uint128Low64(rhs))
: (Uint128High64(lhs) <= Uint128High64(rhs));
}
inline bool operator>=(const uint128& lhs, const uint128& rhs) {
return (Uint128High64(lhs) == Uint128High64(rhs))
? (Uint128Low64(lhs) >= Uint128Low64(rhs))
: (Uint128High64(lhs) >= Uint128High64(rhs));
}
// Unary operators.
inline uint128 operator-(const uint128& val) {
const uint64_t hi_flip = ~Uint128High64(val);
const uint64_t lo_flip = ~Uint128Low64(val);
const uint64_t lo_add = lo_flip + 1;
if (lo_add < lo_flip) {
return MakeUint128(hi_flip + 1, lo_add);
}
return MakeUint128(hi_flip, lo_add);
}
inline bool operator!(const uint128& val) {
return !Uint128High64(val) && !Uint128Low64(val);
}
// Logical operators.
inline uint128 operator~(const uint128& val) {
return MakeUint128(~Uint128High64(val), ~Uint128Low64(val));
}
inline uint128 operator|(const uint128& lhs, const uint128& rhs) {
return MakeUint128(Uint128High64(lhs) | Uint128High64(rhs),
Uint128Low64(lhs) | Uint128Low64(rhs));
}
inline uint128 operator&(const uint128& lhs, const uint128& rhs) {
return MakeUint128(Uint128High64(lhs) & Uint128High64(rhs),
Uint128Low64(lhs) & Uint128Low64(rhs));
}
inline uint128 operator^(const uint128& lhs, const uint128& rhs) {
return MakeUint128(Uint128High64(lhs) ^ Uint128High64(rhs),
Uint128Low64(lhs) ^ Uint128Low64(rhs));
}
inline uint128& uint128::operator|=(const uint128& other) {
hi_ |= other.hi_;
lo_ |= other.lo_;
return *this;
}
inline uint128& uint128::operator&=(const uint128& other) {
hi_ &= other.hi_;
lo_ &= other.lo_;
return *this;
}
inline uint128& uint128::operator^=(const uint128& other) {
hi_ ^= other.hi_;
lo_ ^= other.lo_;
return *this;
}
// Shift and arithmetic assign operators.
inline uint128& uint128::operator<<=(int amount) {
// Shifts of >= 128 are undefined.
assert(amount < 128);
// uint64_t shifts of >= 64 are undefined, so we will need some
// special-casing.
if (amount < 64) {
if (amount != 0) {
hi_ = (hi_ << amount) | (lo_ >> (64 - amount));
lo_ = lo_ << amount;
}
} else {
hi_ = lo_ << (amount - 64);
lo_ = 0;
}
return *this;
}
inline uint128& uint128::operator>>=(int amount) {
// Shifts of >= 128 are undefined.
assert(amount < 128);
// uint64_t shifts of >= 64 are undefined, so we will need some
// special-casing.
if (amount < 64) {
if (amount != 0) {
lo_ = (lo_ >> amount) | (hi_ << (64 - amount));
hi_ = hi_ >> amount;
}
} else {
lo_ = hi_ >> (amount - 64);
hi_ = 0;
}
return *this;
}
inline uint128& uint128::operator+=(const uint128& other) {
hi_ += other.hi_;
uint64_t lolo = lo_ + other.lo_;
if (lolo < lo_)
++hi_;
lo_ = lolo;
return *this;
}
inline uint128& uint128::operator-=(const uint128& other) {
hi_ -= other.hi_;
if (other.lo_ > lo_) --hi_;
lo_ -= other.lo_;
return *this;
}
inline uint128& uint128::operator*=(const uint128& other) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
// TODO(strel) Remove once alignment issues are resolved and unsigned __int128
// can be used for uint128 storage.
*this = static_cast<unsigned __int128>(*this) *
static_cast<unsigned __int128>(other);
return *this;
#else // ABSL_HAVE_INTRINSIC128
uint64_t a96 = hi_ >> 32;
uint64_t a64 = hi_ & 0xffffffff;
uint64_t a32 = lo_ >> 32;
uint64_t a00 = lo_ & 0xffffffff;
uint64_t b96 = other.hi_ >> 32;
uint64_t b64 = other.hi_ & 0xffffffff;
uint64_t b32 = other.lo_ >> 32;
uint64_t b00 = other.lo_ & 0xffffffff;
// multiply [a96 .. a00] x [b96 .. b00]
// terms higher than c96 disappear off the high side
// terms c96 and c64 are safe to ignore carry bit
uint64_t c96 = a96 * b00 + a64 * b32 + a32 * b64 + a00 * b96;
uint64_t c64 = a64 * b00 + a32 * b32 + a00 * b64;
this->hi_ = (c96 << 32) + c64;
this->lo_ = 0;
// add terms after this one at a time to capture carry
*this += uint128(a32 * b00) << 32;
*this += uint128(a00 * b32) << 32;
*this += a00 * b00;
return *this;
#endif // ABSL_HAVE_INTRINSIC128
}
// Increment/decrement operators.
