Export of internal Abseil changes.
-- 7a6ff16a85beb730c172d5d25cf1b5e1be885c56 by Laramie Leavitt <lar@google.com>: Internal change. PiperOrigin-RevId: 254454546 -- ff8f9bafaefc26d451f576ea4a06d150aed63f6f by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254451562 -- deefc5b651b479ce36f0b4ef203e119c0c8936f2 by CJ Johnson <johnsoncj@google.com>: Account for subtracting unsigned values from the size of InlinedVector PiperOrigin-RevId: 254450625 -- 3c677316a27bcadc17e41957c809ca472d5fef14 by Andy Soffer <asoffer@google.com>: Add C++17's std::make_from_tuple to absl/utility/utility.h PiperOrigin-RevId: 254411573 -- 4ee3536a918830eeec402a28fc31a62c7c90b940 by CJ Johnson <johnsoncj@google.com>: Adds benchmark for the rest of the InlinedVector public API PiperOrigin-RevId: 254408378 -- e5a21a00700ee83498ff1efbf649169756463ee4 by CJ Johnson <johnsoncj@google.com>: Updates the definition of InlinedVector::shrink_to_fit() to be exception safe and adds exception safety tests for it. PiperOrigin-RevId: 254401387 -- 2ea82e72b86d82d78b4e4712a63a55981b53c64b by Laramie Leavitt <lar@google.com>: Use absl::InsecureBitGen in place of std::mt19937 in tests absl/random/...distribution_test.cc PiperOrigin-RevId: 254289444 -- fa099e02c413a7ffda732415e8105cad26a90337 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254286334 -- ce34b7f36933b30cfa35b9c9a5697a792b5666e4 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254273059 -- 6f9c473da7c2090c2e85a37c5f00622e8a912a89 by Jorg Brown <jorg@google.com>: Change absl::container_internal::CompressedTuple to instantiate its internal Storage class with the name of the type it's holding, rather than the name of the Tuple. This is not an externally-visible change, other than less compiler memory is used and less debug information is generated. PiperOrigin-RevId: 254269285 -- 8bd3c186bf2fc0c55d8a2dd6f28a5327502c9fba by Andy Soffer <asoffer@google.com>: Adding short-hand IntervalClosed for IntervalClosedClosed and IntervalOpen for IntervalOpenOpen. PiperOrigin-RevId: 254252419 -- ea957f99b6a04fccd42aa05605605f3b44b1ecfd by Abseil Team <absl-team@google.com>: Do not directly use __SIZEOF_INT128__. In order to avoid linker errors when building with clang-cl (__fixunsdfti, __udivti3 and __fixunssfti are undefined), this CL uses ABSL_HAVE_INTRINSIC_INT128 which is not defined for clang-cl. PiperOrigin-RevId: 254250739 -- 89ab385cd26b34d64130bce856253aaba96d2345 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254242321 -- cffc793d93eca6d6bdf7de733847b6ab4a255ae9 by CJ Johnson <johnsoncj@google.com>: Adds benchmark for InlinedVector::reserve(size_type) PiperOrigin-RevId: 254199226 -- c90c7a9fa3c8f0c9d5114036979548b055ea2f2a by Gennadiy Rozental <rogeeff@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 254072387 -- c4c388beae016c9570ab54ffa1d52660e4a85b7b by Laramie Leavitt <lar@google.com>: Internal cleanup. PiperOrigin-RevId: 254062381 -- d3c992e221cc74e5372d0c8fa410170b6a43c062 by Tom Manshreck <shreck@google.com>: Update distributions.h to Abseil standards PiperOrigin-RevId: 254054946 -- d15ad0035c34ef11b14fadc5a4a2d3ec415f5518 by CJ Johnson <johnsoncj@google.com>: Removes functions with only one caller from the implementation details of InlinedVector by manually inlining the definitions PiperOrigin-RevId: 254005427 -- 2f37e807efc3a8ef1f4b539bdd379917d4151520 by Andy Soffer <asoffer@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253999861 -- 24ed1694b6430791d781ed533a8f8ccf6cac5856 by CJ Johnson <johnsoncj@google.com>: Updates the definition of InlinedVector::assign(...)/InlinedVector::operator=(...) to new, exception-safe implementations with exception safety tests to boot PiperOrigin-RevId: 253993691 -- 5613d95f5a7e34a535cfaeadce801441e990843e by CJ Johnson <johnsoncj@google.com>: Adds benchmarks for InlinedVector::shrink_to_fit() PiperOrigin-RevId: 253989647 -- 2a96ddfdac40bbb8cb6a7f1aeab90917067c6e63 by Abseil Team <absl-team@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253927497 -- bf1aff8fc9ffa921ad74643e9525ecf25b0d8dc1 by Andy Soffer <asoffer@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253920512 -- bfc03f4a3dcda3cf3a4b84bdb84cda24e3394f41 by Laramie Leavitt <lar@google.com>: Internal change. PiperOrigin-RevId: 253886486 -- 05036cfcc078ca7c5f581a00dfb0daed568cbb69 by Eric Fiselier <ericwf@google.com>: Don't include `winsock2.h` because it drags in `windows.h` and friends, and they define awful macros like OPAQUE, ERROR, and more. This has the potential to break abseil users. Instead we only forward declare `timeval` and require Windows users include `winsock2.h` themselves. This is both inconsistent and poor QoI, but so including 'windows.h' is bad too. PiperOrigin-RevId: 253852615 GitOrigin-RevId: 7a6ff16a85beb730c172d5d25cf1b5e1be885c56 Change-Id: Icd6aff87da26f29ec8915da856f051129987cef6
This commit is contained in:
		
