git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			427 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			427 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "absl/random/zipf_distribution.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <random>
 | |
| #include <string>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| #include "gmock/gmock.h"
 | |
| #include "gtest/gtest.h"
 | |
| #include "absl/base/internal/raw_logging.h"
 | |
| #include "absl/random/internal/chi_square.h"
 | |
| #include "absl/random/internal/pcg_engine.h"
 | |
| #include "absl/random/internal/sequence_urbg.h"
 | |
| #include "absl/random/random.h"
 | |
| #include "absl/strings/str_cat.h"
 | |
| #include "absl/strings/str_replace.h"
 | |
| #include "absl/strings/strip.h"
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| using ::absl::random_internal::kChiSquared;
 | |
| using ::testing::ElementsAre;
 | |
| 
 | |
| template <typename IntType>
 | |
| class ZipfDistributionTypedTest : public ::testing::Test {};
 | |
| 
 | |
| using IntTypes = ::testing::Types<int, int8_t, int16_t, int32_t, int64_t,
 | |
|                                   uint8_t, uint16_t, uint32_t, uint64_t>;
 | |
| TYPED_TEST_CASE(ZipfDistributionTypedTest, IntTypes);
 | |
| 
 | |
| TYPED_TEST(ZipfDistributionTypedTest, SerializeTest) {
 | |
|   using param_type = typename absl::zipf_distribution<TypeParam>::param_type;
 | |
| 
 | |
|   constexpr int kCount = 1000;
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (const auto& param : {
 | |
|            param_type(),
 | |
|            param_type(32),
 | |
|            param_type(100, 3, 2),
 | |
|            param_type(std::numeric_limits<TypeParam>::max(), 4, 3),
 | |
|            param_type(std::numeric_limits<TypeParam>::max() / 2),
 | |
|        }) {
 | |
|     // Validate parameters.
 | |
|     const auto k = param.k();
 | |
|     const auto q = param.q();
 | |
|     const auto v = param.v();
 | |
| 
 | |
|     absl::zipf_distribution<TypeParam> before(k, q, v);
 | |
|     EXPECT_EQ(before.k(), param.k());
 | |
|     EXPECT_EQ(before.q(), param.q());
 | |
|     EXPECT_EQ(before.v(), param.v());
 | |
| 
 | |
|     {
 | |
|       absl::zipf_distribution<TypeParam> via_param(param);
 | |
|       EXPECT_EQ(via_param, before);
 | |
|     }
 | |
| 
 | |
|     // Validate stream serialization.
 | |
|     std::stringstream ss;
 | |
|     ss << before;
 | |
|     absl::zipf_distribution<TypeParam> after(4, 5.5, 4.4);
 | |
| 
 | |
|     EXPECT_NE(before.k(), after.k());
 | |
|     EXPECT_NE(before.q(), after.q());
 | |
|     EXPECT_NE(before.v(), after.v());
 | |
|     EXPECT_NE(before.param(), after.param());
 | |
|     EXPECT_NE(before, after);
 | |
| 
 | |
|     ss >> after;
 | |
| 
 | |
|     EXPECT_EQ(before.k(), after.k());
 | |
|     EXPECT_EQ(before.q(), after.q());
 | |
|     EXPECT_EQ(before.v(), after.v());
 | |
|     EXPECT_EQ(before.param(), after.param());
 | |
|     EXPECT_EQ(before, after);
 | |
| 
 | |
|     // Smoke test.
 | |
|     auto sample_min = after.max();
 | |
|     auto sample_max = after.min();
 | |
|     for (int i = 0; i < kCount; i++) {
 | |
|       auto sample = after(gen);
 | |
|       EXPECT_GE(sample, after.min());
 | |
|       EXPECT_LE(sample, after.max());
 | |
|       if (sample > sample_max) sample_max = sample;
 | |
|       if (sample < sample_min) sample_min = sample;
 | |
|     }
 | |
|     ABSL_INTERNAL_LOG(INFO,
 | |
|                       absl::StrCat("Range: ", +sample_min, ", ", +sample_max));
 | |
|   }
 | |
| }
 | |
| 
 | |
| class ZipfModel {
 | |
|  public:
 | |
|   ZipfModel(size_t k, double q, double v) : k_(k), q_(q), v_(v) {}
 | |
| 
 | |
|   double mean() const { return mean_; }
 | |
| 
 | |
|   // For the other moments of the Zipf distribution, see, for example,
 | |
|   // http://mathworld.wolfram.com/ZipfDistribution.html
 | |
| 
 | |
|   // PMF(k) = (1 / k^s) / H(N,s)
 | |
|   // Returns the probability that any single invocation returns k.
