Add 'third_party/abseil_cpp/' from commit '768eb2ca28'
				
					
				
			git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
This commit is contained in:
		
						commit
						fc8dc48020
					
				
					 1276 changed files with 208196 additions and 0 deletions
				
			
		
							
								
								
									
										572
									
								
								third_party/abseil_cpp/absl/random/internal/randen_hwaes.cc
									
										
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										572
									
								
								third_party/abseil_cpp/absl/random/internal/randen_hwaes.cc
									
										
									
									
										vendored
									
									
										Normal file
									
								
							|  | @ -0,0 +1,572 @@ | |||
| // Copyright 2017 The Abseil Authors.
 | ||||
| //
 | ||||
| // Licensed under the Apache License, Version 2.0 (the "License");
 | ||||
| // you may not use this file except in compliance with the License.
 | ||||
| // You may obtain a copy of the License at
 | ||||
| //
 | ||||
| //      https://www.apache.org/licenses/LICENSE-2.0
 | ||||
| //
 | ||||
| // Unless required by applicable law or agreed to in writing, software
 | ||||
| // distributed under the License is distributed on an "AS IS" BASIS,
 | ||||
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | ||||
| // See the License for the specific language governing permissions and
 | ||||
| // limitations under the License.
 | ||||
| 
 | ||||
| // HERMETIC NOTE: The randen_hwaes target must not introduce duplicate
 | ||||
| // symbols from arbitrary system and other headers, since it may be built
 | ||||
| // with different flags from other targets, using different levels of
 | ||||
| // optimization, potentially introducing ODR violations.
 | ||||
| 
 | ||||
| #include "absl/random/internal/randen_hwaes.h" | ||||
| 
 | ||||
| #include <cstdint> | ||||
| #include <cstring> | ||||
| 
 | ||||
| #include "absl/base/attributes.h" | ||||
| #include "absl/random/internal/platform.h" | ||||
| #include "absl/random/internal/randen_traits.h" | ||||
| 
 | ||||
| // ABSL_RANDEN_HWAES_IMPL indicates whether this file will contain
 | ||||
| // a hardware accelerated implementation of randen, or whether it
 | ||||
| // will contain stubs that exit the process.
 | ||||
| #if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32) | ||||
| // The platform.h directives are sufficient to indicate whether
 | ||||
| // we should build accelerated implementations for x86.
 | ||||
| #if (ABSL_HAVE_ACCELERATED_AES || ABSL_RANDOM_INTERNAL_AES_DISPATCH) | ||||
| #define ABSL_RANDEN_HWAES_IMPL 1 | ||||
| #endif | ||||
| #elif defined(ABSL_ARCH_PPC) | ||||
| // The platform.h directives are sufficient to indicate whether
 | ||||
| // we should build accelerated implementations for PPC.
 | ||||
| //
 | ||||
| // NOTE: This has mostly been tested on 64-bit Power variants,
 | ||||
| // and not embedded cpus such as powerpc32-8540
 | ||||
| #if ABSL_HAVE_ACCELERATED_AES | ||||
| #define ABSL_RANDEN_HWAES_IMPL 1 | ||||
| #endif | ||||
| #elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64) | ||||
| // ARM is somewhat more complicated. We might support crypto natively...
 | ||||
| #if ABSL_HAVE_ACCELERATED_AES || \ | ||||