							parent
							
								
									43ef2148c0
								
							
						
					
					
						commit
						e9324d926a
					
				
					 120 changed files with 22842 additions and 340 deletions
				
			
		
							
								
								
									
										245
									
								
								absl/random/discrete_distribution.h
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										245
									
								
								absl/random/discrete_distribution.h
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,245 @@ | |||
| // Copyright 2017 The Abseil Authors.
 | ||||
| //
 | ||||
| // Licensed under the Apache License, Version 2.0 (the "License");
 | ||||
| // you may not use this file except in compliance with the License.
 | ||||
| // You may obtain a copy of the License at
 | ||||
| //
 | ||||
| //      https://www.apache.org/licenses/LICENSE-2.0
 | ||||
| //
 | ||||
| // Unless required by applicable law or agreed to in writing, software
 | ||||
| // distributed under the License is distributed on an "AS IS" BASIS,
 | ||||
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | ||||
| // See the License for the specific language governing permissions and
 | ||||
| // limitations under the License.
 | ||||
| 
 | ||||
| #ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_ | ||||
| #define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_ | ||||
| 
 | ||||
| #include <cassert> | ||||
| #include <cmath> | ||||
| #include <istream> | ||||
| #include <limits> | ||||
| #include <numeric> | ||||
| #include <type_traits> | ||||
| #include <utility> | ||||
| #include <vector> | ||||
| 
 | ||||
| #include "absl/random/bernoulli_distribution.h" | ||||
| #include "absl/random/internal/iostream_state_saver.h" | ||||
| #include "absl/random/uniform_int_distribution.h" | ||||
| 
 | ||||
| namespace absl { | ||||
| 
 | ||||
| // absl::discrete_distribution
 | ||||
| //
 | ||||
| // A discrete distribution produces random integers i, where 0 <= i < n
 | ||||
| // distributed according to the discrete probability function:
 | ||||
| //
 | ||||
| //     P(i|p0,...,pn−1)=pi
 | ||||
| //
 | ||||
| // This class is an implementation of discrete_distribution (see
 | ||||
| // [rand.dist.samp.discrete]).
 | ||||
| //
 | ||||
| // The algorithm used is Walker's Aliasing algorithm, described in Knuth, Vol 2.
 | ||||
| // absl::discrete_distribution takes O(N) time to precompute the probabilities
 | ||||
| // (where N is the number of possible outcomes in the distribution) at
 | ||||
| // construction, and then takes O(1) time for each variate generation.  Many
 | ||||
| // other implementations also take O(N) time to construct an ordered sequence of
 | ||||
| // partial sums, plus O(log N) time per variate to binary search.
 | ||||
| //
 | ||||
| template <typename IntType = int> | ||||
| class discrete_distribution { | ||||
|  public: | ||||
|   using result_type = IntType; | ||||
| 
 | ||||
|   class param_type { | ||||
|    public: | ||||
|     using distribution_type = discrete_distribution; | ||||
| 
 | ||||
|     param_type() { init(); } | ||||
| 
 | ||||
|     template <typename InputIterator> | ||||
|     explicit param_type(InputIterator begin, InputIterator end) | ||||
|         : p_(begin, end) { | ||||
|       init(); | ||||
|     } | ||||
| 
 | ||||
|     explicit param_type(std::initializer_list<double> weights) : p_(weights) { | ||||
|       init(); | ||||
|     } | ||||
| 
 | ||||
|     template <class UnaryOperation> | ||||
|     explicit param_type(size_t nw, double xmin, double xmax, | ||||
|                         UnaryOperation fw) { | ||||
