-- 1c1d6e2404dfc6caa022b335df5acdac6da50fe1 by Derek Mauro <dmauro@google.com>: Fix the internal namespacing in unaligned_access.h PiperOrigin-RevId: 215434506 -- 17d4400aebf025a230690fc1c7a968ef8d85bbba by Eric Fiselier <ericwf@google.com>: gtest depends on the GCC extension allowing variadic macros to be passed a empty parameter pack for ..., but LLVM diagnoses this as a GNU extension. This patch suppresses the warning when building the absl tests. PiperOrigin-RevId: 215426161 -- f2c49dde23a9f445b9de963f1bbe840ebb568b30 by Eric Fiselier <ericwf@google.com>: Use EXPECT_DEATH_IF_SUPPORTED instead of EXPECT_DEATH. This avoids breaking the test when gtest doesn't support death tests. PiperOrigin-RevId: 215423849 -- cd687c1e121709603f4fc3726b534f6a9c52cc89 by Eric Fiselier <ericwf@google.com>: Disable LLVM's -Wmissing-variable-declarations in tests. GCC's configuration already disables this via -Wno-missing-declarations, this change makes LLVM do the same. The warning would otherwise flag most tests which use ABSL_FLAG. PiperOrigin-RevId: 215407429 -- d14098824c84e3a8c8f6fb920e0335fb48fe2010 by Eric Fiselier <ericwf@google.com>: Fix local variable shadowing in city hash implementation. PiperOrigin-RevId: 215407249 -- 4b5e140ba743f0d231790a26c49083abb4329e2c by Abseil Team <absl-team@google.com>: Make raw_hash_set::reserve 2X fast when reserve doesn't do any allocation. Make raw_hash_set::reserve ~1% faster when reserve does some (128~4k) allocation. PiperOrigin-RevId: 215348727 -- 461161e65e04b801480aa117af2534c594654ccf by Eric Fiselier <ericwf@google.com>: Internal change PiperOrigin-RevId: 215272283 -- 50413ae31ad3d3a177257416acd8ede47a17bff2 by Eric Fiselier <ericwf@google.com>: Internal Change PiperOrigin-RevId: 215233183 -- 477be54c43d61019a8fe4e190e340eb52737d383 by Abseil Team <absl-team@google.com>: Clarify misleading comment on ABSL_ATTRIBUTE_UNUSED PiperOrigin-RevId: 215185496 -- 2cafa2b5287507d3a946682aee9ab13af6d471c9 by Matt Kulukundis <kfm@google.com>: Add support for absl::Hash to various absl in types. PiperOrigin-RevId: 215039569 -- 082248901991aa3d29be0ea3689c7f213cf0fd83 by Derek Mauro <dmauro@google.com>: Remove an instance of HAS_GLOBAL_STRING from hash_function_defaults.h PiperOrigin-RevId: 214989094 -- b929f61907f0786a6133e3a9d7287e339c0a0acb by Derek Mauro <dmauro@google.com>: Internal import of Github #174 Fix code snippet in comment https://github.com/abseil/abseil-cpp/pull/174 PiperOrigin-RevId: 214958849 -- f2c5e829eca11c352e121f56eefbf87083305023 by Derek Mauro <dmauro@google.com>: Internal import of GitHub #173 Fix CMake build for absl::container. https://github.com/abseil/abseil-cpp/pull/173 PiperOrigin-RevId: 214957796 -- d704f860f9fddafb99e34e6c5032e49f73874e10 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 214828181 GitOrigin-RevId: 1c1d6e2404dfc6caa022b335df5acdac6da50fe1 Change-Id: I551de2b1ba0cbaf6856cd5959358cf6651179dea
		
			
				
	
	
		
			518 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			518 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2018 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
//
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// File: fixed_array.h
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// A `FixedArray<T>` represents a non-resizable array of `T` where the length of
 | 
						|
// the array can be determined at run-time. It is a good replacement for
 | 
						|
// non-standard and deprecated uses of `alloca()` and variable length arrays
 | 
						|
// within the GCC extension. (See
 | 
						|
// https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html).