|     (defined(__ARM_NEON) && defined(__ARM_FEATURE_CRYPTO)) | ||||
| #define ABSL_RANDEN_HWAES_IMPL 1 | ||||
| 
 | ||||
| #elif ABSL_RANDOM_INTERNAL_AES_DISPATCH && !defined(__APPLE__) && \ | ||||
|     (defined(__GNUC__) && __GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ > 9) | ||||
| // ...or, on GCC, we can use an ASM directive to
 | ||||
| // instruct the assember to allow crypto instructions.
 | ||||
| #define ABSL_RANDEN_HWAES_IMPL 1 | ||||
| #define ABSL_RANDEN_HWAES_IMPL_CRYPTO_DIRECTIVE 1 | ||||
| #endif | ||||
| #else | ||||
| // HWAES is unsupported by these architectures / platforms:
 | ||||
| //   __myriad2__
 | ||||
| //   __mips__
 | ||||
| //
 | ||||
| // Other architectures / platforms are unknown.
 | ||||
| //
 | ||||
| // See the Abseil documentation on supported macros at:
 | ||||
| // https://abseil.io/docs/cpp/platforms/macros
 | ||||
| #endif | ||||
| 
 | ||||
| #if !defined(ABSL_RANDEN_HWAES_IMPL) | ||||
| // No accelerated implementation is supported.
 | ||||
| // The RandenHwAes functions are stubs that print an error and exit.
 | ||||
| 
 | ||||
| #include <cstdio> | ||||
| #include <cstdlib> | ||||
| 
 | ||||
| namespace absl { | ||||
| ABSL_NAMESPACE_BEGIN | ||||
| namespace random_internal { | ||||
| 
 | ||||
| // No accelerated implementation.
 | ||||
| bool HasRandenHwAesImplementation() { return false; } | ||||
| 
 | ||||
| // NOLINTNEXTLINE
 | ||||
| const void* RandenHwAes::GetKeys() { | ||||
|   // Attempted to dispatch to an unsupported dispatch target.
 | ||||
|   const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH; | ||||
|   fprintf(stderr, "AES Hardware detection failed (%d).\n", d); | ||||
|   exit(1); | ||||
|   return nullptr; | ||||
| } | ||||
| 
 | ||||
| // NOLINTNEXTLINE
 | ||||
| void RandenHwAes::Absorb(const void*, void*) { | ||||
|   // Attempted to dispatch to an unsupported dispatch target.
 | ||||
|   const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH; | ||||
|   fprintf(stderr, "AES Hardware detection failed (%d).\n", d); | ||||
|   exit(1); | ||||
| } | ||||
| 
 | ||||
| // NOLINTNEXTLINE
 | ||||
| void RandenHwAes::Generate(const void*, void*) { | ||||
|   // Attempted to dispatch to an unsupported dispatch target.
 | ||||
|   const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH; | ||||
|   fprintf(stderr, "AES Hardware detection failed (%d).\n", d); | ||||
|   exit(1); | ||||
| } | ||||
| 
 | ||||
| }  // namespace random_internal
 | ||||
| ABSL_NAMESPACE_END | ||||
| }  // namespace absl
 | ||||
| 
 | ||||
| #else  // defined(ABSL_RANDEN_HWAES_IMPL)
 | ||||
| //
 | ||||
| // Accelerated implementations are supported.
 | ||||
| // We need the per-architecture includes and defines.
 | ||||
| //
 | ||||
| namespace { | ||||
| 
 | ||||
| using absl::random_internal::RandenTraits; | ||||
| 
 | ||||
| // Randen operates on 128-bit vectors.
 | ||||
| struct alignas(16) u64x2 { | ||||
|   uint64_t data[2]; | ||||
| }; | ||||
| 
 | ||||
| }  // namespace
 | ||||
| 
 | ||||
| // TARGET_CRYPTO defines a crypto attribute for each architecture.
 | ||||
| //
 | ||||
| // NOTE: Evaluate whether we should eliminate ABSL_TARGET_CRYPTO.
 | ||||
| #if (defined(__clang__) || defined(__GNUC__)) | ||||
| #if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32) | ||||
| #define ABSL_TARGET_CRYPTO __attribute__((target("aes"))) | ||||
| #elif defined(ABSL_ARCH_PPC) | ||||
| #define ABSL_TARGET_CRYPTO __attribute__((target("crypto"))) | ||||
| #else | ||||
| #define ABSL_TARGET_CRYPTO | ||||
| #endif | ||||
| #else | ||||
| #define ABSL_TARGET_CRYPTO | ||||
| #endif | ||||
| 
 | ||||
| #if defined(ABSL_ARCH_PPC) | ||||
| // NOTE: Keep in mind that PPC can operate in little-endian or big-endian mode,
 | ||||
| // however the PPC altivec vector registers (and thus the AES instructions)
 | ||||
| // always operate in big-endian mode.
 | ||||
| 
 | ||||
| #include <altivec.h> | ||||
| // <altivec.h> #defines vector __vector; in C++, this is bad form.
 | ||||
| #undef vector | ||||
| 
 | ||||
| // Rely on the PowerPC AltiVec vector operations for accelerated AES
 | ||||
| // instructions. GCC support of the PPC vector types is described in:
 | ||||
| // https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/PowerPC-AltiVec_002fVSX-Built-in-Functions.html
 | ||||
| //
 | ||||
| // Already provides operator^=.
 | ||||
| using Vector128 = __vector unsigned long long;  // NOLINT(runtime/int)
 | ||||
| 
 | ||||
| namespace { | ||||
| inline ABSL_TARGET_CRYPTO Vector128 ReverseBytes(const Vector128& v) { | ||||
|   // Reverses the bytes of the vector.
 | ||||
|   const __vector unsigned char perm = {15, 14, 13, 12, 11, 10, 9, 8, | ||||
|                                        7,  6,  5,  4,  3,  2,  1, 0}; | ||||
|   return vec_perm(v, v, perm); | ||||
| } | ||||
| 
 | ||||
| // WARNING: these load/store in native byte order. It is OK to load and then
 | ||||
| // store an unchanged vector, but interpreting the bits as a number or input
 | ||||
| // to AES will have undefined results.
 | ||||
| inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) { | ||||
|   return vec_vsx_ld(0, reinterpret_cast<const Vector128*>(from)); | ||||
| } | ||||
| 
 | ||||
| inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) { | ||||
|   vec_vsx_st(v, 0, reinterpret_cast<Vector128*>(to)); | ||||
| } | ||||
| 
 | ||||
| // One round of AES. "round_key" is a public constant for breaking the
 | ||||
| // symmetry of AES (ensures previously equal columns differ afterwards).
 | ||||
| inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state, | ||||
|                                              const Vector128& round_key) { | ||||
|   return Vector128(__builtin_crypto_vcipher(state, round_key)); | ||||
| } | ||||
| 
 | ||||
| // Enables native loads in the round loop by pre-swapping.
 | ||||
| inline ABSL_TARGET_CRYPTO void SwapEndian(u64x2* state) { | ||||
|   for (uint32_t block = 0; block < RandenTraits::kFeistelBlocks; ++block) { | ||||
|     Vector128Store(ReverseBytes(Vector128Load(state + block)), state + block); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| }  // namespace
 | ||||
| 
 | ||||
| #elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64) | ||||
| 
 | ||||
| // This asm directive will cause the file to be compiled with crypto extensions
 | ||||
| // whether or not the cpu-architecture supports it.
 | ||||
| #if ABSL_RANDEN_HWAES_IMPL_CRYPTO_DIRECTIVE | ||||
| asm(".arch_extension  crypto\n"); | ||||
| 
 | ||||
| // Override missing defines.
 | ||||
| #if !defined(__ARM_NEON) | ||||
| #define __ARM_NEON 1 | ||||
| #endif | ||||
| 
 | ||||
| #if !defined(__ARM_FEATURE_CRYPTO) | ||||
| #define __ARM_FEATURE_CRYPTO 1 | ||||
| #endif | ||||
| 
 | ||||
| #endif | ||||
| 
 | ||||
| // Rely on the ARM NEON+Crypto advanced simd types, defined in <arm_neon.h>.
 | ||||
| // uint8x16_t is the user alias for underlying __simd128_uint8_t type.
 | ||||
| // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf
 | ||||
| //
 | ||||
| // <arm_neon> defines the following
 | ||||
| //
 | ||||
| // typedef __attribute__((neon_vector_type(16))) uint8_t uint8x16_t;
 | ||||
| // typedef __attribute__((neon_vector_type(16))) int8_t int8x16_t;
 | ||||
| // typedef __attribute__((neon_polyvector_type(16))) int8_t poly8x16_t;
 | ||||
| //
 | ||||
| // vld1q_v
 | ||||
| // vst1q_v
 | ||||
| // vaeseq_v
 | ||||
| // vaesmcq_v
 | ||||
| #include <arm_neon.h> | ||||
| 
 | ||||
| // Already provides operator^=.
 | ||||
| using Vector128 = uint8x16_t; | ||||
| 
 | ||||
| namespace { | ||||
| 
 | ||||
| inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) { | ||||
|   return vld1q_u8(reinterpret_cast<const uint8_t*>(from)); | ||||
| } | ||||
| 
 | ||||
| inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) { | ||||
|   vst1q_u8(reinterpret_cast<uint8_t*>(to), v); | ||||
| } | ||||
| 
 | ||||
| // One round of AES. "round_key" is a public constant for breaking the
 | ||||
| // symmetry of AES (ensures previously equal columns differ afterwards).
 | ||||
| inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state, | ||||
|                                              const Vector128& round_key) { | ||||
|   // It is important to always use the full round function - omitting the
 | ||||
|   // final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf]
 | ||||
|   // and does not help because we never decrypt.
 | ||||
|   //
 | ||||
|   // Note that ARM divides AES instructions differently than x86 / PPC,
 | ||||
|   // And we need to skip the first AddRoundKey step and add an extra
 | ||||
|   // AddRoundKey step to the end. Lucky for us this is just XOR.
 | ||||
|   return vaesmcq_u8(vaeseq_u8(state, uint8x16_t{})) ^ round_key; | ||||
| } | ||||
| 
 | ||||
| inline ABSL_TARGET_CRYPTO void SwapEndian(void*) {} | ||||
| 
 | ||||
| }  // namespace
 | ||||
| 
 | ||||
| #elif defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32) | ||||
| // On x86 we rely on the aesni instructions
 | ||||
| #include <wmmintrin.h> | ||||
| 
 | ||||
| namespace { | ||||
| 
 | ||||
| // Vector128 class is only wrapper for __m128i, benchmark indicates that it's
 | ||||
| // faster than using __m128i directly.
 | ||||
| class Vector128 { | ||||
|  public: | ||||
|   // Convert from/to intrinsics.
 | ||||
|   inline explicit Vector128(const __m128i& Vector128) : data_(Vector128) {} | ||||
| 
 | ||||
|   inline __m128i data() const { return data_; } | ||||
| 
 | ||||
|   inline Vector128& operator^=(const Vector128& other) { | ||||
|     data_ = _mm_xor_si128(data_, other.data()); | ||||
|     return *this; | ||||
|   } | ||||
| 
 | ||||
|  private: | ||||
|   __m128i data_; | ||||
| }; | ||||
| 
 | ||||
| inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) { | ||||