|       if (nw > 0) { | ||||
|         p_.reserve(nw); | ||||
|         double delta = (xmax - xmin) / static_cast<double>(nw); | ||||
|         assert(delta > 0); | ||||
|         double t = delta * 0.5; | ||||
|         for (size_t i = 0; i < nw; ++i) { | ||||
|           p_.push_back(fw(xmin + i * delta + t)); | ||||
|         } | ||||
|       } | ||||
|       init(); | ||||
|     } | ||||
| 
 | ||||
|     const std::vector<double>& probabilities() const { return p_; } | ||||
|     size_t n() const { return p_.size() - 1; } | ||||
| 
 | ||||
|     friend bool operator==(const param_type& a, const param_type& b) { | ||||
|       return a.probabilities() == b.probabilities(); | ||||
|     } | ||||
| 
 | ||||
|     friend bool operator!=(const param_type& a, const param_type& b) { | ||||
|       return !(a == b); | ||||
|     } | ||||
| 
 | ||||
|    private: | ||||
|     friend class discrete_distribution; | ||||
| 
 | ||||
|     void init(); | ||||
| 
 | ||||
|     std::vector<double> p_;                     // normalized probabilities
 | ||||
|     std::vector<std::pair<double, size_t>> q_;  // (acceptance, alternate) pairs
 | ||||
| 
 | ||||
|     static_assert(std::is_integral<result_type>::value, | ||||
|                   "Class-template absl::discrete_distribution<> must be " | ||||
|                   "parameterized using an integral type."); | ||||
|   }; | ||||
| 
 | ||||
|   discrete_distribution() : param_() {} | ||||
| 
 | ||||
|   explicit discrete_distribution(const param_type& p) : param_(p) {} | ||||
| 
 | ||||
|   template <typename InputIterator> | ||||
|   explicit discrete_distribution(InputIterator begin, InputIterator end) | ||||
|       : param_(begin, end) {} | ||||
| 
 | ||||
|   explicit discrete_distribution(std::initializer_list<double> weights) | ||||
|       : param_(weights) {} | ||||
| 
 | ||||
|   template <class UnaryOperation> | ||||
|   explicit discrete_distribution(size_t nw, double xmin, double xmax, | ||||
|                                  UnaryOperation fw) | ||||
|       : param_(nw, xmin, xmax, std::move(fw)) {} | ||||
| 
 | ||||
|   void reset() {} | ||||
| 
 | ||||
|   // generating functions
 | ||||
|   template <typename URBG> | ||||
|   result_type operator()(URBG& g) {  // NOLINT(runtime/references)
 | ||||
|     return (*this)(g, param_); | ||||
|   } | ||||
| 
 | ||||
|   template <typename URBG> | ||||
|   result_type operator()(URBG& g,  // NOLINT(runtime/references)
 | ||||
|                          const param_type& p); | ||||
| 
 | ||||
|   const param_type& param() const { return param_; } | ||||
|   void param(const param_type& p) { param_ = p; } | ||||
| 
 | ||||
|   result_type(min)() const { return 0; } | ||||
|   result_type(max)() const { | ||||
|     return static_cast<result_type>(param_.n()); | ||||
|   }  // inclusive
 | ||||
| 
 | ||||
|   // NOTE [rand.dist.sample.discrete] returns a std::vector<double> not a
 | ||||
|   // const std::vector<double>&.
 | ||||
|   const std::vector<double>& probabilities() const { | ||||
|     return param_.probabilities(); | ||||
|   } | ||||
| 
 | ||||
|   friend bool operator==(const discrete_distribution& a, | ||||
|                          const discrete_distribution& b) { | ||||
|     return a.param_ == b.param_; | ||||
|   } | ||||
|   friend bool operator!=(const discrete_distribution& a, | ||||
|                          const discrete_distribution& b) { | ||||
|     return a.param_ != b.param_; | ||||
|   } | ||||
| 
 | ||||
|  private: | ||||
|   param_type param_; | ||||
| }; | ||||
| 
 | ||||
| // --------------------------------------------------------------------------
 | ||||
| // Implementation details only below
 | ||||
| // --------------------------------------------------------------------------
 | ||||
| 
 | ||||
| namespace random_internal { | ||||
| 
 | ||||
| // Using the vector `*probabilities`, whose values are the weights or
 | ||||
| // probabilities of an element being selected, constructs the proportional
 | ||||
| // probabilities used by the discrete distribution.  `*probabilities` will be
 | ||||
| // scaled, if necessary, so that its entries sum to a value sufficiently close
 | ||||
| // to 1.0.
 | ||||
| std::vector<std::pair<double, size_t>> InitDiscreteDistribution( | ||||
|     std::vector<double>* probabilities); | ||||
| 
 | ||||
| }  // namespace random_internal
 | ||||
| 
 | ||||
| template <typename IntType> | ||||
| void discrete_distribution<IntType>::param_type::init() { | ||||
|   if (p_.empty()) { | ||||
|     p_.push_back(1.0); | ||||
|     q_.emplace_back(1.0, 0); | ||||
|   } else { | ||||
|     assert(n() <= (std::numeric_limits<IntType>::max)()); | ||||
|     q_ = random_internal::InitDiscreteDistribution(&p_); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| template <typename IntType> | ||||
| template <typename URBG> | ||||
| typename discrete_distribution<IntType>::result_type | ||||
| discrete_distribution<IntType>::operator()( | ||||
|     URBG& g,  // NOLINT(runtime/references)
 | ||||
|     const param_type& p) { | ||||
|   const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g); | ||||
|   const auto& q = p.q_[idx]; | ||||
|   const bool selected = absl::bernoulli_distribution(q.first)(g); | ||||
|   return selected ? idx : static_cast<result_type>(q.second); | ||||
| } | ||||
| 
 | ||||
| template <typename CharT, typename Traits, typename IntType> | ||||
| std::basic_ostream<CharT, Traits>& operator<<( | ||||
|     std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
 | ||||
|     const discrete_distribution<IntType>& x) { | ||||
|   auto saver = random_internal::make_ostream_state_saver(os); | ||||
|   const auto& probabilities = x.param().probabilities(); | ||||
|   os << probabilities.size(); | ||||
| 
 | ||||
|   os.precision(random_internal::stream_precision_helper<double>::kPrecision); | ||||
|   for (const auto& p : probabilities) { | ||||
|     os << os.fill() << p; | ||||
|   } | ||||
|   return os; | ||||
| } | ||||
| 
 | ||||
| template <typename CharT, typename Traits, typename IntType> | ||||
| std::basic_istream<CharT, Traits>& operator>>( | ||||
|     std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)
 | ||||
|     discrete_distribution<IntType>& x) {    // NOLINT(runtime/references)
 | ||||
|   using param_type = typename discrete_distribution<IntType>::param_type; | ||||
|   auto saver = random_internal::make_istream_state_saver(is); | ||||
| 
 | ||||
|   size_t n; | ||||
|   std::vector<double> p; | ||||
| 
 | ||||
|   is >> n; | ||||
|   if (is.fail()) return is; | ||||
|   if (n > 0) { | ||||
|     p.reserve(n); | ||||
|     for (IntType i = 0; i < n && !is.fail(); ++i) { | ||||
|       auto tmp = random_internal::read_floating_point<double>(is); | ||||
|       if (is.fail()) return is; | ||||
|       p.push_back(tmp); | ||||
|     } | ||||
|   } | ||||
|   x.param(param_type(p.begin(), p.end())); | ||||
|   return is; | ||||
| } | ||||
| 
 | ||||
| }  // namespace absl
 | ||||
| 
 | ||||
| #endif  // ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
 | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue