More Elisp linting

This should cover most of the remaining linting errors. After this, I expect
fewer than ten linting errors.
This commit is contained in:
William Carroll 2020-09-01 10:17:43 +01:00
parent a638e15c0d
commit fb5ec068dd
47 changed files with 1049 additions and 989 deletions

View file

@ -1,5 +1,9 @@
;;; cycle.el --- Simple module for working with cycles. -*- lexical-binding: t -*-
;; Author: William Carroll <wpcarro@gmail.com>
;; Version: 0.0.1
;; URL: https://git.wpcarro.dev/wpcarro/briefcase
;; Package-Requires: ((emacs "24"))
;;; Commentary:
;; Something like this may already exist, but I'm having trouble finding it, and
@ -21,7 +25,7 @@
;; - TODO: Provide immutable variant.
;; - TODO: Replace mutable consumption with immutable variant.
;; - TODO: Replace indexing with (math/mod current cycle).
;; - TODO: Replace indexing with (math-mod current cycle).
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Library
@ -31,10 +35,10 @@
;; `xs' is the original list
(cl-defstruct cycle current-index previous-index xs)
(defconst cycle/enable-tests? t
(defconst cycle-enable-tests? t
"When t, run the tests defined herein.")
(defun cycle/from-list (xs)
(defun cycle-from-list (xs)
"Create a cycle from a list of `XS'."
(if (= 0 (length xs))
(make-cycle :current-index nil
@ -44,11 +48,11 @@
:previous-index nil
:xs xs)))
(defun cycle/new (&rest xs)
(defun cycle-new (&rest xs)
"Create a cycle with XS as the values."
(cycle/from-list xs))
(cycle-from-list xs))
(defun cycle/to-list (xs)
(defun cycle-to-list (xs)
"Return the list representation of a cycle, XS."
(cycle-xs xs))
@ -70,7 +74,7 @@
lo
(+ 1 x)))
(defun cycle/previous-focus (cycle)
(defun cycle-previous-focus (cycle)
"Return the previously focused entry in CYCLE."
(let ((i (cycle-previous-index cycle)))
(if (maybe-some? i)
@ -79,81 +83,81 @@
;; TODO: Consider adding "!" to the function name herein since many of them
;; mutate the collection, and the APIs are beginning to confuse me.
(defun cycle/focus-previous! (xs)
(defun cycle-focus-previous! (xs)
"Jump to the item in XS that was most recently focused; return the cycle.
This will error when previous-index is nil. This function mutates the
underlying struct."
(let ((i (cycle-previous-index xs)))
(if (maybe-some? i)
(progn
(cycle/jump i xs)
(cycle/current xs))
(cycle-jump i xs)
(cycle-current xs))
(error "Cannot focus the previous element since cycle-previous-index is nil"))))
(defun cycle/next (xs)
(defun cycle-next (xs)
"Return the next value in `XS' and update `current-index'."
(let* ((current-index (cycle-current-index xs))
(next-index (next-index-> 0 (cycle/count xs) current-index)))
(next-index (next-index-> 0 (cycle-count xs) current-index)))
(struct-set! cycle previous-index current-index xs)
(struct-set! cycle current-index next-index xs)
(nth next-index (cycle-xs xs))))
(defun cycle/prev (xs)
(defun cycle-prev (xs)
"Return the previous value in `XS' and update `current-index'."
(let* ((current-index (cycle-current-index xs))
(next-index (next-index<- 0 (cycle/count xs) current-index)))
(next-index (next-index<- 0 (cycle-count xs) current-index)))
(struct-set! cycle previous-index current-index xs)
(struct-set! cycle current-index next-index xs)
(nth next-index (cycle-xs xs))))
(defun cycle/current (cycle)
(defun cycle-current (cycle)
"Return the current value in `CYCLE'."
(nth (cycle-current-index cycle) (cycle-xs cycle)))
(defun cycle/count (cycle)
(defun cycle-count (cycle)
"Return the length of `xs' in `CYCLE'."
(length (cycle-xs cycle)))
(defun cycle/jump (i xs)
(defun cycle-jump (i xs)
"Jump to the I index of XS."
(let ((current-index (cycle-current-index xs))
(next-index (math/mod i (cycle/count xs))))
(next-index (math-mod i (cycle-count xs))))
(struct-set! cycle previous-index current-index xs)
(struct-set! cycle current-index next-index xs))
xs)
(defun cycle/focus (p cycle)
(defun cycle-focus (p cycle)
"Focus the element in CYCLE for which predicate, P, is t."
(let ((i (->> cycle
cycle-xs
(-find-index p))))
(if i
(cycle/jump i cycle)
(cycle-jump i cycle)
(error "No element in cycle matches predicate"))))
(defun cycle/focus-item (x xs)
(defun cycle-focus-item (x xs)
"Focus ITEM in cycle XS.
ITEM is the first item in XS that t for `equal'."
(cycle/focus (lambda (y) (equal x y)) xs))
(cycle-focus (lambda (y) (equal x y)) xs))
(defun cycle/contains? (x xs)
(defun cycle-contains? (x xs)
"Return t if cycle, XS, has member X."
(->> xs
cycle-xs
(list/contains? x)))
(list-contains? x)))
(defun cycle/empty? (xs)
(defun cycle-empty? (xs)
"Return t if cycle XS has no elements."
(= 0 (length (cycle-xs xs))))
(defun cycle/focused? (xs)
(defun cycle-focused? (xs)
"Return t if cycle XS has a non-nil value for current-index."
(maybe-some? (cycle-current-index xs)))
(defun cycle/append (x xs)
(defun cycle-append (x xs)
"Add X to the left of the focused element in XS.
If there is no currently focused item, add X to the beginning of XS."
(if (cycle/empty? xs)
(if (cycle-empty? xs)
(progn
(struct-set! cycle xs (list x) xs)
(struct-set! cycle current-index 0 xs)
@ -170,7 +174,7 @@ If there is no currently focused item, add X to the beginning of XS."
(when prev-i (struct-set! cycle previous-index (1+ prev-i) xs))))
xs)))
(defun cycle/remove (x xs)
(defun cycle-remove (x xs)
"Attempt to remove X from XS.
X is found using `equal'.
@ -194,25 +198,25 @@ If X is the currently focused value, after it's deleted, current-index will be
;; Tests
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(when cycle/enable-tests?
(let ((xs (cycle/new 1 2 3)))
(prelude-assert (maybe-nil? (cycle/previous-focus xs)))
(prelude-assert (= 1 (cycle/current xs)))
(prelude-assert (= 2 (cycle/next xs)))
(prelude-assert (= 1 (cycle/previous-focus xs)))
(prelude-assert (= 1 (->> xs (cycle/jump 0) cycle/current)))
(prelude-assert (= 2 (->> xs (cycle/jump 1) cycle/current)))
(prelude-assert (= 3 (->> xs (cycle/jump 2) cycle/current)))
(prelude-assert (= 2 (cycle/previous-focus xs)))
(prelude-assert (= 2 (cycle/focus-previous! xs)))
(prelude-assert (equal '(1 4 2 3) (cycle-xs (cycle/append 4 xs))))
(prelude-assert (equal '(1 2 3) (cycle-xs (cycle/remove 4 xs))))
(when cycle-enable-tests?
(let ((xs (cycle-new 1 2 3)))
(prelude-assert (maybe-nil? (cycle-previous-focus xs)))
(prelude-assert (= 1 (cycle-current xs)))
(prelude-assert (= 2 (cycle-next xs)))
(prelude-assert (= 1 (cycle-previous-focus xs)))
(prelude-assert (= 1 (->> xs (cycle-jump 0) cycle-current)))
(prelude-assert (= 2 (->> xs (cycle-jump 1) cycle-current)))
(prelude-assert (= 3 (->> xs (cycle-jump 2) cycle-current)))
(prelude-assert (= 2 (cycle-previous-focus xs)))
(prelude-assert (= 2 (cycle-focus-previous! xs)))
(prelude-assert (equal '(1 4 2 3) (cycle-xs (cycle-append 4 xs))))
(prelude-assert (equal '(1 2 3) (cycle-xs (cycle-remove 4 xs))))
(progn
(cycle/focus-item 3 xs)
(cycle/focus-item 2 xs)
(cycle/remove 1 xs)
(prelude-assert (= 2 (cycle/current xs)))
(prelude-assert (= 3 (cycle/previous-focus xs))))))
(cycle-focus-item 3 xs)
(cycle-focus-item 2 xs)
(cycle-remove 1 xs)
(prelude-assert (= 2 (cycle-current xs)))
(prelude-assert (= 3 (cycle-previous-focus xs))))))
(provide 'cycle)
;;; cycle.el ends here