Add 'third_party/abseil_cpp/' from commit '768eb2ca28'
git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
This commit is contained in:
commit
fc8dc48020
1276 changed files with 208196 additions and 0 deletions
165
third_party/abseil_cpp/absl/random/exponential_distribution.h
vendored
Normal file
165
third_party/abseil_cpp/absl/random/exponential_distribution.h
vendored
Normal file
|
|
@ -0,0 +1,165 @@
|
|||
// Copyright 2017 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// https://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_
|
||||
#define ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <istream>
|
||||
#include <limits>
|
||||
#include <type_traits>
|
||||
|
||||
#include "absl/meta/type_traits.h"
|
||||
#include "absl/random/internal/fast_uniform_bits.h"
|
||||
#include "absl/random/internal/generate_real.h"
|
||||
#include "absl/random/internal/iostream_state_saver.h"
|
||||
|
||||
namespace absl {
|
||||
ABSL_NAMESPACE_BEGIN
|
||||
|
||||
// absl::exponential_distribution:
|
||||
// Generates a number conforming to an exponential distribution and is
|
||||
// equivalent to the standard [rand.dist.pois.exp] distribution.
|
||||
template <typename RealType = double>
|
||||
class exponential_distribution {
|
||||
public:
|
||||
using result_type = RealType;
|
||||
|
||||
class param_type {
|
||||
public:
|
||||
using distribution_type = exponential_distribution;
|
||||
|
||||
explicit param_type(result_type lambda = 1) : lambda_(lambda) {
|
||||
assert(lambda > 0);
|
||||
neg_inv_lambda_ = -result_type(1) / lambda_;
|
||||
}
|
||||
|
||||
result_type lambda() const { return lambda_; }
|
||||
|
||||
friend bool operator==(const param_type& a, const param_type& b) {
|
||||
return a.lambda_ == b.lambda_;
|
||||
}
|
||||
|
||||
friend bool operator!=(const param_type& a, const param_type& b) {
|
||||
return !(a == b);
|
||||
}
|
||||
|
||||
private:
|
||||
friend class exponential_distribution;
|
||||
|
||||
result_type lambda_;
|
||||
result_type neg_inv_lambda_;
|
||||
|
||||
static_assert(
|
||||
std::is_floating_point<RealType>::value,
|
||||
"Class-template absl::exponential_distribution<> must be parameterized "
|
||||
"using a floating-point type.");
|
||||
};
|
||||
|
||||
exponential_distribution() : exponential_distribution(1) {}
|
||||
|
||||
explicit exponential_distribution(result_type lambda) : param_(lambda) {}
|
||||
|
||||
explicit exponential_distribution(const param_type& p) : param_(p) {}
|
||||
|
||||
void reset() {}
|
||||
|
||||
// Generating functions
|
||||
template <typename URBG>
|
||||
result_type operator()(URBG& g) { // NOLINT(runtime/references)
|
||||
return (*this)(g, param_);
|
||||
}
|
||||
|
||||
template <typename URBG>
|
||||
result_type operator()(URBG& g, // NOLINT(runtime/references)
|
||||
const param_type& p);
|
||||
|
||||
param_type param() const { return param_; }
|
||||
void param(const param_type& p) { param_ = p; }
|
||||
|
||||
result_type(min)() const { return 0; }
|
||||
result_type(max)() const {
|
||||
return std::numeric_limits<result_type>::infinity();
|
||||
}
|
||||
|
||||
result_type lambda() const { return param_.lambda(); }
|
||||
|
||||
friend bool operator==(const exponential_distribution& a,
|
||||
const exponential_distribution& b) {
|
||||
return a.param_ == b.param_;
|
||||
}
|
||||
friend bool operator!=(const exponential_distribution& a,
|
||||
const exponential_distribution& b) {
|
||||
return a.param_ != b.param_;
|
||||
}
|
||||
|
||||
private:
|
||||
param_type param_;
|
||||
random_internal::FastUniformBits<uint64_t> fast_u64_;
|
||||
};
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Implementation details follow
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
template <typename RealType>
|
||||
template <typename URBG>
|
||||
typename exponential_distribution<RealType>::result_type
|
||||
exponential_distribution<RealType>::operator()(
|
||||
URBG& g, // NOLINT(runtime/references)
|
||||
const param_type& p) {
|
||||
using random_internal::GenerateNegativeTag;
|
||||
using random_internal::GenerateRealFromBits;
|
||||
using real_type =
|
||||
absl::conditional_t<std::is_same<RealType, float>::value, float, double>;
|
||||
|
||||
const result_type u = GenerateRealFromBits<real_type, GenerateNegativeTag,
|
||||
false>(fast_u64_(g)); // U(-1, 0)
|
||||
|
||||
// log1p(-x) is mathematically equivalent to log(1 - x) but has more
|
||||
// accuracy for x near zero.
|
||||
return p.neg_inv_lambda_ * std::log1p(u);
|
||||
}
|
||||
|
||||
template <typename CharT, typename Traits, typename RealType>
|
||||
std::basic_ostream<CharT, Traits>& operator<<(
|
||||
std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
|
||||
const exponential_distribution<RealType>& x) {
|
||||
auto saver = random_internal::make_ostream_state_saver(os);
|
||||
os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);
|
||||
os << x.lambda();
|
||||
return os;
|
||||
}
|
||||
|
||||
template <typename CharT, typename Traits, typename RealType>
|
||||
std::basic_istream<CharT, Traits>& operator>>(
|
||||
std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
|
||||
exponential_distribution<RealType>& x) { // NOLINT(runtime/references)
|
||||
using result_type = typename exponential_distribution<RealType>::result_type;
|
||||
using param_type = typename exponential_distribution<RealType>::param_type;
|
||||
result_type lambda;
|
||||
|
||||
auto saver = random_internal::make_istream_state_saver(is);
|
||||
lambda = random_internal::read_floating_point<result_type>(is);
|
||||
if (!is.fail()) {
|
||||
x.param(param_type(lambda));
|
||||
}
|
||||
return is;
|
||||
}
|
||||
|
||||
ABSL_NAMESPACE_END
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_
|
||||
Loading…
Add table
Add a link
Reference in a new issue