 | |
|   double PMF(size_t i) { return i >= hnq_.size() ? 0.0 : hnq_[i] / sum_hnq_; }
 | |
| 
 | |
|   // CDF = H(k, s) / H(N,s)
 | |
|   double CDF(size_t i) {
 | |
|     if (i >= hnq_.size()) {
 | |
|       return 1.0;
 | |
|     }
 | |
|     auto it = std::begin(hnq_);
 | |
|     double h = 0.0;
 | |
|     for (const auto end = it; it != end; it++) {
 | |
|       h += *it;
 | |
|     }
 | |
|     return h / sum_hnq_;
 | |
|   }
 | |
| 
 | |
|   // The InverseCDF returns the k values which bound p on the upper and lower
 | |
|   // bound. Since there is no closed-form solution, this is implemented as a
 | |
|   // bisction of the cdf.
 | |
|   std::pair<size_t, size_t> InverseCDF(double p) {
 | |
|     size_t min = 0;
 | |
|     size_t max = hnq_.size();
 | |
|     while (max > min + 1) {
 | |
|       size_t target = (max + min) >> 1;
 | |
|       double x = CDF(target);
 | |
|       if (x > p) {
 | |
|         max = target;
 | |
|       } else {
 | |
|         min = target;
 | |
|       }
 | |
|     }
 | |
|     return {min, max};
 | |
|   }
 | |
| 
 | |
|   // Compute the probability totals, which are based on the generalized harmonic
 | |
|   // number, H(N,s).
 | |
|   //   H(N,s) == SUM(k=1..N, 1 / k^s)
 | |
|   //
 | |
|   // In the limit, H(N,s) == zetac(s) + 1.
 | |
|   //
 | |
|   // NOTE: The mean of a zipf distribution could be computed here as well.
 | |
|   // Mean :=  H(N, s-1) / H(N,s).
 | |
|   // Given the parameter v = 1, this gives the following function:
 | |
|   // (Hn(100, 1) - Hn(1,1)) / (Hn(100,2) - Hn(1,2)) = 6.5944
 | |
|   //
 | |
|   void Init() {
 | |
|     if (!hnq_.empty()) {
 | |
|       return;
 | |
|     }
 | |
|     hnq_.clear();
 | |
|     hnq_.reserve(std::min(k_, size_t{1000}));
 | |
| 
 | |
|     sum_hnq_ = 0;
 | |
|     double qm1 = q_ - 1.0;
 | |
|     double sum_hnq_m1 = 0;
 | |
|     for (size_t i = 0; i < k_; i++) {
 | |
|       // Partial n-th generalized harmonic number
 | |
|       const double x = v_ + i;
 | |
| 
 | |
|       // H(n, q-1)
 | |
|       const double hnqm1 =
 | |
|           (q_ == 2.0) ? (1.0 / x)
 | |
|                       : (q_ == 3.0) ? (1.0 / (x * x)) : std::pow(x, -qm1);
 | |
|       sum_hnq_m1 += hnqm1;
 | |
| 
 | |
|       // H(n, q)
 | |
|       const double hnq =
 | |
|           (q_ == 2.0) ? (1.0 / (x * x))
 | |
|                       : (q_ == 3.0) ? (1.0 / (x * x * x)) : std::pow(x, -q_);
 | |
|       sum_hnq_ += hnq;
 | |
|       hnq_.push_back(hnq);
 | |
|       if (i > 1000 && hnq <= 1e-10) {
 | |
|         // The harmonic number is too small.
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     assert(sum_hnq_ > 0);
 | |
|     mean_ = sum_hnq_m1 / sum_hnq_;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const size_t k_;
 | |
|   const double q_;
 | |
|   const double v_;
 | |
| 
 | |
|   double mean_;
 | |
|   std::vector<double> hnq_;
 | |
|   double sum_hnq_;
 | |
| };
 | |
| 
 | |
| using zipf_u64 = absl::zipf_distribution<uint64_t>;
 | |
| 
 | |
| class ZipfTest : public testing::TestWithParam<zipf_u64::param_type>,
 | |
|                  public ZipfModel {
 | |
|  public:
 | |
|   ZipfTest() : ZipfModel(GetParam().k(), GetParam().q(), GetParam().v()) {}
 | |
| 
 | |
|   // We use a fixed bit generator for distribution accuracy tests.  This allows
 | |
|   // these tests to be deterministic, while still testing the qualify of the
 | |
|   // implementation.
 | |
|   absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6};
 | |
| };
 | |
| 
 | |
| TEST_P(ZipfTest, ChiSquaredTest) {
 | |
|   const auto& param = GetParam();
 | |
|   Init();
 | |
| 
 | |
|   size_t trials = 10000;
 | |
| 
 | |
|   // Find the split-points for the buckets.
 | |
|   std::vector<size_t> points;
 | |
|   std::vector<double> expected;
 | |
|   {
 | |
|     double last_cdf = 0.0;
 | |
|     double min_p = 1.0;
 | |
|     for (double p = 0.01; p < 1.0; p += 0.01) {
 | |
|       auto x = InverseCDF(p);
 | |
|       if (points.empty() || points.back() < x.second) {
 | |
|         const double p = CDF(x.second);
 | |
|         points.push_back(x.second);
 | |
|         double q = p - last_cdf;
 | |
|         expected.push_back(q);
 | |
|         last_cdf = p;
 | |
|         if (q < min_p) {
 | |
|           min_p = q;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (last_cdf < 0.999) {
 | |
|       points.push_back(std::numeric_limits<size_t>::max());
 | |
|       double q = 1.0 - last_cdf;
 | |
|       expected.push_back(q);
 | |
|       if (q < min_p) {
 | |
|         min_p = q;
 | |
|       }
 | |
|     } else {
 | |
|       points.back() = std::numeric_limits<size_t>::max();
 | |
|       expected.back() += (1.0 - last_cdf);
 | |
|     }
 | |
|     // The Chi-Squared score is not completely scale-invariant; it works best
 | |
|     // when the small values are in the small digits.
 | |
|     trials = static_cast<size_t>(8.0 / min_p);
 | |
|   }
 | |
|   ASSERT_GT(points.size(), 0);
 | |
| 
 | |
|   // Generate n variates and fill the counts vector with the count of their
 | |
|   // occurrences.
 | |
|   std::vector<int64_t> buckets(points.size(), 0);
 | |
|   double avg = 0;
 | |
|   {
 | |
|     zipf_u64 dis(param);
 | |
|     for (size_t i = 0; i < trials; i++) {
 | |
|       uint64_t x = dis(rng_);
 | |
|       ASSERT_LE(x, dis.max());
 | |
|       ASSERT_GE(x, dis.min());
 | |
|       avg += static_cast<double>(x);
 | |
|       auto it = std::upper_bound(std::begin(points), std::end(points),
 | |
|                                  static_cast<size_t>(x));
 | |
|       buckets[std::distance(std::begin(points), it)]++;
 | |
|     }
 | |
|     avg = avg / static_cast<double>(trials);
 | |
|   }
 | |
| 
 | |
|   // Validate the output using the Chi-Squared test.
 | |
|   for (auto& e : expected) {
 | |
|     e *= trials;
 | |
|   }
 | |
| 
 | |
|   // The null-hypothesis is that the distribution is a poisson distribution with
 | |
|   // the provided mean (not estimated from the data).
 | |
|   const int dof = static_cast<int>(expected.size()) - 1;
 | |
| 
 | |
|   // NOTE: This test runs about 15x per invocation, so a value of 0.9995 is
 | |
|   // approximately correct for a test suite failure rate of 1 in 100.  In
 | |
|   // practice we see failures slightly higher than that.
 | |
|   const double threshold = absl::random_internal::ChiSquareValue(dof, 0.9999);
 | |
| 
 | |
|   const double chi_square = absl::random_internal::ChiSquare(
 | |
|       std::begin(buckets), std::end(buckets), std::begin(expected),
 | |
|       std::end(expected));
 | |
| 
 | |
|   const double p_actual =
 | |
|       absl::random_internal::ChiSquarePValue(chi_square, dof);
 | |
| 
 | |
|   // Log if the chi_squared value is above the threshold.
 | |
|   if (chi_square > threshold) {
 | |
|     ABSL_INTERNAL_LOG(INFO, "values");
 | |
|     for (size_t i = 0; i < expected.size(); i++) {
 | |
|       ABSL_INTERNAL_LOG(INFO, absl::StrCat(points[i], ": ", buckets[i],
 | |
|                                            " vs. E=", expected[i]));
 | |
|     }
 | |
|     ABSL_INTERNAL_LOG(INFO, absl::StrCat("trials ", trials));
 | |
|     ABSL_INTERNAL_LOG(INFO,
 | |
|                       absl::StrCat("mean ", avg, " vs. expected ", mean()));
 | |
|     ABSL_INTERNAL_LOG(INFO, absl::StrCat(kChiSquared, "(data, ", dof, ") = ",
 | |
|                                          chi_square, " (", p_actual, ")"));
 | |
|     ABSL_INTERNAL_LOG(INFO,
 | |
|                       absl::StrCat(kChiSquared, " @ 0.9995 = ", threshold));
 | |
|     FAIL() << kChiSquared << " value of " << chi_square
 | |
|            << " is above the threshold.";
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::vector<zipf_u64::param_type> GenParams() {
 | |
|   using param = zipf_u64::param_type;
 | |
|   const auto k = param().k();
 | |
|   const auto q = param().q();
 | |
|   const auto v = param().v();
 | |
|   const uint64_t k2 = 1 << 10;
 | |
|   return std::vector<zipf_u64::param_type>{
 | |
|       // Default
 | |
|       param(k, q, v),
 | |
|       // vary K
 | |
|       param(4, q, v), param(1 << 4, q, v), param(k2, q, v),
 | |
|       // vary V
 | |
|       param(k2, q, 0.5), param(k2, q, 1.5), param(k2, q, 2.5), param(k2, q, 10),
 | |
|       // vary Q
 | |
|       param(k2, 1.5, v), param(k2, 3, v), param(k2, 5, v), param(k2, 10, v),
 | |
|       // Vary V & Q
 | |
|       param(k2, 1.5, 0.5), param(k2, 3, 1.5), param(k, 10, 10)};
 | |
| }
 | |
| 
 | |
| std::string ParamName(
 | |
|     const ::testing::TestParamInfo<zipf_u64::param_type>& info) {
 | |
|   const auto& p = info.param;
 | |
|   std::string name = absl::StrCat("k_", p.k(), "__q_", absl::SixDigits(p.q()),
 | |
|                                   "__v_", absl::SixDigits(p.v()));
 | |
|   return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_SUITE_P(All, ZipfTest, ::testing::ValuesIn(GenParams()),
 | |
|                          ParamName);
 | |
| 
 | |
| // NOTE: absl::zipf_distribution is not guaranteed to be stable.
 | |
| TEST(ZipfDistributionTest, StabilityTest) {
 | |
|   // absl::zipf_distribution stability relies on
 | |
|   // absl::uniform_real_distribution, std::log, std::exp, std::log1p
 | |
|   absl::random_internal::sequence_urbg urbg(
 | |
|       {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
 | |
|        0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
 | |
|        0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
 | |
|        0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
 | |
| 
 | |
|   std::vector<int> output(10);
 | |
| 
 | |
|   {
 | |
|     absl::zipf_distribution<int32_t> dist;
 | |
|     std::generate(std::begin(output), std::end(output),
 | |
|                   [&] { return dist(urbg); });
 | |
|     EXPECT_THAT(output, ElementsAre(10031, 0, 0, 3, 6, 0, 7, 47, 0, 0));
 | |
|   }
 | |
|   urbg.reset();
 | |
|   {
 | |
|     absl::zipf_distribution<int32_t> dist(std::numeric_limits<int32_t>::max(),
 | |
|                                           3.3);
 | |
|     std::generate(std::begin(output), std::end(output),
 | |
|                   [&] { return dist(urbg); });
 | |
|     EXPECT_THAT(output, ElementsAre(44, 0, 0, 0, 0, 1, 0, 1, 3, 0));
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(ZipfDistributionTest, AlgorithmBounds) {
 | |
|   absl::zipf_distribution<int32_t> dist;
 | |
| 
 | |
|   // Small values from absl::uniform_real_distribution map to larger Zipf
 | |
|   // distribution values.