inline uint128 uint128::operator++(int) {
uint128 tmp(*this);
*this += 1;
return tmp;
}
inline uint128 uint128::operator--(int) {
uint128 tmp(*this);
*this -= 1;
return tmp;
}
inline uint128& uint128::operator++() {
*this += 1;
return *this;
}
inline uint128& uint128::operator--() {
*this -= 1;
return *this;
}
} // namespace absl
#endif // ABSL_NUMERIC_INT128_H_

View file

@ -0,0 +1,3 @@
// This file will contain :int128 implementation details that depend on internal
// representation when ABSL_HAVE_INTRINSIC_INT128 is defined. This file will be
// included by int128.h.

View file

@ -0,0 +1,3 @@
// This file will contain :int128 implementation details that depend on internal
// representation when ABSL_HAVE_INTRINSIC_INT128 is *not* defined. This file
// will be included by int128.h.

492
absl/numeric/int128_test.cc Normal file
View file

@ -0,0 +1,492 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/numeric/int128.h"
#include <algorithm>
#include <limits>
#include <random>
#include <sstream>
#include <type_traits>
#include <utility>
#include <vector>
#include "gtest/gtest.h"
#include "absl/base/internal/cycleclock.h"
#include "absl/meta/type_traits.h"
#if defined(_MSC_VER) && _MSC_VER == 1900
// Disable "unary minus operator applied to unsigned type" warnings in Microsoft
// Visual C++ 14 (2015).
#pragma warning(disable:4146)
#endif
namespace {
template <typename T>
class Uint128IntegerTraitsTest : public ::testing::Test {};
typedef ::testing::Types<bool, char, signed char, unsigned char, char16_t,
char32_t, wchar_t,
short, // NOLINT(runtime/int)
unsigned short, // NOLINT(runtime/int)
int, unsigned int,
long, // NOLINT(runtime/int)
unsigned long, // NOLINT(runtime/int)
long long, // NOLINT(runtime/int)
unsigned long long> // NOLINT(runtime/int)
IntegerTypes;
template <typename T>
class Uint128FloatTraitsTest : public ::testing::Test {};
typedef ::testing::Types<float, double, long double> FloatingPointTypes;
TYPED_TEST_CASE(Uint128IntegerTraitsTest, IntegerTypes);
TYPED_TEST(Uint128IntegerTraitsTest, ConstructAssignTest) {
static_assert(std::is_constructible<absl::uint128, TypeParam>::value,
"absl::uint128 must be constructible from TypeParam");
static_assert(std::is_assignable<absl::uint128&, TypeParam>::value,
"absl::uint128 must be assignable from TypeParam");
static_assert(!std::is_assignable<TypeParam&, absl::uint128>::value,
"TypeParam must not be assignable from absl::uint128");
}
TYPED_TEST_CASE(Uint128FloatTraitsTest, FloatingPointTypes);
TYPED_TEST(Uint128FloatTraitsTest, ConstructAssignTest) {
static_assert(std::is_constructible<absl::uint128, TypeParam>::value,
"absl::uint128 must be constructible from TypeParam");
static_assert(!std::is_assignable<absl::uint128&, TypeParam>::value,
"absl::uint128 must not be assignable from TypeParam");
static_assert(!std::is_assignable<TypeParam&, absl::uint128>::value,
"TypeParam must not be assignable from absl::uint128");
}
#ifdef ABSL_HAVE_INTRINSIC_INT128
// These type traits done separately as TYPED_TEST requires typeinfo, and not
// all platforms have this for __int128 even though they define the type.