|   return Vector128(_mm_load_si128(reinterpret_cast<const __m128i*>(from))); | ||||
| } | ||||
| 
 | ||||
| inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) { | ||||
|   _mm_store_si128(reinterpret_cast<__m128i*>(to), v.data()); | ||||
| } | ||||
| 
 | ||||
| // One round of AES. "round_key" is a public constant for breaking the
 | ||||
| // symmetry of AES (ensures previously equal columns differ afterwards).
 | ||||
| inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state, | ||||
|                                              const Vector128& round_key) { | ||||
|   // It is important to always use the full round function - omitting the
 | ||||
|   // final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf]
 | ||||
|   // and does not help because we never decrypt.
 | ||||
|   return Vector128(_mm_aesenc_si128(state.data(), round_key.data())); | ||||
| } | ||||
| 
 | ||||
| inline ABSL_TARGET_CRYPTO void SwapEndian(void*) {} | ||||
| 
 | ||||
| }  // namespace
 | ||||
| 
 | ||||
| #endif | ||||
| 
 | ||||
| #ifdef __clang__ | ||||
| #pragma clang diagnostic push | ||||
| #pragma clang diagnostic ignored "-Wunknown-pragmas" | ||||
| #endif | ||||
| 
 | ||||
| // At this point, all of the platform-specific features have been defined /
 | ||||
| // implemented.
 | ||||
| //
 | ||||
| // REQUIRES: using Vector128 = ...
 | ||||
| // REQUIRES: Vector128 Vector128Load(void*) {...}
 | ||||
| // REQUIRES: void Vector128Store(Vector128, void*) {...}
 | ||||
| // REQUIRES: Vector128 AesRound(Vector128, Vector128) {...}
 | ||||
| // REQUIRES: void SwapEndian(uint64_t*) {...}
 | ||||
| //
 | ||||
| // PROVIDES: absl::random_internal::RandenHwAes::Absorb
 | ||||
| // PROVIDES: absl::random_internal::RandenHwAes::Generate
 | ||||
| namespace { | ||||
| 
 | ||||
| // Block shuffles applies a shuffle to the entire state between AES rounds.
 | ||||
| // Improved odd-even shuffle from "New criterion for diffusion property".
 | ||||
| inline ABSL_TARGET_CRYPTO void BlockShuffle(u64x2* state) { | ||||
|   static_assert(RandenTraits::kFeistelBlocks == 16, | ||||
|                 "Expecting 16 FeistelBlocks."); | ||||
| 
 | ||||
|   constexpr size_t shuffle[RandenTraits::kFeistelBlocks] = { | ||||
|       7, 2, 13, 4, 11, 8, 3, 6, 15, 0, 9, 10, 1, 14, 5, 12}; | ||||
| 
 | ||||
|   const Vector128 v0 = Vector128Load(state + shuffle[0]); | ||||
|   const Vector128 v1 = Vector128Load(state + shuffle[1]); | ||||
|   const Vector128 v2 = Vector128Load(state + shuffle[2]); | ||||
|   const Vector128 v3 = Vector128Load(state + shuffle[3]); | ||||
|   const Vector128 v4 = Vector128Load(state + shuffle[4]); | ||||
|   const Vector128 v5 = Vector128Load(state + shuffle[5]); | ||||
|   const Vector128 v6 = Vector128Load(state + shuffle[6]); | ||||
|   const Vector128 v7 = Vector128Load(state + shuffle[7]); | ||||
|   const Vector128 w0 = Vector128Load(state + shuffle[8]); | ||||
|   const Vector128 w1 = Vector128Load(state + shuffle[9]); | ||||
|   const Vector128 w2 = Vector128Load(state + shuffle[10]); | ||||
|   const Vector128 w3 = Vector128Load(state + shuffle[11]); | ||||
|   const Vector128 w4 = Vector128Load(state + shuffle[12]); | ||||
|   const Vector128 w5 = Vector128Load(state + shuffle[13]); | ||||