 | |
|   const std::pair<uint64_t, int32_t> kInputs[] = {
 | |
|       {0xffffffffffffffff, 0x0}, {0x7fffffffffffffff, 0x0},
 | |
|       {0x3ffffffffffffffb, 0x1}, {0x1ffffffffffffffd, 0x4},
 | |
|       {0xffffffffffffffe, 0x9},  {0x7ffffffffffffff, 0x12},
 | |
|       {0x3ffffffffffffff, 0x25}, {0x1ffffffffffffff, 0x4c},
 | |
|       {0xffffffffffffff, 0x99},  {0x7fffffffffffff, 0x132},
 | |
|       {0x3fffffffffffff, 0x265}, {0x1fffffffffffff, 0x4cc},
 | |
|       {0xfffffffffffff, 0x999},  {0x7ffffffffffff, 0x1332},
 | |
|       {0x3ffffffffffff, 0x2665}, {0x1ffffffffffff, 0x4ccc},
 | |
|       {0xffffffffffff, 0x9998},  {0x7fffffffffff, 0x1332f},
 | |
|       {0x3fffffffffff, 0x2665a}, {0x1fffffffffff, 0x4cc9e},
 | |
|       {0xfffffffffff, 0x998e0},  {0x7ffffffffff, 0x133051},
 | |
|       {0x3ffffffffff, 0x265ae4}, {0x1ffffffffff, 0x4c9ed3},
 | |
|       {0xffffffffff, 0x98e223},  {0x7fffffffff, 0x13058c4},
 | |
|       {0x3fffffffff, 0x25b178e}, {0x1fffffffff, 0x4a062b2},
 | |
|       {0xfffffffff, 0x8ee23b8},  {0x7ffffffff, 0x10b21642},
 | |
|       {0x3ffffffff, 0x1d89d89d}, {0x1ffffffff, 0x2fffffff},
 | |
|       {0xffffffff, 0x45d1745d},  {0x7fffffff, 0x5a5a5a5a},
 | |
|       {0x3fffffff, 0x69ee5846},  {0x1fffffff, 0x73ecade3},
 | |
|       {0xfffffff, 0x79a9d260},   {0x7ffffff, 0x7cc0532b},
 | |
|       {0x3ffffff, 0x7e5ad146},   {0x1ffffff, 0x7f2c0bec},
 | |
|       {0xffffff, 0x7f95adef},    {0x7fffff, 0x7fcac0da},
 | |
|       {0x3fffff, 0x7fe55ae2},    {0x1fffff, 0x7ff2ac0e},
 | |
|       {0xfffff, 0x7ff955ae},     {0x7ffff, 0x7ffcaac1},
 | |
|       {0x3ffff, 0x7ffe555b},     {0x1ffff, 0x7fff2aac},
 | |
|       {0xffff, 0x7fff9556},      {0x7fff, 0x7fffcaab},
 | |
|       {0x3fff, 0x7fffe555},      {0x1fff, 0x7ffff2ab},
 | |
|       {0xfff, 0x7ffff955},       {0x7ff, 0x7ffffcab},
 | |
|       {0x3ff, 0x7ffffe55},       {0x1ff, 0x7fffff2b},
 | |
|       {0xff, 0x7fffff95},        {0x7f, 0x7fffffcb},
 | |
|       {0x3f, 0x7fffffe5},        {0x1f, 0x7ffffff3},
 | |
|       {0xf, 0x7ffffff9},         {0x7, 0x7ffffffd},
 | |
|       {0x3, 0x7ffffffe},         {0x1, 0x7fffffff},
 | |
|   };
 | |
| 
 | |
|   for (const auto& instance : kInputs) {
 | |
|     absl::random_internal::sequence_urbg urbg({instance.first});
 | |
|     EXPECT_EQ(instance.second, dist(urbg));
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace
 |