TEST(Uint128, IntrinsicTypeTraitsTest) {
static_assert(std::is_constructible<absl::uint128, __int128>::value,
"absl::uint128 must be constructible from __int128");
static_assert(std::is_assignable<absl::uint128&, __int128>::value,
"absl::uint128 must be assignable from __int128");
static_assert(!std::is_assignable<__int128&, absl::uint128>::value,
"__int128 must not be assignable from absl::uint128");
static_assert(std::is_constructible<absl::uint128, unsigned __int128>::value,
"absl::uint128 must be constructible from unsigned __int128");
static_assert(std::is_assignable<absl::uint128&, unsigned __int128>::value,
"absl::uint128 must be assignable from unsigned __int128");
static_assert(!std::is_assignable<unsigned __int128&, absl::uint128>::value,
"unsigned __int128 must not be assignable from absl::uint128");
}
#endif // ABSL_HAVE_INTRINSIC_INT128
TEST(Uint128, AllTests) {
absl::uint128 zero = 0;
absl::uint128 one = 1;
absl::uint128 one_2arg = absl::MakeUint128(0, 1);
absl::uint128 two = 2;
absl::uint128 three = 3;
absl::uint128 big = absl::MakeUint128(2000, 2);
absl::uint128 big_minus_one = absl::MakeUint128(2000, 1);
absl::uint128 bigger = absl::MakeUint128(2001, 1);
absl::uint128 biggest = absl::kuint128max;
absl::uint128 high_low = absl::MakeUint128(1, 0);
absl::uint128 low_high =
absl::MakeUint128(0, std::numeric_limits<uint64_t>::max());
EXPECT_LT(one, two);
EXPECT_GT(two, one);
EXPECT_LT(one, big);
EXPECT_LT(one, big);
EXPECT_EQ(one, one_2arg);
EXPECT_NE(one, two);
EXPECT_GT(big, one);
EXPECT_GE(big, two);
EXPECT_GE(big, big_minus_one);
EXPECT_GT(big, big_minus_one);
EXPECT_LT(big_minus_one, big);
EXPECT_LE(big_minus_one, big);
EXPECT_NE(big_minus_one, big);
EXPECT_LT(big, biggest);
EXPECT_LE(big, biggest);
EXPECT_GT(biggest, big);
EXPECT_GE(biggest, big);
EXPECT_EQ(big, ~~big);
EXPECT_EQ(one, one | one);
EXPECT_EQ(big, big | big);
EXPECT_EQ(one, one | zero);
EXPECT_EQ(one, one & one);
EXPECT_EQ(big, big & big);
EXPECT_EQ(zero, one & zero);
EXPECT_EQ(zero, big & ~big);
EXPECT_EQ(zero, one ^ one);
EXPECT_EQ(zero, big ^ big);
EXPECT_EQ(one, one ^ zero);
// Shift operators.
EXPECT_EQ(big, big << 0);
EXPECT_EQ(big, big >> 0);
EXPECT_GT(big << 1, big);
EXPECT_LT(big >> 1, big);
EXPECT_EQ(big, (big << 10) >> 10);
EXPECT_EQ(big, (big >> 1) << 1);
EXPECT_EQ(one, (one << 80) >> 80);
EXPECT_EQ(zero, (one >> 80) << 80);
// Shift assignments.
absl::uint128 big_copy = big;
EXPECT_EQ(big << 0, big_copy <<= 0);
big_copy = big;
EXPECT_EQ(big >> 0, big_copy >>= 0);
big_copy = big;
EXPECT_EQ(big << 1, big_copy <<= 1);
big_copy = big;
EXPECT_EQ(big >> 1, big_copy >>= 1);
big_copy = big;
EXPECT_EQ(big << 10, big_copy <<= 10);
big_copy = big;
EXPECT_EQ(big >> 10, big_copy >>= 10);
big_copy = big;
EXPECT_EQ(big << 64, big_copy <<= 64);
big_copy = big;
EXPECT_EQ(big >> 64, big_copy >>= 64);
big_copy = big;
EXPECT_EQ(big << 73, big_copy <<= 73);
big_copy = big;
EXPECT_EQ(big >> 73, big_copy >>= 73);
EXPECT_EQ(Uint128High64(biggest), std::numeric_limits<uint64_t>::max());
EXPECT_EQ(Uint128Low64(biggest), std::numeric_limits<uint64_t>::max());
EXPECT_EQ(zero + one, one);
EXPECT_EQ(one + one, two);
EXPECT_EQ(big_minus_one + one, big);
EXPECT_EQ(one - one, zero);