|   const Vector128 w6 = Vector128Load(state + shuffle[14]); | ||||
|   const Vector128 w7 = Vector128Load(state + shuffle[15]); | ||||
| 
 | ||||
|   Vector128Store(v0, state + 0); | ||||
|   Vector128Store(v1, state + 1); | ||||
|   Vector128Store(v2, state + 2); | ||||
|   Vector128Store(v3, state + 3); | ||||
|   Vector128Store(v4, state + 4); | ||||
|   Vector128Store(v5, state + 5); | ||||
|   Vector128Store(v6, state + 6); | ||||
|   Vector128Store(v7, state + 7); | ||||
|   Vector128Store(w0, state + 8); | ||||
|   Vector128Store(w1, state + 9); | ||||
|   Vector128Store(w2, state + 10); | ||||
|   Vector128Store(w3, state + 11); | ||||
|   Vector128Store(w4, state + 12); | ||||
|   Vector128Store(w5, state + 13); | ||||
|   Vector128Store(w6, state + 14); | ||||
|   Vector128Store(w7, state + 15); | ||||
| } | ||||
| 
 | ||||
| // Feistel round function using two AES subrounds. Very similar to F()
 | ||||
| // from Simpira v2, but with independent subround keys. Uses 17 AES rounds
 | ||||
| // per 16 bytes (vs. 10 for AES-CTR). Computing eight round functions in
 | ||||
| // parallel hides the 7-cycle AESNI latency on HSW. Note that the Feistel
 | ||||
| // XORs are 'free' (included in the second AES instruction).
 | ||||
| inline ABSL_TARGET_CRYPTO const u64x2* FeistelRound( | ||||
|     u64x2* state, const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) { | ||||
|   static_assert(RandenTraits::kFeistelBlocks == 16, | ||||
|                 "Expecting 16 FeistelBlocks."); | ||||
| 
 | ||||
|   // MSVC does a horrible job at unrolling loops.
 | ||||
|   // So we unroll the loop by hand to improve the performance.
 | ||||
|   const Vector128 s0 = Vector128Load(state + 0); | ||||
|   const Vector128 s1 = Vector128Load(state + 1); | ||||
|   const Vector128 s2 = Vector128Load(state + 2); | ||||
|   const Vector128 s3 = Vector128Load(state + 3); | ||||
|   const Vector128 s4 = Vector128Load(state + 4); | ||||
|   const Vector128 s5 = Vector128Load(state + 5); | ||||
|   const Vector128 s6 = Vector128Load(state + 6); | ||||
|   const Vector128 s7 = Vector128Load(state + 7); | ||||
|   const Vector128 s8 = Vector128Load(state + 8); | ||||
|   const Vector128 s9 = Vector128Load(state + 9); | ||||
|   const Vector128 s10 = Vector128Load(state + 10); | ||||
|   const Vector128 s11 = Vector128Load(state + 11); | ||||
|   const Vector128 s12 = Vector128Load(state + 12); | ||||
|   const Vector128 s13 = Vector128Load(state + 13); | ||||
|   const Vector128 s14 = Vector128Load(state + 14); | ||||
|   const Vector128 s15 = Vector128Load(state + 15); | ||||
| 
 | ||||
|   // Encode even blocks with keys.
 | ||||
|   const Vector128 e0 = AesRound(s0, Vector128Load(keys + 0)); | ||||
|   const Vector128 e2 = AesRound(s2, Vector128Load(keys + 1)); | ||||
|   const Vector128 e4 = AesRound(s4, Vector128Load(keys + 2)); | ||||
|   const Vector128 e6 = AesRound(s6, Vector128Load(keys + 3)); | ||||
|   const Vector128 e8 = AesRound(s8, Vector128Load(keys + 4)); | ||||
|   const Vector128 e10 = AesRound(s10, Vector128Load(keys + 5)); | ||||
|   const Vector128 e12 = AesRound(s12, Vector128Load(keys + 6)); | ||||
|   const Vector128 e14 = AesRound(s14, Vector128Load(keys + 7)); | ||||
| 
 | ||||
|   // Encode odd blocks with even output from above.
 | ||||
|   const Vector128 o1 = AesRound(e0, s1); | ||||
|   const Vector128 o3 = AesRound(e2, s3); | ||||
|   const Vector128 o5 = AesRound(e4, s5); | ||||
|   const Vector128 o7 = AesRound(e6, s7); | ||||
|   const Vector128 o9 = AesRound(e8, s9); | ||||
|   const Vector128 o11 = AesRound(e10, s11); | ||||
|   const Vector128 o13 = AesRound(e12, s13); | ||||
|   const Vector128 o15 = AesRound(e14, s15); | ||||
| 
 | ||||
|   // Store odd blocks. (These will be shuffled later).
 | ||||
|   Vector128Store(o1, state + 1); | ||||
|   Vector128Store(o3, state + 3); | ||||
|   Vector128Store(o5, state + 5); | ||||
|   Vector128Store(o7, state + 7); | ||||
|   Vector128Store(o9, state + 9); | ||||
|   Vector128Store(o11, state + 11); | ||||
|   Vector128Store(o13, state + 13); | ||||
|   Vector128Store(o15, state + 15); | ||||
| 
 | ||||
|   return keys + 8; | ||||
| } | ||||
| 
 | ||||
| // Cryptographic permutation based via type-2 Generalized Feistel Network.
 | ||||
| // Indistinguishable from ideal by chosen-ciphertext adversaries using less than
 | ||||
| // 2^64 queries if the round function is a PRF. This is similar to the b=8 case
 | ||||
| // of Simpira v2, but more efficient than its generic construction for b=16.
 | ||||
| inline ABSL_TARGET_CRYPTO void Permute( | ||||
|     u64x2* state, const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) { | ||||
|   // (Successfully unrolled; the first iteration jumps into the second half)
 | ||||
| #ifdef __clang__ | ||||
| #pragma clang loop unroll_count(2) | ||||
| #endif | ||||
|   for (size_t round = 0; round < RandenTraits::kFeistelRounds; ++round) { | ||||
|     keys = FeistelRound(state, keys); | ||||
|     BlockShuffle(state); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| }  // namespace
 | ||||
| 
 | ||||
| namespace absl { | ||||
| ABSL_NAMESPACE_BEGIN | ||||
| namespace random_internal { | ||||
| 
 | ||||
| bool HasRandenHwAesImplementation() { return true; } | ||||
| 
 | ||||
| const void* ABSL_TARGET_CRYPTO RandenHwAes::GetKeys() { | ||||
|   // Round keys for one AES per Feistel round and branch.
 | ||||
|   // The canonical implementation uses first digits of Pi.
 | ||||
| #if defined(ABSL_ARCH_PPC) | ||||
|   return kRandenRoundKeysBE; | ||||
| #else | ||||
|   return kRandenRoundKeys; | ||||
| #endif | ||||
| } | ||||
| 
 | ||||
| // NOLINTNEXTLINE
 | ||||
| void ABSL_TARGET_CRYPTO RandenHwAes::Absorb(const void* seed_void, | ||||
|                                             void* state_void) { | ||||
|   static_assert(RandenTraits::kCapacityBytes / sizeof(Vector128) == 1, | ||||
|                 "Unexpected Randen kCapacityBlocks"); | ||||
|   static_assert(RandenTraits::kStateBytes / sizeof(Vector128) == 16, | ||||
|                 "Unexpected Randen kStateBlocks"); | ||||
| 
 | ||||
|   auto* state = | ||||
|       reinterpret_cast<u64x2 * ABSL_RANDOM_INTERNAL_RESTRICT>(state_void); | ||||
|   const auto* seed = | ||||
|       reinterpret_cast<const u64x2 * ABSL_RANDOM_INTERNAL_RESTRICT>(seed_void); | ||||
| 
 | ||||
|   Vector128 b1 = Vector128Load(state + 1); | ||||
|   b1 ^= Vector128Load(seed + 0); | ||||
|   Vector128Store(b1, state + 1); | ||||
| 
 | ||||
