Add 'third_party/abseil_cpp/' from commit '768eb2ca28'
git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
This commit is contained in:
commit
fc8dc48020
1276 changed files with 208196 additions and 0 deletions
93
third_party/abseil_cpp/absl/base/internal/exponential_biased.cc
vendored
Normal file
93
third_party/abseil_cpp/absl/base/internal/exponential_biased.cc
vendored
Normal file
|
|
@ -0,0 +1,93 @@
|
|||
// Copyright 2019 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// https://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/base/internal/exponential_biased.h"
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <atomic>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
|
||||
#include "absl/base/attributes.h"
|
||||
#include "absl/base/optimization.h"
|
||||
|
||||
namespace absl {
|
||||
ABSL_NAMESPACE_BEGIN
|
||||
namespace base_internal {
|
||||
|
||||
// The algorithm generates a random number between 0 and 1 and applies the
|
||||
// inverse cumulative distribution function for an exponential. Specifically:
|
||||
// Let m be the inverse of the sample period, then the probability
|
||||
// distribution function is m*exp(-mx) so the CDF is
|
||||
// p = 1 - exp(-mx), so
|
||||
// q = 1 - p = exp(-mx)
|
||||
// log_e(q) = -mx
|
||||
// -log_e(q)/m = x
|
||||
// log_2(q) * (-log_e(2) * 1/m) = x
|
||||
// In the code, q is actually in the range 1 to 2**26, hence the -26 below
|
||||
int64_t ExponentialBiased::GetSkipCount(int64_t mean) {
|
||||
if (ABSL_PREDICT_FALSE(!initialized_)) {
|
||||
Initialize();
|
||||
}
|
||||
|
||||
uint64_t rng = NextRandom(rng_);
|
||||
rng_ = rng;
|
||||
|
||||
// Take the top 26 bits as the random number
|
||||
// (This plus the 1<<58 sampling bound give a max possible step of
|
||||
// 5194297183973780480 bytes.)
|
||||
// The uint32_t cast is to prevent a (hard-to-reproduce) NAN
|
||||
// under piii debug for some binaries.
|
||||
double q = static_cast<uint32_t>(rng >> (kPrngNumBits - 26)) + 1.0;
|
||||
// Put the computed p-value through the CDF of a geometric.
|
||||
double interval = bias_ + (std::log2(q) - 26) * (-std::log(2.0) * mean);
|
||||
// Very large values of interval overflow int64_t. To avoid that, we will
|
||||
// cheat and clamp any huge values to (int64_t max)/2. This is a potential
|
||||
// source of bias, but the mean would need to be such a large value that it's
|
||||
// not likely to come up. For example, with a mean of 1e18, the probability of
|
||||
// hitting this condition is about 1/1000. For a mean of 1e17, standard
|
||||
// calculators claim that this event won't happen.
|
||||
if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) {
|
||||
// Assume huge values are bias neutral, retain bias for next call.
|
||||
return std::numeric_limits<int64_t>::max() / 2;
|
||||
}
|
||||
double value = std::round(interval);
|
||||
bias_ = interval - value;
|
||||
return value;
|
||||
}
|
||||
|
||||
int64_t ExponentialBiased::GetStride(int64_t mean) {
|
||||
return GetSkipCount(mean - 1) + 1;
|
||||
}
|
||||
|
||||
void ExponentialBiased::Initialize() {
|
||||
// We don't get well distributed numbers from `this` so we call NextRandom() a
|
||||
// bunch to mush the bits around. We use a global_rand to handle the case
|
||||
// where the same thread (by memory address) gets created and destroyed
|
||||
// repeatedly.
|
||||
ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0);
|
||||
uint64_t r = reinterpret_cast<uint64_t>(this) +
|
||||
global_rand.fetch_add(1, std::memory_order_relaxed);
|
||||
for (int i = 0; i < 20; ++i) {
|
||||
r = NextRandom(r);
|
||||
}
|
||||
rng_ = r;
|
||||
initialized_ = true;
|
||||
}
|
||||
|
||||
} // namespace base_internal
|
||||
ABSL_NAMESPACE_END
|
||||
} // namespace absl
|
||||
Loading…
Add table
Add a link
Reference in a new issue