 | 
						|
//
 | 
						|
// `FixedArray` allocates small arrays inline, keeping performance fast by
 | 
						|
// avoiding heap operations. It also helps reduce the chances of
 | 
						|
// accidentally overflowing your stack if large input is passed to
 | 
						|
// your function.
 | 
						|
 | 
						|
#ifndef ABSL_CONTAINER_FIXED_ARRAY_H_
 | 
						|
#define ABSL_CONTAINER_FIXED_ARRAY_H_
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <array>
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <initializer_list>
 | 
						|
#include <iterator>
 | 
						|
#include <limits>
 | 
						|
#include <memory>
 | 
						|
#include <new>
 | 
						|
#include <type_traits>
 | 
						|
 | 
						|
#include "absl/algorithm/algorithm.h"
 | 
						|
#include "absl/base/dynamic_annotations.h"
 | 
						|
#include "absl/base/internal/throw_delegate.h"
 | 
						|
#include "absl/base/macros.h"
 | 
						|
#include "absl/base/optimization.h"
 | 
						|
#include "absl/base/port.h"
 | 
						|
#include "absl/container/internal/compressed_tuple.h"
 | 
						|
#include "absl/memory/memory.h"
 | 
						|
 | 
						|
namespace absl {
 | 
						|
 | 
						|
constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);
 | 
						|
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// FixedArray
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// A `FixedArray` provides a run-time fixed-size array, allocating a small array
 | 
						|
// inline for efficiency.
 | 
						|
//
 | 
						|
// Most users should not specify an `inline_elements` argument and let
 | 
						|
// `FixedArray` automatically determine the number of elements
 | 
						|
// to store inline based on `sizeof(T)`. If `inline_elements` is specified, the
 | 
						|
// `FixedArray` implementation will use inline storage for arrays with a
 | 
						|
// length <= `inline_elements`.
 | 
						|
//
 | 
						|
// Note that a `FixedArray` constructed with a `size_type` argument will
 | 
						|
// default-initialize its values by leaving trivially constructible types
 | 
						|
// uninitialized (e.g. int, int[4], double), and others default-constructed.
 | 
						|
// This matches the behavior of c-style arrays and `std::array`, but not
 | 
						|
// `std::vector`.
 | 
						|
//
 | 
						|
// Note that `FixedArray` does not provide a public allocator; if it requires a
 | 
						|
// heap allocation, it will do so with global `::operator new[]()` and
 | 
						|
// `::operator delete[]()`, even if T provides class-scope overrides for these
 | 
						|
// operators.
 | 
						|
template <typename T, size_t N = kFixedArrayUseDefault,
 | 
						|
          typename A = std::allocator<T>>
 | 
						|
class FixedArray {
 | 
						|
  static_assert(!std::is_array<T>::value || std::extent<T>::value > 0,
 | 
						|
                "Arrays with unknown bounds cannot be used with FixedArray.");
 | 
						|
 | 
						|
  static constexpr size_t kInlineBytesDefault = 256;
 | 
						|
 | 
						|
  using AllocatorTraits = std::allocator_traits<A>;
 | 
						|
  // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17,
 | 
						|
  // but this seems to be mostly pedantic.
 | 
						|
  template <typename Iterator>
 | 
						|
  using EnableIfForwardIterator = absl::enable_if_t<std::is_convertible<
 | 
						|
      typename std::iterator_traits<Iterator>::iterator_category,
 | 
						|
      std::forward_iterator_tag>::value>;
 | 
						|
  static constexpr bool NoexceptCopyable() {
 | 
						|
    return std::is_nothrow_copy_constructible<StorageElement>::value &&
 | 
						|
           absl::allocator_is_nothrow<allocator_type>::value;
 | 
						|
  }
 | 
						|
  static constexpr bool NoexceptMovable() {
 | 
						|
    return std::is_nothrow_move_constructible<StorageElement>::value &&
 | 
						|
           absl::allocator_is_nothrow<allocator_type>::value;
 | 
						|
  }
 | 
						|
  static constexpr bool DefaultConstructorIsNonTrivial() {
 | 
						|
    return !absl::is_trivially_default_constructible<StorageElement>::value;
 | 
						|
  }
 | 
						|
 | 
						|
 public:
 | 
						|
  using allocator_type = typename AllocatorTraits::allocator_type;
 | 
						|
  using value_type = typename allocator_type::value_type;
 | 
						|
  using pointer = typename allocator_type::pointer;
 | 
						|
  using const_pointer = typename allocator_type::const_pointer;
 | 
						|
  using reference = typename allocator_type::reference;
 | 
						|
  using const_reference = typename allocator_type::const_reference;
 | 
						|
  using size_type = typename allocator_type::size_type;
 | 
						|
  using difference_type = typename allocator_type::difference_type;
 | 
						|
  using iterator = pointer;
 | 
						|
  using const_iterator = const_pointer;
 | 
						|
  using reverse_iterator = std::reverse_iterator<iterator>;
 | 
						|
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
 | 
						|
 | 
						|
  static constexpr size_type inline_elements =
 | 
						|
      (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type)
 | 
						|
                                  : static_cast<size_type>(N));
 | 
						|
 | 
						|
  FixedArray(
 | 
						|
      const FixedArray& other,
 | 
						|
      const allocator_type& a = allocator_type()) noexcept(NoexceptCopyable())
 | 
						|
      : FixedArray(other.begin(), other.end(), a) {}
 | 
						|
 | 
						|
  FixedArray(
 | 
						|
      FixedArray&& other,
 | 
						|
      const allocator_type& a = allocator_type()) noexcept(NoexceptMovable())
 | 
						|
      : FixedArray(std::make_move_iterator(other.begin()),
 | 
						|
                   std::make_move_iterator(other.end()), a) {}
 | 
						|
 | 
						|
  // Creates an array object that can store `n` elements.
 | 
						|
  // Note that trivially constructible elements will be uninitialized.
 | 
						|
  explicit FixedArray(size_type n, const allocator_type& a = allocator_type())
 | 
						|
      : storage_(n, a) {
 | 
						|
    if (DefaultConstructorIsNonTrivial()) {
 | 
						|
      memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
 | 
						|
                                      storage_.end());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Creates an array initialized with `n` copies of `val`.
 | 
						|
  FixedArray(size_type n, const value_type& val,
 | 
						|
             const allocator_type& a = allocator_type())
 | 
						|
      : storage_(n, a) {
 | 
						|
    memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
 | 
						|
                                    storage_.end(), val);
 | 
						|
  }
 | 
						|
 | 
						|
  // Creates an array initialized with the size and contents of `init_list`.
 | 
						|
  FixedArray(std::initializer_list<value_type> init_list,
 | 
						|
             const allocator_type& a = allocator_type())
 | 
						|
      : FixedArray(init_list.begin(), init_list.end(), a) {}
 | 
						|
 | 
						|
  // Creates an array initialized with the elements from the input
 | 
						|
  // range. The array's size will always be `std::distance(first, last)`.
 | 
						|
  // REQUIRES: Iterator must be a forward_iterator or better.
 | 
						|
  template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr>
 | 
						|
  FixedArray(Iterator first, Iterator last,
 | 
						|
             const allocator_type& a = allocator_type())
 | 
						|
      : storage_(std::distance(first, last), a) {
 | 
						|
    memory_internal::CopyRange(storage_.alloc(), storage_.begin(), first, last);
 | 
						|
  }
 | 
						|
 | 
						|
  ~FixedArray() noexcept {
 | 
						|
    for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) {
 | 
						|
      AllocatorTraits::destroy(storage_.alloc(), cur);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Assignments are deleted because they break the invariant that the size of a
 | 
						|
  // `FixedArray` never changes.
 | 
						|
  void operator=(FixedArray&&) = delete;
 | 
						|
  void operator=(const FixedArray&) = delete;
 | 
						|
 | 
						|
  // FixedArray::size()
 | 
						|
  //
 | 
						|
  // Returns the length of the fixed array.
 | 
						|
  size_type size() const { return storage_.size(); }
 | 
						|
 | 
						|
  // FixedArray::max_size()
 | 
						|
  //
 | 
						|
  // Returns the largest possible value of `std::distance(begin(), end())` for a
 | 
						|
  // `FixedArray<T>`. This is equivalent to the most possible addressable bytes
 | 
						|
  // over the number of bytes taken by T.
 | 
						|
  constexpr size_type max_size() const {
 | 
						|
    return std::numeric_limits<difference_type>::max() / sizeof(value_type);
 | 
						|
  }
 | 
						|
 | 
						|
  // FixedArray::empty()
 | 
						|
  //
 | 
						|
  // Returns whether or not the fixed array is empty.
 | 
						|
  bool empty() const { return size() == 0; }
 | 
						|
 | 
						|
  // FixedArray::memsize()
 | 
						|
  //
 | 
						|
  // Returns the memory size of the fixed array in bytes.
 | 
						|
  size_t memsize() const { return size() * sizeof(value_type); }
 | 
						|
 | 
						|
  // FixedArray::data()
 | 
						|
  //
 | 
						|
  // Returns a const T* pointer to elements of the `FixedArray`. This pointer
 | 
						|
  // can be used to access (but not modify) the contained elements.
 | 
						|
  const_pointer data() const { return AsValueType(storage_.begin()); }
 | 
						|
 | 
						|
  // Overload of FixedArray::data() to return a T* pointer to elements of the
 | 
						|
  // fixed array. This pointer can be used to access and modify the contained
 | 
						|
  // elements.
 | 
						|
  pointer data() { return AsValueType(storage_.begin()); }
 | 
						|
 | 
						|
  // FixedArray::operator[]
 | 
						|
  //
 | 
						|
  // Returns a reference the ith element of the fixed array.
 | 
						|
  // REQUIRES: 0 <= i < size()
 | 
						|
  reference operator[](size_type i) {
 | 
						|
    assert(i < size());
 | 
						|
    return data()[i];
 | 
						|
  }
 | 
						|
 | 
						|
  // Overload of FixedArray::operator()[] to return a const reference to the
 | 
						|
  // ith element of the fixed array.
 | 
						|
  // REQUIRES: 0 <= i < size()
 | 
						|
  const_reference operator[](size_type i) const {
 | 
						|
    assert(i < size());
 | 
						|
    return data()[i];
 | 
						|
  }
 | 
						|
 | 
						|
  // FixedArray::at
 | 
						|
  //
 | 
						|
  // Bounds-checked access.  Returns a reference to the ith element of the
 | 
						|
  // fiexed array, or throws std::out_of_range
 | 
						|
  reference at(size_type i) {
 | 
						|
    if (ABSL_PREDICT_FALSE(i >= size())) {
 | 
						|
      base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
 | 
						|
    }
 | 
						|
    return data()[i];
 | 
						|
  }
 | 
						|
 | 
						|
  // Overload of FixedArray::at() to return a const reference to the ith element
 | 
						|
  // of the fixed array.
 | 
						|
  const_reference at(size_type i) const {
 | 
						|
    if (ABSL_PREDICT_FALSE(i >= size())) {
 | 
						|
      base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
 | 
						|
    }
 | 
						|
    return data()[i];
 | 
						|
  }
 | 
						|
 | 
						|
  // FixedArray::front()
 | 
						|
  //
 | 
						|
  // Returns a reference to the first element of the fixed array.
 | 
						|
  reference front() { return *begin(); }
 | 
						|
 | 
						|
  // Overload of FixedArray::front() to return a reference to the first element
 | 
						|
  // of a fixed array of const values.
 | 
						|
  const_reference front() const { return *begin(); }
 | 
						|
 | 
						|
  // FixedArray::back()
 | 
						|
  //
 | 
						|
  // Returns a reference to the last element of the fixed array.
 | 
						|
  reference back() { return *(end() - 1); }
 | 
						|
 | 
						|
  // Overload of FixedArray::back() to return a reference to the last element
 | 
						|
  // of a fixed array of const values.
 | 
						|
  const_reference back() const { return *(end() - 1); }
 | 
						|
 | 
						|
  // FixedArray::begin()
 | 
						|
  //
 | 
						|
  // Returns an iterator to the beginning of the fixed array.
 | 
						|
  iterator begin() { return data(); }
 | 
						|
 | 
						|
  // Overload of FixedArray::begin() to return a const iterator to the
 | 
						|
  // beginning of the fixed array.
 | 
						|
  const_iterator begin() const { return data(); }
 | 
						|
 | 
						|
  // FixedArray::cbegin()
 | 
						|
  //
 | 
						|
  // Returns a const iterator to the beginning of the fixed array.
 | 
						|
  const_iterator cbegin() const { return begin(); }
 | 
						|
 | 
						|
  // FixedArray::end()
 | 
						|
  //
 | 
						|
  // Returns an iterator to the end of the fixed array.
 | 
						|
  iterator end() { return data() + size(); }
 | 
						|
 | 
						|
  // Overload of FixedArray::end() to return a const iterator to the end of the
 | 
						|
  // fixed array.
 | 
						|
  const_iterator end() const { return data() + size(); }
 | 
						|
 | 
						|
  // FixedArray::cend()
 | 
						|
  //
 | 
						|
  // Returns a const iterator to the end of the fixed array.
 | 
						|
  const_iterator cend() const { return end(); }
 | 
						|
 | 
						|
  // FixedArray::rbegin()
 | 
						|
  //
 | 
						|
  // Returns a reverse iterator from the end of the fixed array.
 | 
						|
  reverse_iterator rbegin() { return reverse_iterator(end()); }
 | 
						|
 | 
						|
  // Overload of FixedArray::rbegin() to return a const reverse iterator from
 | 
						|
  // the end of the fixed array.
 | 
						|
  const_reverse_iterator rbegin() const {
 | 
						|
    return const_reverse_iterator(end());
 | 
						|
  }
 | 
						|
 | 
						|
  // FixedArray::crbegin()
 | 
						|
  //
 | 
						|
  // Returns a const reverse iterator from the end of the fixed array.
 | 
						|
  const_reverse_iterator crbegin() const { return rbegin(); }
 | 
						|
 | 
						|
  // FixedArray::rend()
 | 
						|
  //
 | 
						|
  // Returns a reverse iterator from the beginning of the fixed array.
 | 
						|
  reverse_iterator rend() { return reverse_iterator(begin()); }
 | 
						|
 | 
						|
  // Overload of FixedArray::rend() for returning a const reverse iterator
 | 
						|
  // from the beginning of the fixed array.
 | 
						|
  const_reverse_iterator rend() const {
 | 
						|
    return const_reverse_iterator(begin());
 | 
						|
  }
 | 
						|
 | 
						|
  // FixedArray::crend()
 | 
						|
  //
 | 
						|
  // Returns a reverse iterator from the beginning of the fixed array.
 | 
						|
  const_reverse_iterator crend() const { return rend(); }
 | 
						|
 | 
						|
  // FixedArray::fill()
 | 
						|
  //
 | 
						|
  // Assigns the given `value` to all elements in the fixed array.
 | 
						|
  void fill(const value_type& val) { std::fill(begin(), end(), val); }
 | 
						|
 | 
						|
  // Relational operators. Equality operators are elementwise using
 | 
						|
  // `operator==`, while order operators order FixedArrays lexicographically.
 | 
						|
  friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) {
 | 
						|
    return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
 | 
						|
  }
 | 
						|
 | 
						|
  friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) {
 | 
						|
    return !(lhs == rhs);
 | 
						|
  }
 | 
						|
 | 
						|
  friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) {
 | 
						|
    return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(),
 | 
						|
                                        rhs.end());
 | 
						|
  }
 | 
						|
 | 
						|
  friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) {
 | 
						|
    return rhs < lhs;
 | 
						|
  }
 | 
						|
 | 
						|
  friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) {
 | 
						|
    return !(rhs < lhs);
 | 
						|
  }
 | 
						|
 | 
						|
  friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) {
 | 
						|
    return !(lhs < rhs);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename H>
 | 
						|
  friend H AbslHashValue(H h, const FixedArray& v) {
 | 
						|
    return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()),
 | 
						|
                      v.size());
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  // StorageElement
 | 
						|
  //
 | 
						|
  // For FixedArrays with a C-style-array value_type, StorageElement is a POD
 | 
						|
  // wrapper struct called StorageElementWrapper that holds the value_type
 | 
						|
  // instance inside. This is needed for construction and destruction of the
 | 
						|
  // entire array regardless of how many dimensions it has. For all other cases,
 | 
						|
  // StorageElement is just an alias of value_type.
 | 
						|
  //
 | 
						|
  // Maintainer's Note: The simpler solution would be to simply wrap value_type
 | 
						|
  // in a struct whether it's an array or not. That causes some paranoid
 | 
						|
  // diagnostics to misfire, believing that 'data()' returns a pointer to a
 | 
						|
  // single element, rather than the packed array that it really is.
 | 
						|
  // e.g.:
 | 
						|
  //
 | 
						|
  //     FixedArray<char> buf(1);
 | 
						|
  //     sprintf(buf.data(), "foo");
 | 
						|
  //
 | 
						|
  //     error: call to int __builtin___sprintf_chk(etc...)
 | 
						|
  //     will always overflow destination buffer [-Werror]
 | 
						|
  //
 | 
						|
  template <typename OuterT = value_type,
 | 
						|
            typename InnerT = absl::remove_extent_t<OuterT>,
 | 
						|
            size_t InnerN = std::extent<OuterT>::value>
 | 
						|
  struct StorageElementWrapper {
 | 
						|
    InnerT array[InnerN];
 | 
						|
  };
 | 
						|
 | 
						|
  using StorageElement =
 | 
						|
      absl::conditional_t<std::is_array<value_type>::value,
 | 
						|
                          StorageElementWrapper<value_type>, value_type>;
 | 
						|
  using StorageElementBuffer =
 | 
						|
      absl::aligned_storage_t<sizeof(StorageElement), alignof(StorageElement)>;
 | 
						|
 | 
						|
  static pointer AsValueType(pointer ptr) { return ptr; }
 | 
						|
  static pointer AsValueType(StorageElementWrapper<value_type>* ptr) {
 | 
						|
    return std::addressof(ptr->array);
 | 
						|
  }
 | 
						|
 | 
						|
  static_assert(sizeof(StorageElement) == sizeof(value_type), "");
 | 
						|
  static_assert(alignof(StorageElement) == alignof(value_type), "");
 | 
						|
 | 
						|
  struct NonEmptyInlinedStorage {
 | 
						|
    StorageElement* data() {
 | 
						|
      return reinterpret_cast<StorageElement*>(inlined_storage_.data());
 | 
						|
    }
 | 
						|
 | 
						|
#ifdef ADDRESS_SANITIZER
 | 
						|
    void* RedzoneBegin() { return &redzone_begin_; }
 | 
						|
    void* RedzoneEnd() { return &redzone_end_ + 1; }
 | 
						|
#endif  // ADDRESS_SANITIZER
 | 
						|
 | 
						|
    void AnnotateConstruct(size_type);
 | 
						|
    void AnnotateDestruct(size_type);
 | 
						|
 | 
						|
    ADDRESS_SANITIZER_REDZONE(redzone_begin_);
 | 
						|
    std::array<StorageElementBuffer, inline_elements> inlined_storage_;
 | 
						|
    ADDRESS_SANITIZER_REDZONE(redzone_end_);
 | 
						|
  };
 | 
						|
 | 
						|
  struct EmptyInlinedStorage {
 | 
						|
    StorageElement* data() { return nullptr; }
 | 
						|
    void AnnotateConstruct(size_type) {}
 | 
						|
    void AnnotateDestruct(size_type) {}
 | 
						|
  };
 | 
						|
 | 
						|
  using InlinedStorage =
 | 
						|
      absl::conditional_t<inline_elements == 0, EmptyInlinedStorage,
 | 
						|
                          NonEmptyInlinedStorage>;
 | 
						|
 | 
						|
  // Storage
 | 
						|
  //
 | 
						|
  // An instance of Storage manages the inline and out-of-line memory for
 | 
						|
  // instances of FixedArray. This guarantees that even when construction of
 | 
						|
  // individual elements fails in the FixedArray constructor body, the
 | 
						|
  // destructor for Storage will still be called and out-of-line memory will be
 | 
						|
  // properly deallocated.
 | 
						|
  //
 | 
						|
  class Storage : public InlinedStorage {
 | 
						|
   public:
 | 
						|
    Storage(size_type n, const allocator_type& a)
 | 
						|
        : size_alloc_(n, a), data_(InitializeData()) {}
 | 
						|
 | 
						|
    ~Storage() noexcept {
 | 
						|
      if (UsingInlinedStorage(size())) {
 | 
						|
        InlinedStorage::AnnotateDestruct(size());
 | 
						|
      } else {
 | 
						|
        AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    size_type size() const { return size_alloc_.template get<0>(); }
 | 
						|
    StorageElement* begin() const { return data_; }
 | 
						|
    StorageElement* end() const { return begin() + size(); }
 | 
						|
    allocator_type& alloc() {
 | 
						|
      return size_alloc_.template get<1>();
 | 
						|
    }
 | 
						|
 | 
						|
   private:
 | 
						|
    static bool UsingInlinedStorage(size_type n) {
 | 
						|
      return n <= inline_elements;
 | 
						|
    }
 | 
						|
 | 
						|
    StorageElement* InitializeData() {
 | 
						|
      if (UsingInlinedStorage(size())) {
 | 
						|
        InlinedStorage::AnnotateConstruct(size());
 | 
						|
        return InlinedStorage::data();
 | 
						|
      } else {
 | 
						|
        return reinterpret_cast<StorageElement*>(
 | 
						|
            AllocatorTraits::allocate(alloc(), size()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s
 | 
						|
    container_internal::CompressedTuple<size_type, allocator_type> size_alloc_;
 | 
						|
    StorageElement* data_;
 | 
						|
  };
 | 
						|
 | 
						|
  Storage storage_;
 | 
						|
};
 | 
						|
 | 
						|
template <typename T, size_t N, typename A>
 | 
						|
constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault;
 | 
						|
 | 
						|
template <typename T, size_t N, typename A>
 | 
						|
constexpr typename FixedArray<T, N, A>::size_type
 | 
						|
    FixedArray<T, N, A>::inline_elements;
 | 
						|
 | 
						|
template <typename T, size_t N, typename A>
 | 
						|
void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct(
 | 
						|
    typename FixedArray<T, N, A>::size_type n) {
 | 
						|
#ifdef ADDRESS_SANITIZER
 | 
						|
  if (!n) return;
 | 
						|
  ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(), data() + n);
 | 
						|
  ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(), RedzoneBegin());
 | 
						|
#endif                   // ADDRESS_SANITIZER
 | 
						|
  static_cast<void>(n);  // Mark used when not in asan mode
 | 
						|
}
 | 
						|
 | 
						|
template <typename T, size_t N, typename A>
 | 
						|
void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct(
 | 
						|
    typename FixedArray<T, N, A>::size_type n) {
 | 
						|
#ifdef ADDRESS_SANITIZER
 | 
						|
  if (!n) return;
 | 
						|
  ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n, RedzoneEnd());
 | 
						|
  ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(), data());
 | 
						|
#endif                   // ADDRESS_SANITIZER
 | 
						|
  static_cast<void>(n);  // Mark used when not in asan mode
 | 
						|
}
 | 
						|
}  // namespace absl
 | 
						|
#endif  // ABSL_CONTAINER_FIXED_ARRAY_H_
 |