EXPECT_EQ(one - zero, one);
EXPECT_EQ(zero - one, biggest);
EXPECT_EQ(big - big, zero);
EXPECT_EQ(big - one, big_minus_one);
EXPECT_EQ(big + std::numeric_limits<uint64_t>::max(), bigger);
EXPECT_EQ(biggest + 1, zero);
EXPECT_EQ(zero - 1, biggest);
EXPECT_EQ(high_low - one, low_high);
EXPECT_EQ(low_high + one, high_low);
EXPECT_EQ(Uint128High64((absl::uint128(1) << 64) - 1), 0);
EXPECT_EQ(Uint128Low64((absl::uint128(1) << 64) - 1),
std::numeric_limits<uint64_t>::max());
EXPECT_TRUE(!!one);
EXPECT_TRUE(!!high_low);
EXPECT_FALSE(!!zero);
EXPECT_FALSE(!one);
EXPECT_FALSE(!high_low);
EXPECT_TRUE(!zero);
EXPECT_TRUE(zero == 0); // NOLINT(readability/check)
EXPECT_FALSE(zero != 0); // NOLINT(readability/check)
EXPECT_FALSE(one == 0); // NOLINT(readability/check)
EXPECT_TRUE(one != 0); // NOLINT(readability/check)
EXPECT_FALSE(high_low == 0); // NOLINT(readability/check)
EXPECT_TRUE(high_low != 0); // NOLINT(readability/check)
absl::uint128 test = zero;
EXPECT_EQ(++test, one);
EXPECT_EQ(test, one);
EXPECT_EQ(test++, one);
EXPECT_EQ(test, two);
EXPECT_EQ(test -= 2, zero);
EXPECT_EQ(test, zero);
EXPECT_EQ(test += 2, two);
EXPECT_EQ(test, two);
EXPECT_EQ(--test, one);
EXPECT_EQ(test, one);
EXPECT_EQ(test--, one);
EXPECT_EQ(test, zero);
EXPECT_EQ(test |= three, three);
EXPECT_EQ(test &= one, one);
EXPECT_EQ(test ^= three, two);
EXPECT_EQ(test >>= 1, one);
EXPECT_EQ(test <<= 1, two);
EXPECT_EQ(big, -(-big));
EXPECT_EQ(two, -((-one) - 1));
EXPECT_EQ(absl::kuint128max, -one);
EXPECT_EQ(zero, -zero);
}
TEST(Uint128, ConversionTests) {
EXPECT_TRUE(absl::MakeUint128(1, 0));
#ifdef ABSL_HAVE_INTRINSIC_INT128
unsigned __int128 intrinsic =
(static_cast<unsigned __int128>(0x3a5b76c209de76f6) << 64) +
0x1f25e1d63a2b46c5;
absl::uint128 custom =
absl::MakeUint128(0x3a5b76c209de76f6, 0x1f25e1d63a2b46c5);
EXPECT_EQ(custom, absl::uint128(intrinsic));
EXPECT_EQ(custom, absl::uint128(static_cast<__int128>(intrinsic)));
EXPECT_EQ(intrinsic, static_cast<unsigned __int128>(custom));
EXPECT_EQ(intrinsic, static_cast<__int128>(custom));
#endif // ABSL_HAVE_INTRINSIC_INT128
// verify that an integer greater than 2**64 that can be stored precisely
// inside a double is converted to a absl::uint128 without loss of
// information.
double precise_double = 0x530e * std::pow(2.0, 64.0) + 0xda74000000000000;
absl::uint128 from_precise_double(precise_double);
absl::uint128 from_precise_ints =
absl::MakeUint128(0x530e, 0xda74000000000000);
EXPECT_EQ(from_precise_double, from_precise_ints);
EXPECT_DOUBLE_EQ(static_cast<double>(from_precise_ints), precise_double);
double approx_double = 0xffffeeeeddddcccc * std::pow(2.0, 64.0) +
0xbbbbaaaa99998888;
absl::uint128 from_approx_double(approx_double);
EXPECT_DOUBLE_EQ(static_cast<double>(from_approx_double), approx_double);
double round_to_zero = 0.7;
double round_to_five = 5.8;
double round_to_nine = 9.3;
EXPECT_EQ(static_cast<absl::uint128>(round_to_zero), 0);
EXPECT_EQ(static_cast<absl::uint128>(round_to_five), 5);
EXPECT_EQ(static_cast<absl::uint128>(round_to_nine), 9);
}
TEST(Uint128, OperatorAssignReturnRef) {
absl::uint128 v(1);
(v += 4) -= 3;
EXPECT_EQ(2, v);
}
TEST(Uint128, Multiply) {
absl::uint128 a, b, c;
// Zero test.
a = 0;
b = 0;
c = a * b;
EXPECT_EQ(0, c);
// Max carries.
a = absl::uint128(0) - 1;
b = absl::uint128(0) - 1;
c = a * b;
EXPECT_EQ(1, c);
// Self-operation with max carries.
c = absl::uint128(0) - 1;
c *= c;
EXPECT_EQ(1, c);
// 1-bit x 1-bit.
for (int i = 0; i < 64; ++i) {
for (int j = 0; j < 64; ++j) {
a = absl::uint128(1) << i;
b = absl::uint128(1) << j;
c = a * b;
EXPECT_EQ(absl::uint128(1) << (i + j), c);
}
}
// Verified with dc.
a = absl::MakeUint128(0xffffeeeeddddcccc, 0xbbbbaaaa99998888);
b = absl::MakeUint128(0x7777666655554444, 0x3333222211110000);
c = a * b;
EXPECT_EQ(absl::MakeUint128(0x530EDA741C71D4C3, 0xBF25975319080000), c);
EXPECT_EQ(0, c - b * a);
EXPECT_EQ(a*a - b*b, (a+b) * (a-b));
// Verified with dc.
a = absl::MakeUint128(0x0123456789abcdef, 0xfedcba9876543210);
b = absl::MakeUint128(0x02468ace13579bdf, 0xfdb97531eca86420);
c = a * b;
EXPECT_EQ(absl::MakeUint128(0x97a87f4f261ba3f2, 0x342d0bbf48948200), c);
EXPECT_EQ(0, c - b * a);
EXPECT_EQ(a*a - b*b, (a+b) * (a-b));
}
TEST(Uint128, AliasTests) {
absl::uint128 x1 = absl::MakeUint128(1, 2);
absl::uint128 x2 = absl::MakeUint128(2, 4);
x1 += x1;
EXPECT_EQ(x2, x1);
absl::uint128 x3 = absl::MakeUint128(1, static_cast<uint64_t>(1) << 63);
absl::uint128 x4 = absl::MakeUint128(3, 0);
x3 += x3;
EXPECT_EQ(x4, x3);
}
TEST(Uint128, DivideAndMod) {
using std::swap;
// a := q * b + r
absl::uint128 a, b, q, r;
// Zero test.
a = 0;
b = 123;
q = a / b;
r = a % b;
EXPECT_EQ(0, q);
EXPECT_EQ(0, r);
a = absl::MakeUint128(0x530eda741c71d4c3, 0xbf25975319080000);
q = absl::MakeUint128(0x4de2cab081, 0x14c34ab4676e4bab);
b = absl::uint128(0x1110001);
r = absl::uint128(0x3eb455);
ASSERT_EQ(a, q * b + r); // Sanity-check.
absl::uint128 result_q, result_r;
result_q = a / b;
result_r = a % b;
EXPECT_EQ(q, result_q);
EXPECT_EQ(r, result_r);
// Try the other way around.
swap(q, b);
result_q = a / b;
result_r = a % b;
EXPECT_EQ(q, result_q);
EXPECT_EQ(r, result_r);
// Restore.
swap(b, q);
// Dividend < divisor; result should be q:0 r:<dividend>.
swap(a, b);
result_q = a / b;
result_r = a % b;
EXPECT_EQ(0, result_q);
EXPECT_EQ(a, result_r);
// Try the other way around.
swap(a, q);
result_q = a / b;
result_r = a % b;
EXPECT_EQ(0, result_q);
EXPECT_EQ(a, result_r);
// Restore.
swap(q, a);
swap(b, a);
// Try a large remainder.
b = a / 2 + 1;
absl::uint128 expected_r =
absl::MakeUint128(0x29876d3a0e38ea61, 0xdf92cba98c83ffff);
// Sanity checks.
ASSERT_EQ(a / 2 - 1, expected_r);
ASSERT_EQ(a, b + expected_r);
result_q = a / b;
result_r = a % b;
EXPECT_EQ(1, result_q);
EXPECT_EQ(expected_r, result_r);
}
TEST(Uint128, DivideAndModRandomInputs) {
const int kNumIters = 1 << 18;
std::minstd_rand random(testing::UnitTest::GetInstance()->random_seed());
std::uniform_int_distribution<uint64_t> uniform_uint64;
for (int i = 0; i < kNumIters; ++i) {
const absl::uint128 a =
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random));
const absl::uint128 b =
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random));
if (b == 0) {
continue; // Avoid a div-by-zero.
}
const absl::uint128 q = a / b;
const absl::uint128 r = a % b;
ASSERT_EQ(a, b * q + r);
}
}
TEST(Uint128, ConstexprTest) {
constexpr absl::uint128 zero = absl::uint128();
constexpr absl::uint128 one = 1;
constexpr absl::uint128 minus_two = -2;
EXPECT_EQ(zero, absl::uint128(0));
EXPECT_EQ(one, absl::uint128(1));
EXPECT_EQ(minus_two, absl::MakeUint128(-1, -2));
}
TEST(Uint128, Traits) {
EXPECT_TRUE(absl::is_trivially_copy_constructible<absl::uint128>::value);
EXPECT_TRUE(absl::is_trivially_copy_assignable<absl::uint128>::value);
EXPECT_TRUE(std::is_trivially_destructible<absl::uint128>::value);
}
TEST(Uint128, OStream) {
struct {
absl::uint128 val;
std::ios_base::fmtflags flags;
std::streamsize width;
char fill;
const char* rep;
} cases[] = {
// zero with different bases
{absl::uint128(0), std::ios::dec, 0, '_', "0"},
{absl::uint128(0), std::ios::oct, 0, '_', "0"},
{absl::uint128(0), std::ios::hex, 0, '_', "0"},
// crossover between lo_ and hi_
{absl::MakeUint128(0, -1), std::ios::dec, 0, '_', "18446744073709551615"},
{absl::MakeUint128(0, -1), std::ios::oct, 0, '_',
"1777777777777777777777"},
{absl::MakeUint128(0, -1), std::ios::hex, 0, '_', "ffffffffffffffff"},
{absl::MakeUint128(1, 0), std::ios::dec, 0, '_', "18446744073709551616"},
{absl::MakeUint128(1, 0), std::ios::oct, 0, '_',
"2000000000000000000000"},
{absl::MakeUint128(1, 0), std::ios::hex, 0, '_', "10000000000000000"},
// just the top bit
{absl::MakeUint128(0x8000000000000000, 0), std::ios::dec, 0, '_',
"170141183460469231731687303715884105728"},
{absl::MakeUint128(0x8000000000000000, 0), std::ios::oct, 0, '_',
"2000000000000000000000000000000000000000000"},
{absl::MakeUint128(0x8000000000000000, 0), std::ios::hex, 0, '_',
"80000000000000000000000000000000"},
// maximum absl::uint128 value
{absl::MakeUint128(-1, -1), std::ios::dec, 0, '_',
"340282366920938463463374607431768211455"},
{absl::MakeUint128(-1, -1), std::ios::oct, 0, '_',
"3777777777777777777777777777777777777777777"},
{absl::MakeUint128(-1, -1), std::ios::hex, 0, '_',
"ffffffffffffffffffffffffffffffff"},
// uppercase
{absl::MakeUint128(-1, -1), std::ios::hex | std::ios::uppercase, 0, '_',
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"},
// showbase
{absl::uint128(1), std::ios::dec | std::ios::showbase, 0, '_', "1"},
{absl::uint128(1), std::ios::oct | std::ios::showbase, 0, '_', "01"},
{absl::uint128(1), std::ios::hex | std::ios::showbase, 0, '_', "0x1"},
// showbase does nothing on zero
{absl::uint128(0), std::ios::dec | std::ios::showbase, 0, '_', "0"},
{absl::uint128(0), std::ios::oct | std::ios::showbase, 0, '_', "0"},
{absl::uint128(0), std::ios::hex | std::ios::showbase, 0, '_', "0"},
// showpos does nothing on unsigned types
{absl::uint128(1), std::ios::dec | std::ios::showpos, 0, '_', "1"},
// padding
{absl::uint128(9), std::ios::dec, 6, '_', "_____9"},
{absl::uint128(12345), std::ios::dec, 6, '_', "_12345"},
// left adjustment
{absl::uint128(9), std::ios::dec | std::ios::left, 6, '_', "9_____"},
{absl::uint128(12345), std::ios::dec | std::ios::left, 6, '_', "12345_"},
};
for (const auto& test_case : cases) {
std::ostringstream os;
os.flags(test_case.flags);
os.width(test_case.width);
os.fill(test_case.fill);
os << test_case.val;
EXPECT_EQ(test_case.rep, os.str());
}
}
} // namespace