|   Vector128 b2 = Vector128Load(state + 2); | ||||
|   b2 ^= Vector128Load(seed + 1); | ||||
|   Vector128Store(b2, state + 2); | ||||
| 
 | ||||
|   Vector128 b3 = Vector128Load(state + 3); | ||||
|   b3 ^= Vector128Load(seed + 2); | ||||
|   Vector128Store(b3, state + 3); | ||||
| 
 | ||||
|   Vector128 b4 = Vector128Load(state + 4); | ||||
|   b4 ^= Vector128Load(seed + 3); | ||||
|   Vector128Store(b4, state + 4); | ||||
| 
 | ||||
|   Vector128 b5 = Vector128Load(state + 5); | ||||
|   b5 ^= Vector128Load(seed + 4); | ||||
|   Vector128Store(b5, state + 5); | ||||
| 
 | ||||
|   Vector128 b6 = Vector128Load(state + 6); | ||||
|   b6 ^= Vector128Load(seed + 5); | ||||
|   Vector128Store(b6, state + 6); | ||||
| 
 | ||||
|   Vector128 b7 = Vector128Load(state + 7); | ||||
|   b7 ^= Vector128Load(seed + 6); | ||||
|   Vector128Store(b7, state + 7); | ||||
| 
 | ||||
|   Vector128 b8 = Vector128Load(state + 8); | ||||
|   b8 ^= Vector128Load(seed + 7); | ||||
|   Vector128Store(b8, state + 8); | ||||
| 
 | ||||
|   Vector128 b9 = Vector128Load(state + 9); | ||||
|   b9 ^= Vector128Load(seed + 8); | ||||
|   Vector128Store(b9, state + 9); | ||||
| 
 | ||||
|   Vector128 b10 = Vector128Load(state + 10); | ||||
|   b10 ^= Vector128Load(seed + 9); | ||||
|   Vector128Store(b10, state + 10); | ||||
| 
 | ||||
|   Vector128 b11 = Vector128Load(state + 11); | ||||
|   b11 ^= Vector128Load(seed + 10); | ||||
|   Vector128Store(b11, state + 11); | ||||
| 
 | ||||
|   Vector128 b12 = Vector128Load(state + 12); | ||||
|   b12 ^= Vector128Load(seed + 11); | ||||
|   Vector128Store(b12, state + 12); | ||||
| 
 | ||||
|   Vector128 b13 = Vector128Load(state + 13); | ||||
|   b13 ^= Vector128Load(seed + 12); | ||||
|   Vector128Store(b13, state + 13); | ||||
| 
 | ||||
|   Vector128 b14 = Vector128Load(state + 14); | ||||
|   b14 ^= Vector128Load(seed + 13); | ||||
|   Vector128Store(b14, state + 14); | ||||
| 
 | ||||
|   Vector128 b15 = Vector128Load(state + 15); | ||||
|   b15 ^= Vector128Load(seed + 14); | ||||
|   Vector128Store(b15, state + 15); | ||||
| } | ||||
| 
 | ||||
| // NOLINTNEXTLINE
 | ||||
| void ABSL_TARGET_CRYPTO RandenHwAes::Generate(const void* keys_void, | ||||
|                                               void* state_void) { | ||||
|   static_assert(RandenTraits::kCapacityBytes == sizeof(Vector128), | ||||
|                 "Capacity mismatch"); | ||||
| 
 | ||||
|   auto* state = reinterpret_cast<u64x2*>(state_void); | ||||
|   const auto* keys = reinterpret_cast<const u64x2*>(keys_void); | ||||
| 
 | ||||
|   const Vector128 prev_inner = Vector128Load(state); | ||||
| 
 | ||||
|   SwapEndian(state); | ||||
| 
 | ||||
|   Permute(state, keys); | ||||
| 
 | ||||
|   SwapEndian(state); | ||||
| 
 | ||||
|   // Ensure backtracking resistance.
 | ||||
|   Vector128 inner = Vector128Load(state); | ||||
|   inner ^= prev_inner; | ||||
|   Vector128Store(inner, state); | ||||
| } | ||||
| 
 | ||||
| #ifdef __clang__ | ||||
| #pragma clang diagnostic pop | ||||
| #endif | ||||
| 
 | ||||
| }  // namespace random_internal
 | ||||
| ABSL_NAMESPACE_END | ||||
| }  // namespace absl
 | ||||
| 
 | ||||
| #endif  // (ABSL_RANDEN_HWAES_IMPL)
 | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue