Export of internal Abseil changes.
-- ed3a3431eee9e48e6553b0320e0308d2dde6725c by Derek Mauro <dmauro@google.com>: Project import generated by Copybara. PiperOrigin-RevId: 258631680 GitOrigin-RevId: ed3a3431eee9e48e6553b0320e0308d2dde6725c Change-Id: I1d7ae86a79783842092d29504605ba039c369603
This commit is contained in:
		
							parent
							
								
									44efe96dfc
								
							
						
					
					
						commit
						c6c3c1b498
					
				
					 32 changed files with 1168 additions and 657 deletions
				
			
		|  | @ -22,11 +22,18 @@ | |||
| 
 | ||||
| namespace absl { | ||||
| namespace random_internal { | ||||
| // Returns true if the input value is zero or a power of two. Useful for
 | ||||
| // determining if the range of output values in a URBG
 | ||||
| template <typename UIntType> | ||||
| constexpr bool IsPowerOfTwoOrZero(UIntType n) { | ||||
|   return (n == 0) || ((n & (n - 1)) == 0); | ||||
| } | ||||
| 
 | ||||
| // Computes the length of the range of values producible by the URBG, or returns
 | ||||
| // zero if that would encompass the entire range of representable values in
 | ||||
| // URBG::result_type.
 | ||||
| template <typename URBG> | ||||
| constexpr typename URBG::result_type constexpr_range() { | ||||
| constexpr typename URBG::result_type RangeSize() { | ||||
|   using result_type = typename URBG::result_type; | ||||
|   return ((URBG::max)() == (std::numeric_limits<result_type>::max)() && | ||||
|           (URBG::min)() == std::numeric_limits<result_type>::lowest()) | ||||
|  | @ -34,6 +41,42 @@ constexpr typename URBG::result_type constexpr_range() { | |||
|              : (URBG::max)() - (URBG::min)() + result_type{1}; | ||||
| } | ||||
| 
 | ||||
| template <typename UIntType> | ||||
| constexpr UIntType LargestPowerOfTwoLessThanOrEqualTo(UIntType n) { | ||||
|   return n < 2 ? n : 2 * LargestPowerOfTwoLessThanOrEqualTo(n / 2); | ||||
| } | ||||
| 
 | ||||
| // Given a URBG generating values in the closed interval [Lo, Hi], returns the
 | ||||
| // largest power of two less than or equal to `Hi - Lo + 1`.
 | ||||
| template <typename URBG> | ||||
| constexpr typename URBG::result_type PowerOfTwoSubRangeSize() { | ||||
|   return LargestPowerOfTwoLessThanOrEqualTo(RangeSize<URBG>()); | ||||
| } | ||||
| 
 | ||||
| // Computes the floor of the log. (i.e., std::floor(std::log2(N));
 | ||||
| template <typename UIntType> | ||||
| constexpr UIntType IntegerLog2(UIntType n) { | ||||
|   return (n <= 1) ? 0 : 1 + IntegerLog2(n / 2); | ||||
| } | ||||
| 
 | ||||
| // Returns the number of bits of randomness returned through
 | ||||
| // `PowerOfTwoVariate(urbg)`.
 | ||||
| template <typename URBG> | ||||
| constexpr size_t NumBits() { | ||||
|   return RangeSize<URBG>() == 0 | ||||
|              ? std::numeric_limits<typename URBG::result_type>::digits | ||||
|              : IntegerLog2(PowerOfTwoSubRangeSize<URBG>()); | ||||
| } | ||||
| 
 | ||||
| // Given a shift value `n`, constructs a mask with exactly the low `n` bits set.
 | ||||
| // If `n == 0`, all bits are set.
 | ||||
| template <typename UIntType> | ||||
| constexpr UIntType MaskFromShift(UIntType n) { | ||||
|   return ((n % std::numeric_limits<UIntType>::digits) == 0) | ||||
|              ? ~UIntType{0} | ||||
|              : (UIntType{1} << n) - UIntType{1}; | ||||
| } | ||||
| 
 | ||||
| // FastUniformBits implements a fast path to acquire uniform independent bits
 | ||||
| // from a type which conforms to the [rand.req.urbg] concept.
 | ||||
| // Parameterized by:
 | ||||
|  | @ -45,14 +88,6 @@ constexpr typename URBG::result_type constexpr_range() { | |||
| // generator that will outlive the std::independent_bits_engine instance.
 | ||||
| template <typename UIntType = uint64_t> | ||||
| class FastUniformBits { | ||||
|   static_assert(std::is_unsigned<UIntType>::value, | ||||
|                 "Class-template FastUniformBits<> must be parameterized using " | ||||
|                 "an unsigned type."); | ||||
| 
 | ||||
|   // `kWidth` is the width, in binary digits, of the output. By default it is
 | ||||
|   // the number of binary digits in the `result_type`.
 | ||||
|   static constexpr size_t kWidth = std::numeric_limits<UIntType>::digits; | ||||
| 
 | ||||
|  public: | ||||
|   using result_type = UIntType; | ||||
| 
 | ||||
|  | @ -65,14 +100,47 @@ class FastUniformBits { | |||
|   result_type operator()(URBG& g);  // NOLINT(runtime/references)
 | ||||
| 
 | ||||
|  private: | ||||
|   // Variate() generates a single random variate, always returning a value
 | ||||
|   // in the closed interval [0 ... FastUniformBitsURBGConstants::kRangeMask]
 | ||||
|   // (kRangeMask+1 is a power of 2).
 | ||||
|   template <typename URBG> | ||||
|   typename URBG::result_type Variate(URBG& g);  // NOLINT(runtime/references)
 | ||||
|   static_assert(std::is_unsigned<UIntType>::value, | ||||
|                 "Class-template FastUniformBits<> must be parameterized using " | ||||
|                 "an unsigned type."); | ||||
| 
 | ||||
|   // generate() generates a random value, dispatched on whether
 | ||||
|   // the underlying URNG must loop over multiple calls or not.
 | ||||
|   // PowerOfTwoVariate() generates a single random variate, always returning a
 | ||||
|   // value in the half-open interval `[0, PowerOfTwoSubRangeSize<URBG>())`. If
 | ||||
|   // the URBG already generates values in a power-of-two range, the generator
 | ||||
|   // itself is used. Otherwise, we use rejection sampling on the largest
 | ||||
|   // possible power-of-two-sized subrange.
 | ||||
|   struct PowerOfTwoTag {}; | ||||
|   struct RejectionSamplingTag {}; | ||||
|   template <typename URBG> | ||||
|   static typename URBG::result_type PowerOfTwoVariate( | ||||
|       URBG& g) {  // NOLINT(runtime/references)
 | ||||
|     using tag = | ||||
|         typename std::conditional<IsPowerOfTwoOrZero(RangeSize<URBG>()), | ||||
|                                   PowerOfTwoTag, RejectionSamplingTag>::type; | ||||
|     return PowerOfTwoVariate(g, tag{}); | ||||
|   } | ||||
| 
 | ||||
|   template <typename URBG> | ||||
|   static typename URBG::result_type PowerOfTwoVariate( | ||||
|       URBG& g,  // NOLINT(runtime/references)
 | ||||
|       PowerOfTwoTag) { | ||||
|     return g() - (URBG::min)(); | ||||
|   } | ||||
| 
 | ||||
|   template <typename URBG> | ||||
|   static typename URBG::result_type PowerOfTwoVariate( | ||||
|       URBG& g,  // NOLINT(runtime/references)
 | ||||
|       RejectionSamplingTag) { | ||||
|     // Use rejection sampling to ensure uniformity across the range.
 | ||||
|     typename URBG::result_type u; | ||||
|     do { | ||||
|       u = g() - (URBG::min)(); | ||||
|     } while (u >= PowerOfTwoSubRangeSize<URBG>()); | ||||
|     return u; | ||||
|   } | ||||
| 
 | ||||
|   // Generate() generates a random value, dispatched on whether
 | ||||
|   // the underlying URBG must loop over multiple calls or not.
 | ||||
|   template <typename URBG> | ||||
|   result_type Generate(URBG& g,  // NOLINT(runtime/references)
 | ||||
|                        std::true_type /* avoid_looping */); | ||||
|  | @ -82,196 +150,107 @@ class FastUniformBits { | |||
|                        std::false_type /* avoid_looping */); | ||||
| }; | ||||
| 
 | ||||
| // FastUniformBitsURBGConstants computes the URBG-derived constants used
 | ||||
| // by FastUniformBits::Generate and FastUniformBits::Variate.
 | ||||
| // Parameterized by the FastUniformBits parameter:
 | ||||
| //   `URBG`: The underlying UniformRandomNumberGenerator.
 | ||||
| //
 | ||||
| // The values here indicate the URBG range as well as providing an indicator
 | ||||
| // whether the URBG output is a power of 2, and kRangeMask, which allows masking
 | ||||
| // the generated output to kRangeBits.
 | ||||
| template <typename UIntType> | ||||
| template <typename URBG> | ||||
| class FastUniformBitsURBGConstants { | ||||
|   // Computes the floor of the log. (i.e., std::floor(std::log2(N));
 | ||||
|   static constexpr size_t constexpr_log2(size_t n) { | ||||
|     return (n <= 1) ? 0 : 1 + constexpr_log2(n / 2); | ||||
|   } | ||||
| 
 | ||||
|   // Computes a mask of n bits for the URBG::result_type.
 | ||||
|   static constexpr typename URBG::result_type constexpr_mask(size_t n) { | ||||
|     return (typename URBG::result_type(1) << n) - 1; | ||||
|   } | ||||
| 
 | ||||
|  public: | ||||
|   using result_type = typename URBG::result_type; | ||||
| 
 | ||||
|   // The range of the URNG, max - min + 1, or zero if that result would cause
 | ||||
|   // overflow.
 | ||||
|   static constexpr result_type kRange = constexpr_range<URBG>(); | ||||
| 
 | ||||
|   static constexpr bool kPowerOfTwo = | ||||
|       (kRange == 0) || ((kRange & (kRange - 1)) == 0); | ||||
| 
 | ||||
|   // kRangeBits describes the number number of bits suitable to mask off of URNG
 | ||||
|   // variate, which is:
 | ||||
|   // kRangeBits = floor(log2(kRange))
 | ||||
|   static constexpr size_t kRangeBits = | ||||
|       kRange == 0 ? std::numeric_limits<result_type>::digits | ||||
|                   : constexpr_log2(kRange); | ||||
| 
 | ||||
|   // kRangeMask is the mask used when sampling variates from the URNG when the
 | ||||
|   // width of the URNG range is not a power of 2.
 | ||||
| typename FastUniformBits<UIntType>::result_type | ||||
| FastUniformBits<UIntType>::operator()(URBG& g) {  // NOLINT(runtime/references)
 | ||||
|   // kRangeMask is the mask used when sampling variates from the URBG when the
 | ||||
|   // width of the URBG range is not a power of 2.
 | ||||
|   // Y = (2 ^ kRange) - 1
 | ||||
|   static constexpr result_type kRangeMask = | ||||
|       kRange == 0 ? (std::numeric_limits<result_type>::max)() | ||||
|                   : constexpr_mask(kRangeBits); | ||||
| 
 | ||||
|   static_assert((URBG::max)() != (URBG::min)(), | ||||
|                 "Class-template FastUniformBitsURBGConstants<> " | ||||
|   static_assert((URBG::max)() > (URBG::min)(), | ||||
|                 "URBG::max and URBG::min may not be equal."); | ||||
| 
 | ||||
|   static_assert(std::is_unsigned<result_type>::value, | ||||
|                 "Class-template FastUniformBitsURBGConstants<> " | ||||
|                 "URBG::result_type must be unsigned."); | ||||
| 
 | ||||
|   static_assert(kRangeMask > 0, | ||||
|                 "Class-template FastUniformBitsURBGConstants<> " | ||||
|                 "URBG does not generate sufficient random bits."); | ||||
| 
 | ||||
|   static_assert(kRange == 0 || | ||||
|                     kRangeBits < std::numeric_limits<result_type>::digits, | ||||
|                 "Class-template FastUniformBitsURBGConstants<> " | ||||
|                 "URBG range computation error."); | ||||
| }; | ||||
| 
 | ||||
| // FastUniformBitsLoopingConstants computes the looping constants used
 | ||||
| // by FastUniformBits::Generate. These constants indicate how multiple
 | ||||
| // URBG::result_type values are combined into an output_value.
 | ||||
| // Parameterized by the FastUniformBits parameters:
 | ||||
| //  `UIntType`: output type.
 | ||||
| //  `URNG`: The underlying UniformRandomNumberGenerator.
 | ||||
| //
 | ||||
| // The looping constants describe the sets of loop counters and mask values
 | ||||
| // which control how individual variates are combined the final output.  The
 | ||||
| // algorithm ensures that the number of bits used by any individual call differs
 | ||||
| // by at-most one bit from any other call. This is simplified into constants
 | ||||
| // which describe two loops, with the second loop parameters providing one extra
 | ||||
| // bit per variate.
 | ||||
| //
 | ||||
| // See [rand.adapt.ibits] for more details on the use of these constants.
 | ||||
| template <typename UIntType, typename URBG> | ||||
| class FastUniformBitsLoopingConstants { | ||||
|  private: | ||||
|   static constexpr size_t kWidth = std::numeric_limits<UIntType>::digits; | ||||
|   using urbg_result_type = typename URBG::result_type; | ||||
|   using uint_result_type = UIntType; | ||||
| 
 | ||||
|  public: | ||||
|   using result_type = | ||||
|       typename std::conditional<(sizeof(urbg_result_type) <= | ||||
|                                  sizeof(uint_result_type)), | ||||
|                                 uint_result_type, urbg_result_type>::type; | ||||
| 
 | ||||
|  private: | ||||
|   // Estimate N as ceil(width / urng width), and W0 as (width / N).
 | ||||
|   static constexpr size_t kRangeBits = | ||||
|       FastUniformBitsURBGConstants<URBG>::kRangeBits; | ||||
| 
 | ||||
|   // The range of the URNG, max - min + 1, or zero if that result would cause
 | ||||
|   // overflow.
 | ||||
|   static constexpr result_type kRange = constexpr_range<URBG>(); | ||||
|   static constexpr size_t kEstimateN = | ||||
|       kWidth / kRangeBits + (kWidth % kRangeBits != 0); | ||||
|   static constexpr size_t kEstimateW0 = kWidth / kEstimateN; | ||||
|   static constexpr result_type kEstimateY0 = (kRange >> kEstimateW0) | ||||
|                                              << kEstimateW0; | ||||
| 
 | ||||
|  public: | ||||
|   // Parameters for the two loops:
 | ||||
|   // kN0, kN1 are the number of underlying calls required for each loop.
 | ||||
|   // KW0, kW1 are shift widths for each loop.
 | ||||
|   //
 | ||||
|   static constexpr size_t kN1 = (kRange - kEstimateY0) > | ||||
|                                         (kEstimateY0 / kEstimateN) | ||||
|                                     ? kEstimateN + 1 | ||||
|                                     : kEstimateN; | ||||
|   static constexpr size_t kN0 = kN1 - (kWidth % kN1); | ||||
|   static constexpr size_t kW0 = kWidth / kN1; | ||||
|   static constexpr size_t kW1 = kW0 + 1; | ||||
| 
 | ||||
|   static constexpr result_type kM0 = (result_type(1) << kW0) - 1; | ||||
|   static constexpr result_type kM1 = (result_type(1) << kW1) - 1; | ||||
| 
 | ||||
|   static_assert( | ||||
|       kW0 <= kRangeBits, | ||||
|       "Class-template FastUniformBitsLoopingConstants::kW0 too large."); | ||||
| 
 | ||||
|   static_assert( | ||||
|       kW0 > 0, | ||||
|       "Class-template FastUniformBitsLoopingConstants::kW0 too small."); | ||||
| }; | ||||
| 
 | ||||
| template <typename UIntType> | ||||
| template <typename URBG> | ||||
| typename FastUniformBits<UIntType>::result_type | ||||
| FastUniformBits<UIntType>::operator()( | ||||
|     URBG& g) {  // NOLINT(runtime/references)
 | ||||
|   using constants = FastUniformBitsURBGConstants<URBG>; | ||||
|   return Generate( | ||||
|       g, std::integral_constant<bool, constants::kRangeMask >= (max)()>{}); | ||||
| } | ||||
| 
 | ||||
| template <typename UIntType> | ||||
| template <typename URBG> | ||||
| typename URBG::result_type FastUniformBits<UIntType>::Variate( | ||||
|     URBG& g) {  // NOLINT(runtime/references)
 | ||||
|   using constants = FastUniformBitsURBGConstants<URBG>; | ||||
|   if (constants::kPowerOfTwo) { | ||||
|     return g() - (URBG::min)(); | ||||
|   } | ||||
| 
 | ||||
|   // Use rejection sampling to ensure uniformity across the range.
 | ||||
|   typename URBG::result_type u; | ||||
|   do { | ||||
|     u = g() - (URBG::min)(); | ||||
|   } while (u > constants::kRangeMask); | ||||
|   return u; | ||||
|   constexpr urbg_result_type kRangeMask = | ||||
|       RangeSize<URBG>() == 0 | ||||
|           ? (std::numeric_limits<urbg_result_type>::max)() | ||||
|           : static_cast<urbg_result_type>(PowerOfTwoSubRangeSize<URBG>() - 1); | ||||
|   return Generate(g, std::integral_constant<bool, (kRangeMask >= (max)())>{}); | ||||
| } | ||||
| 
 | ||||
| template <typename UIntType> | ||||
| template <typename URBG> | ||||
| typename FastUniformBits<UIntType>::result_type | ||||
| FastUniformBits<UIntType>::Generate( | ||||
|     URBG& g,  // NOLINT(runtime/references)
 | ||||
|     std::true_type /* avoid_looping */) { | ||||
| FastUniformBits<UIntType>::Generate(URBG& g,  // NOLINT(runtime/references)
 | ||||
|                                     std::true_type /* avoid_looping */) { | ||||
|   // The width of the result_type is less than than the width of the random bits
 | ||||
|   // provided by URNG.  Thus, generate a single value and then simply mask off
 | ||||
|   // provided by URBG.  Thus, generate a single value and then simply mask off
 | ||||
|   // the required bits.
 | ||||
|   return Variate(g) & (max)(); | ||||
| 
 | ||||
|   return PowerOfTwoVariate(g) & (max)(); | ||||
| } | ||||
| 
 | ||||
| template <typename UIntType> | ||||
| template <typename URBG> | ||||
| typename FastUniformBits<UIntType>::result_type | ||||
| FastUniformBits<UIntType>::Generate( | ||||
|     URBG& g,  // NOLINT(runtime/references)
 | ||||
|     std::false_type /* avoid_looping */) { | ||||
|   // The width of the result_type is wider than the number of random bits
 | ||||
|   // provided by URNG. Thus we merge several variates of URNG into the result
 | ||||
|   // using a shift and mask.  The constants type generates the parameters used
 | ||||
|   // ensure that the bits are distributed across all the invocations of the
 | ||||
|   // underlying URNG.
 | ||||
|   using constants = FastUniformBitsLoopingConstants<UIntType, URBG>; | ||||
| FastUniformBits<UIntType>::Generate(URBG& g,  // NOLINT(runtime/references)
 | ||||
|                                     std::false_type /* avoid_looping */) { | ||||
|   // See [rand.adapt.ibits] for more details on the constants calculated below.
 | ||||
|   //
 | ||||
|   // It is preferable to use roughly the same number of bits from each generator
 | ||||
|   // call, however this is only possible when the number of bits provided by the
 | ||||
|   // URBG is a divisor of the number of bits in `result_type`. In all other
 | ||||
|   // cases, the number of bits used cannot always be the same, but it can be
 | ||||
|   // guaranteed to be off by at most 1. Thus we run two loops, one with a
 | ||||
|   // smaller bit-width size (`kSmallWidth`) and one with a larger width size
 | ||||
|   // (satisfying `kLargeWidth == kSmallWidth + 1`). The loops are run
 | ||||
|   // `kSmallIters` and `kLargeIters` times respectively such
 | ||||
|   // that
 | ||||
|   //
 | ||||
|   //    `kTotalWidth == kSmallIters * kSmallWidth
 | ||||
|   //                    + kLargeIters * kLargeWidth`
 | ||||
|   //
 | ||||
|   // where `kTotalWidth` is the total number of bits in `result_type`.
 | ||||
|   //
 | ||||
|   constexpr size_t kTotalWidth = std::numeric_limits<result_type>::digits; | ||||
|   constexpr size_t kUrbgWidth = NumBits<URBG>(); | ||||
|   constexpr size_t kTotalIters = | ||||
|       kTotalWidth / kUrbgWidth + (kTotalWidth % kUrbgWidth != 0); | ||||
|   constexpr size_t kSmallWidth = kTotalWidth / kTotalIters; | ||||
|   constexpr size_t kLargeWidth = kSmallWidth + 1; | ||||
|   //
 | ||||
|   // Because `kLargeWidth == kSmallWidth + 1`, it follows that
 | ||||
|   //
 | ||||
|   //     `kTotalWidth == kTotalIters * kSmallWidth + kLargeIters`
 | ||||
|   //
 | ||||
|   // and therefore
 | ||||
|   //
 | ||||
|   //     `kLargeIters == kTotalWidth % kSmallWidth`
 | ||||
|   //
 | ||||
|   // Intuitively, each iteration with the large width accounts for one unit
 | ||||
|   // of the remainder when `kTotalWidth` is divided by `kSmallWidth`. As
 | ||||
|   // mentioned above, if the URBG width is a divisor of `kTotalWidth`, then
 | ||||
|   // there would be no need for any large iterations (i.e., one loop would
 | ||||
|   // suffice), and indeed, in this case, `kLargeIters` would be zero.
 | ||||
|   constexpr size_t kLargeIters = kTotalWidth % kSmallWidth; | ||||
|   constexpr size_t kSmallIters = | ||||
|       (kTotalWidth - (kLargeWidth * kLargeIters)) / kSmallWidth; | ||||
| 
 | ||||
|   static_assert( | ||||
|       kTotalWidth == kSmallIters * kSmallWidth + kLargeIters * kLargeWidth, | ||||
|       "Error in looping constant calculations."); | ||||
| 
 | ||||
|   result_type s = 0; | ||||
|   for (size_t n = 0; n < constants::kN0; ++n) { | ||||
|     auto u = Variate(g); | ||||
|     s = (s << constants::kW0) + (u & constants::kM0); | ||||
| 
 | ||||
|   constexpr size_t kSmallShift = kSmallWidth % kTotalWidth; | ||||
|   constexpr result_type kSmallMask = MaskFromShift(result_type{kSmallShift}); | ||||
|   for (size_t n = 0; n < kSmallIters; ++n) { | ||||
|     s = (s << kSmallShift) + | ||||
|         (static_cast<result_type>(PowerOfTwoVariate(g)) & kSmallMask); | ||||
|   } | ||||
|   for (size_t n = constants::kN0; n < constants::kN1; ++n) { | ||||
|     auto u = Variate(g); | ||||
|     s = (s << constants::kW1) + (u & constants::kM1); | ||||
| 
 | ||||
|   constexpr size_t kLargeShift = kLargeWidth % kTotalWidth; | ||||
|   constexpr result_type kLargeMask = MaskFromShift(result_type{kLargeShift}); | ||||
|   for (size_t n = 0; n < kLargeIters; ++n) { | ||||
|     s = (s << kLargeShift) + | ||||
|         (static_cast<result_type>(PowerOfTwoVariate(g)) & kLargeMask); | ||||
|   } | ||||
| 
 | ||||
|   static_assert( | ||||
|       kLargeShift == kSmallShift + 1 || | ||||
|           (kLargeShift == 0 && | ||||
|            kSmallShift == std::numeric_limits<result_type>::digits - 1), | ||||
|       "Error in looping constant calculations"); | ||||
| 
 | ||||
|   return s; | ||||
| } | ||||
| 
 | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue