-- fd86c60bac6c41f1629ce1ab7dc1c8edff398a59 by Alex Strelnikov <strel@google.com>: Import PR: https://github.com/abseil/abseil-cpp/pull/243 Fix Windows ARM64 intrinsic use. PiperOrigin-RevId: 228535649 -- a0ca663f606a3b31493683e405be2b1cff450894 by CJ Johnson <johnsoncj@google.com>: Fixes issue of mixed signedness comparison PiperOrigin-RevId: 228535623 -- d71aaa1705d7303b43fe02088fe07b153e647796 by Shaindel Schwartz <shaindel@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 228534365 -- c1b49d361aa880198e071f93997724bddbcd4760 by Samuel Benzaquen <sbenza@google.com>: Internal cleanup PiperOrigin-RevId: 228406627 -- 0c4b1c2bed107698e209055b3431771d7a1bdba1 by Dave Walker <dawalker@google.com>: Add comments about the purpose of container_internal::slot_type. PiperOrigin-RevId: 228264537 -- 060aa6077d2f3a0a129149e0644d19f2f521b241 by Abseil Team <absl-team@google.com>: #include <cmath> in hashtablez_sampler.cc Expected to fix the android build. PiperOrigin-RevId: 228222550 GitOrigin-RevId: fd86c60bac6c41f1629ce1ab7dc1c8edff398a59 Change-Id: I26339fd4548c1a81b037cb52c26910d1bd850ea8
		
			
				
	
	
		
			1923 lines
		
	
	
	
		
			67 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1923 lines
		
	
	
	
		
			67 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2018 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| //
 | |
| // An open-addressing
 | |
| // hashtable with quadratic probing.
 | |
| //
 | |
| // This is a low level hashtable on top of which different interfaces can be
 | |
| // implemented, like flat_hash_set, node_hash_set, string_hash_set, etc.
 | |
| //
 | |
| // The table interface is similar to that of std::unordered_set. Notable
 | |
| // differences are that most member functions support heterogeneous keys when
 | |
| // BOTH the hash and eq functions are marked as transparent. They do so by
 | |
| // providing a typedef called `is_transparent`.
 | |
| //
 | |
| // When heterogeneous lookup is enabled, functions that take key_type act as if
 | |
| // they have an overload set like:
 | |
| //
 | |
| //   iterator find(const key_type& key);
 | |
| //   template <class K>
 | |
| //   iterator find(const K& key);
 | |
| //
 | |
| //   size_type erase(const key_type& key);
 | |
| //   template <class K>
 | |
| //   size_type erase(const K& key);
 | |
| //
 | |
| //   std::pair<iterator, iterator> equal_range(const key_type& key);
 | |
| //   template <class K>
 | |
| //   std::pair<iterator, iterator> equal_range(const K& key);
 | |
| //
 | |
| // When heterogeneous lookup is disabled, only the explicit `key_type` overloads
 | |
| // exist.
 | |
| //
 | |
| // find() also supports passing the hash explicitly:
 | |
| //
 | |
| //   iterator find(const key_type& key, size_t hash);
 | |
| //   template <class U>
 | |
| //   iterator find(const U& key, size_t hash);
 | |
| //
 | |
| // In addition the pointer to element and iterator stability guarantees are
 | |
| // weaker: all iterators and pointers are invalidated after a new element is
 | |
| // inserted.
 | |
| //
 | |
| // IMPLEMENTATION DETAILS
 | |
| //
 | |
| // The table stores elements inline in a slot array. In addition to the slot
 | |
| // array the table maintains some control state per slot. The extra state is one
 | |
| // byte per slot and stores empty or deleted marks, or alternatively 7 bits from
 | |
| // the hash of an occupied slot. The table is split into logical groups of
 | |
| // slots, like so:
 | |
| //
 | |
| //      Group 1         Group 2        Group 3
 | |
| // +---------------+---------------+---------------+
 | |
| // | | | | | | | | | | | | | | | | | | | | | | | | |
 | |
| // +---------------+---------------+---------------+
 | |
| //
 | |
| // On lookup the hash is split into two parts:
 | |
| // - H2: 7 bits (those stored in the control bytes)
 | |
| // - H1: the rest of the bits
 | |
| // The groups are probed using H1. For each group the slots are matched to H2 in
 | |
| // parallel. Because H2 is 7 bits (128 states) and the number of slots per group
 | |
| // is low (8 or 16) in almost all cases a match in H2 is also a lookup hit.
 | |
| //
 | |
| // On insert, once the right group is found (as in lookup), its slots are
 | |
| // filled in order.
 | |
| //
 | |
| // On erase a slot is cleared. In case the group did not have any empty slots
 | |
| // before the erase, the erased slot is marked as deleted.
 | |
| //
 | |
| // Groups without empty slots (but maybe with deleted slots) extend the probe
 | |
| // sequence. The probing algorithm is quadratic. Given N the number of groups,
 | |
| // the probing function for the i'th probe is:
 | |
| //
 | |
| //   P(0) = H1 % N
 | |
| //
 | |
| //   P(i) = (P(i - 1) + i) % N
 | |
| //
 | |
| // This probing function guarantees that after N probes, all the groups of the
 | |
| // table will be probed exactly once.
 | |
| 
 | |
| #ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
 | |
| #define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| #include <cstdint>
 | |
| #include <cstring>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <memory>
 | |
| #include <tuple>
 | |
| #include <type_traits>
 | |
| #include <utility>
 | |
| 
 | |
| #include "absl/base/internal/bits.h"
 | |
| #include "absl/base/internal/endian.h"
 | |
| #include "absl/base/port.h"
 | |
| #include "absl/container/internal/common.h"
 | |
| #include "absl/container/internal/compressed_tuple.h"
 | |
| #include "absl/container/internal/container_memory.h"
 | |
| #include "absl/container/internal/hash_policy_traits.h"
 | |
| #include "absl/container/internal/hashtable_debug_hooks.h"
 | |
| #include "absl/container/internal/hashtablez_sampler.h"
 | |
| #include "absl/container/internal/have_sse.h"
 | |
| #include "absl/container/internal/layout.h"
 | |
| #include "absl/memory/memory.h"
 | |
| #include "absl/meta/type_traits.h"
 | |
| #include "absl/types/optional.h"
 | |
| #include "absl/utility/utility.h"
 | |
| 
 | |
| namespace absl {
 | |
| namespace container_internal {
 | |
| 
 | |
| template <size_t Width>
 | |
| class probe_seq {
 | |
|  public:
 | |
|   probe_seq(size_t hash, size_t mask) {
 | |
|     assert(((mask + 1) & mask) == 0 && "not a mask");
 | |
|     mask_ = mask;
 | |
|     offset_ = hash & mask_;
 | |
|   }
 | |
|   size_t offset() const { return offset_; }
 | |
|   size_t offset(size_t i) const { return (offset_ + i) & mask_; }
 | |
| 
 | |
|   void next() {
 | |
|     index_ += Width;
 | |
|     offset_ += index_;
 | |
|     offset_ &= mask_;
 | |
|   }
 | |
|   // 0-based probe index. The i-th probe in the probe sequence.
 | |
|   size_t index() const { return index_; }
 | |
| 
 | |
|  private:
 | |
|   size_t mask_;
 | |
|   size_t offset_;
 | |
|   size_t index_ = 0;
 | |
| };
 | |
| 
 | |
| template <class ContainerKey, class Hash, class Eq>
 | |
| struct RequireUsableKey {
 | |
|   template <class PassedKey, class... Args>
 | |
|   std::pair<
 | |
|       decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())),
 | |
|       decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(),
 | |
|                                          std::declval<const PassedKey&>()))>*
 | |
|   operator()(const PassedKey&, const Args&...) const;
 | |
| };
 | |
| 
 | |
| template <class E, class Policy, class Hash, class Eq, class... Ts>
 | |
| struct IsDecomposable : std::false_type {};
 | |
| 
 | |
| template <class Policy, class Hash, class Eq, class... Ts>
 | |
| struct IsDecomposable<
 | |
|     absl::void_t<decltype(
 | |
|         Policy::apply(RequireUsableKey<typename Policy::key_type, Hash, Eq>(),
 | |
|                       std::declval<Ts>()...))>,
 | |
|     Policy, Hash, Eq, Ts...> : std::true_type {};
 | |
| 
 | |
| // TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it.
 | |
| template <class T>
 | |
| constexpr bool IsNoThrowSwappable() {
 | |
|   using std::swap;
 | |
|   return noexcept(swap(std::declval<T&>(), std::declval<T&>()));
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| int TrailingZeros(T x) {
 | |
|   return sizeof(T) == 8 ? base_internal::CountTrailingZerosNonZero64(
 | |
|                               static_cast<uint64_t>(x))
 | |
|                         : base_internal::CountTrailingZerosNonZero32(
 | |
|                               static_cast<uint32_t>(x));
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| int LeadingZeros(T x) {
 | |
|   return sizeof(T) == 8
 | |
|              ? base_internal::CountLeadingZeros64(static_cast<uint64_t>(x))
 | |
|              : base_internal::CountLeadingZeros32(static_cast<uint32_t>(x));
 | |
| }
 | |
| 
 | |
| // An abstraction over a bitmask. It provides an easy way to iterate through the
 | |
| // indexes of the set bits of a bitmask.  When Shift=0 (platforms with SSE),
 | |
| // this is a true bitmask.  On non-SSE, platforms the arithematic used to
 | |
| // emulate the SSE behavior works in bytes (Shift=3) and leaves each bytes as
 | |
| // either 0x00 or 0x80.
 | |
| //
 | |
| // For example:
 | |
| //   for (int i : BitMask<uint32_t, 16>(0x5)) -> yields 0, 2
 | |
| //   for (int i : BitMask<uint64_t, 8, 3>(0x0000000080800000)) -> yields 2, 3
 | |
| template <class T, int SignificantBits, int Shift = 0>
 | |
| class BitMask {
 | |
|   static_assert(std::is_unsigned<T>::value, "");
 | |
|   static_assert(Shift == 0 || Shift == 3, "");
 | |
| 
 | |
|  public:
 | |
|   // These are useful for unit tests (gunit).
 | |
|   using value_type = int;
 | |
|   using iterator = BitMask;
 | |
|   using const_iterator = BitMask;
 | |
| 
 | |
|   explicit BitMask(T mask) : mask_(mask) {}
 | |
|   BitMask& operator++() {
 | |
|     mask_ &= (mask_ - 1);
 | |
|     return *this;
 | |
|   }
 | |
|   explicit operator bool() const { return mask_ != 0; }
 | |
|   int operator*() const { return LowestBitSet(); }
 | |
|   int LowestBitSet() const {
 | |
|     return container_internal::TrailingZeros(mask_) >> Shift;
 | |
|   }
 | |
|   int HighestBitSet() const {
 | |
|     return (sizeof(T) * CHAR_BIT - container_internal::LeadingZeros(mask_) -
 | |
|             1) >>
 | |
|            Shift;
 | |
|   }
 | |
| 
 | |
|   BitMask begin() const { return *this; }
 | |
|   BitMask end() const { return BitMask(0); }
 | |
| 
 | |
|   int TrailingZeros() const {
 | |
|     return container_internal::TrailingZeros(mask_) >> Shift;
 | |
|   }
 | |
| 
 | |
|   int LeadingZeros() const {
 | |
|     constexpr int total_significant_bits = SignificantBits << Shift;
 | |
|     constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits;
 | |
|     return container_internal::LeadingZeros(mask_ << extra_bits) >> Shift;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   friend bool operator==(const BitMask& a, const BitMask& b) {
 | |
|     return a.mask_ == b.mask_;
 | |
|   }
 | |
|   friend bool operator!=(const BitMask& a, const BitMask& b) {
 | |
|     return a.mask_ != b.mask_;
 | |
|   }
 | |
| 
 | |
|   T mask_;
 | |
| };
 | |
| 
 | |
| using ctrl_t = signed char;
 | |
| using h2_t = uint8_t;
 | |
| 
 | |
| // The values here are selected for maximum performance. See the static asserts
 | |
| // below for details.
 | |
| enum Ctrl : ctrl_t {
 | |
|   kEmpty = -128,   // 0b10000000
 | |
|   kDeleted = -2,   // 0b11111110
 | |
|   kSentinel = -1,  // 0b11111111
 | |
| };
 | |
| static_assert(
 | |
|     kEmpty & kDeleted & kSentinel & 0x80,
 | |
|     "Special markers need to have the MSB to make checking for them efficient");
 | |
| static_assert(kEmpty < kSentinel && kDeleted < kSentinel,
 | |
|               "kEmpty and kDeleted must be smaller than kSentinel to make the "
 | |
|               "SIMD test of IsEmptyOrDeleted() efficient");
 | |
| static_assert(kSentinel == -1,
 | |
|               "kSentinel must be -1 to elide loading it from memory into SIMD "
 | |
|               "registers (pcmpeqd xmm, xmm)");
 | |
| static_assert(kEmpty == -128,
 | |
|               "kEmpty must be -128 to make the SIMD check for its "
 | |
|               "existence efficient (psignb xmm, xmm)");
 | |
| static_assert(~kEmpty & ~kDeleted & kSentinel & 0x7F,
 | |
|               "kEmpty and kDeleted must share an unset bit that is not shared "
 | |
|               "by kSentinel to make the scalar test for MatchEmptyOrDeleted() "
 | |
|               "efficient");
 | |
| static_assert(kDeleted == -2,
 | |
|               "kDeleted must be -2 to make the implementation of "
 | |
|               "ConvertSpecialToEmptyAndFullToDeleted efficient");
 | |
| 
 | |
| // A single block of empty control bytes for tables without any slots allocated.
 | |
| // This enables removing a branch in the hot path of find().
 | |
| inline ctrl_t* EmptyGroup() {
 | |
|   alignas(16) static constexpr ctrl_t empty_group[] = {
 | |
|       kSentinel, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty,
 | |
|       kEmpty,    kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty};
 | |
|   return const_cast<ctrl_t*>(empty_group);
 | |
| }
 | |
| 
 | |
| // Mixes a randomly generated per-process seed with `hash` and `ctrl` to
 | |
| // randomize insertion order within groups.
 | |
| bool ShouldInsertBackwards(size_t hash, ctrl_t* ctrl);
 | |
| 
 | |
| // Returns a hash seed.
 | |
| //
 | |
| // The seed consists of the ctrl_ pointer, which adds enough entropy to ensure
 | |
| // non-determinism of iteration order in most cases.
 | |
| inline size_t HashSeed(const ctrl_t* ctrl) {
 | |
|   // The low bits of the pointer have little or no entropy because of
 | |
|   // alignment. We shift the pointer to try to use higher entropy bits. A
 | |
|   // good number seems to be 12 bits, because that aligns with page size.
 | |
|   return reinterpret_cast<uintptr_t>(ctrl) >> 12;
 | |
| }
 | |
| 
 | |
| inline size_t H1(size_t hash, const ctrl_t* ctrl) {
 | |
|   return (hash >> 7) ^ HashSeed(ctrl);
 | |
| }
 | |
| inline ctrl_t H2(size_t hash) { return hash & 0x7F; }
 | |
| 
 | |
| inline bool IsEmpty(ctrl_t c) { return c == kEmpty; }
 | |
| inline bool IsFull(ctrl_t c) { return c >= 0; }
 | |
| inline bool IsDeleted(ctrl_t c) { return c == kDeleted; }
 | |
| inline bool IsEmptyOrDeleted(ctrl_t c) { return c < kSentinel; }
 | |
| 
 | |
| #if SWISSTABLE_HAVE_SSE2
 | |
| 
 | |
| // https://github.com/abseil/abseil-cpp/issues/209
 | |
| // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87853
 | |
| // _mm_cmpgt_epi8 is broken under GCC with -funsigned-char
 | |
| // Work around this by using the portable implementation of Group
 | |
| // when using -funsigned-char under GCC.
 | |
| inline __m128i _mm_cmpgt_epi8_fixed(__m128i a, __m128i b) {
 | |
| #if defined(__GNUC__) && !defined(__clang__)
 | |
|   if (std::is_unsigned<char>::value) {
 | |
|     const __m128i mask = _mm_set1_epi8(0x80);
 | |
|     const __m128i diff = _mm_subs_epi8(b, a);
 | |
|     return _mm_cmpeq_epi8(_mm_and_si128(diff, mask), mask);
 | |
|   }
 | |
| #endif
 | |
|   return _mm_cmpgt_epi8(a, b);
 | |
| }
 | |
| 
 | |
| struct GroupSse2Impl {
 | |
|   static constexpr size_t kWidth = 16;  // the number of slots per group
 | |
| 
 | |
|   explicit GroupSse2Impl(const ctrl_t* pos) {
 | |
|     ctrl = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pos));
 | |
|   }
 | |
| 
 | |
|   // Returns a bitmask representing the positions of slots that match hash.
 | |
|   BitMask<uint32_t, kWidth> Match(h2_t hash) const {
 | |
|     auto match = _mm_set1_epi8(hash);
 | |
|     return BitMask<uint32_t, kWidth>(
 | |
|         _mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl)));
 | |
|   }
 | |
| 
 | |
|   // Returns a bitmask representing the positions of empty slots.
 | |
|   BitMask<uint32_t, kWidth> MatchEmpty() const {
 | |
| #if SWISSTABLE_HAVE_SSSE3
 | |
|     // This only works because kEmpty is -128.
 | |
|     return BitMask<uint32_t, kWidth>(
 | |
|         _mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl)));
 | |
| #else
 | |
|     return Match(kEmpty);
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   // Returns a bitmask representing the positions of empty or deleted slots.
 | |
|   BitMask<uint32_t, kWidth> MatchEmptyOrDeleted() const {
 | |
|     auto special = _mm_set1_epi8(kSentinel);
 | |
|     return BitMask<uint32_t, kWidth>(
 | |
|         _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)));
 | |
|   }
 | |
| 
 | |
|   // Returns the number of trailing empty or deleted elements in the group.
 | |
|   uint32_t CountLeadingEmptyOrDeleted() const {
 | |
|     auto special = _mm_set1_epi8(kSentinel);
 | |
|     return TrailingZeros(
 | |
|         _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1);
 | |
|   }
 | |
| 
 | |
|   void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
 | |
|     auto msbs = _mm_set1_epi8(static_cast<char>(-128));
 | |
|     auto x126 = _mm_set1_epi8(126);
 | |
| #if SWISSTABLE_HAVE_SSSE3
 | |
|     auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs);
 | |
| #else
 | |
|     auto zero = _mm_setzero_si128();
 | |
|     auto special_mask = _mm_cmpgt_epi8_fixed(zero, ctrl);
 | |
|     auto res = _mm_or_si128(msbs, _mm_andnot_si128(special_mask, x126));
 | |
| #endif
 | |
|     _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), res);
 | |
|   }
 | |
| 
 | |
|   __m128i ctrl;
 | |
| };
 | |
| #endif  // SWISSTABLE_HAVE_SSE2
 | |
| 
 | |
| struct GroupPortableImpl {
 | |
|   static constexpr size_t kWidth = 8;
 | |
| 
 | |
|   explicit GroupPortableImpl(const ctrl_t* pos)
 | |
|       : ctrl(little_endian::Load64(pos)) {}
 | |
| 
 | |
|   BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const {
 | |
|     // For the technique, see:
 | |
|     // http://graphics.stanford.edu/~seander/bithacks.html##ValueInWord
 | |
|     // (Determine if a word has a byte equal to n).
 | |
|     //
 | |
|     // Caveat: there are false positives but:
 | |
|     // - they only occur if there is a real match
 | |
|     // - they never occur on kEmpty, kDeleted, kSentinel
 | |
|     // - they will be handled gracefully by subsequent checks in code
 | |
|     //
 | |
|     // Example:
 | |
|     //   v = 0x1716151413121110
 | |
|     //   hash = 0x12
 | |
|     //   retval = (v - lsbs) & ~v & msbs = 0x0000000080800000
 | |
|     constexpr uint64_t msbs = 0x8080808080808080ULL;
 | |
|     constexpr uint64_t lsbs = 0x0101010101010101ULL;
 | |
|     auto x = ctrl ^ (lsbs * hash);
 | |
|     return BitMask<uint64_t, kWidth, 3>((x - lsbs) & ~x & msbs);
 | |
|   }
 | |
| 
 | |
|   BitMask<uint64_t, kWidth, 3> MatchEmpty() const {
 | |
|     constexpr uint64_t msbs = 0x8080808080808080ULL;
 | |
|     return BitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 6)) & msbs);
 | |
|   }
 | |
| 
 | |
|   BitMask<uint64_t, kWidth, 3> MatchEmptyOrDeleted() const {
 | |
|     constexpr uint64_t msbs = 0x8080808080808080ULL;
 | |
|     return BitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 7)) & msbs);
 | |
|   }
 | |
| 
 | |
|   uint32_t CountLeadingEmptyOrDeleted() const {
 | |
|     constexpr uint64_t gaps = 0x00FEFEFEFEFEFEFEULL;
 | |
|     return (TrailingZeros(((~ctrl & (ctrl >> 7)) | gaps) + 1) + 7) >> 3;
 | |
|   }
 | |
| 
 | |
|   void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
 | |
|     constexpr uint64_t msbs = 0x8080808080808080ULL;
 | |
|     constexpr uint64_t lsbs = 0x0101010101010101ULL;
 | |
|     auto x = ctrl & msbs;
 | |
|     auto res = (~x + (x >> 7)) & ~lsbs;
 | |
|     little_endian::Store64(dst, res);
 | |
|   }
 | |
| 
 | |
|   uint64_t ctrl;
 | |
| };
 | |
| 
 | |
| #if SWISSTABLE_HAVE_SSE2
 | |
| using Group = GroupSse2Impl;
 | |
| #else
 | |
| using Group = GroupPortableImpl;
 | |
| #endif
 | |
| 
 | |
| template <class Policy, class Hash, class Eq, class Alloc>
 | |
| class raw_hash_set;
 | |
| 
 | |
| inline bool IsValidCapacity(size_t n) {
 | |
|   return ((n + 1) & n) == 0 && n >= Group::kWidth - 1;
 | |
| }
 | |
| 
 | |
| // PRECONDITION:
 | |
| //   IsValidCapacity(capacity)
 | |
| //   ctrl[capacity] == kSentinel
 | |
| //   ctrl[i] != kSentinel for all i < capacity
 | |
| // Applies mapping for every byte in ctrl:
 | |
| //   DELETED -> EMPTY
 | |
| //   EMPTY -> EMPTY
 | |
| //   FULL -> DELETED
 | |
| inline void ConvertDeletedToEmptyAndFullToDeleted(
 | |
|     ctrl_t* ctrl, size_t capacity) {
 | |
|   assert(ctrl[capacity] == kSentinel);
 | |
|   assert(IsValidCapacity(capacity));
 | |
|   for (ctrl_t* pos = ctrl; pos != ctrl + capacity + 1; pos += Group::kWidth) {
 | |
|     Group{pos}.ConvertSpecialToEmptyAndFullToDeleted(pos);
 | |
|   }
 | |
|   // Copy the cloned ctrl bytes.
 | |
|   std::memcpy(ctrl + capacity + 1, ctrl, Group::kWidth);
 | |
|   ctrl[capacity] = kSentinel;
 | |
| }
 | |
| 
 | |
| // Rounds up the capacity to the next power of 2 minus 1 and ensures it is
 | |
| // greater or equal to Group::kWidth - 1.
 | |
| inline size_t NormalizeCapacity(size_t n) {
 | |
|   constexpr size_t kMinCapacity = Group::kWidth - 1;
 | |
|   return n <= kMinCapacity
 | |
|              ? kMinCapacity
 | |
|              : (std::numeric_limits<size_t>::max)() >> LeadingZeros(n);
 | |
| }
 | |
| 
 | |
| // The node_handle concept from C++17.
 | |
| // We specialize node_handle for sets and maps. node_handle_base holds the
 | |
| // common API of both.
 | |
| template <typename Policy, typename Alloc>
 | |
| class node_handle_base {
 | |
|  protected:
 | |
|   using PolicyTraits = hash_policy_traits<Policy>;
 | |
|   using slot_type = typename PolicyTraits::slot_type;
 | |
| 
 | |
|  public:
 | |
|   using allocator_type = Alloc;
 | |
| 
 | |
|   constexpr node_handle_base() {}
 | |
|   node_handle_base(node_handle_base&& other) noexcept {
 | |
|     *this = std::move(other);
 | |
|   }
 | |
|   ~node_handle_base() { destroy(); }
 | |
|   node_handle_base& operator=(node_handle_base&& other) {
 | |
|     destroy();
 | |
|     if (!other.empty()) {
 | |
|       alloc_ = other.alloc_;
 | |
|       PolicyTraits::transfer(alloc(), slot(), other.slot());
 | |
|       other.reset();
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   bool empty() const noexcept { return !alloc_; }
 | |
|   explicit operator bool() const noexcept { return !empty(); }
 | |
|   allocator_type get_allocator() const { return *alloc_; }
 | |
| 
 | |
|  protected:
 | |
|   template <typename, typename, typename, typename>
 | |
|   friend class raw_hash_set;
 | |
| 
 | |
|   node_handle_base(const allocator_type& a, slot_type* s) : alloc_(a) {
 | |
|     PolicyTraits::transfer(alloc(), slot(), s);
 | |
|   }
 | |
| 
 | |
|   void destroy() {
 | |
|     if (!empty()) {
 | |
|       PolicyTraits::destroy(alloc(), slot());
 | |
|       reset();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void reset() {
 | |
|     assert(alloc_.has_value());
 | |
|     alloc_ = absl::nullopt;
 | |
|   }
 | |
| 
 | |
|   slot_type* slot() const {
 | |
|     assert(!empty());
 | |
|     return reinterpret_cast<slot_type*>(std::addressof(slot_space_));
 | |
|   }
 | |
|   allocator_type* alloc() { return std::addressof(*alloc_); }
 | |
| 
 | |
|  private:
 | |
|   absl::optional<allocator_type> alloc_;
 | |
|   mutable absl::aligned_storage_t<sizeof(slot_type), alignof(slot_type)>
 | |
|       slot_space_;
 | |
| };
 | |
| 
 | |
| // For sets.
 | |
| template <typename Policy, typename Alloc, typename = void>
 | |
| class node_handle : public node_handle_base<Policy, Alloc> {
 | |
|   using Base = typename node_handle::node_handle_base;
 | |
| 
 | |
|  public:
 | |
|   using value_type = typename Base::PolicyTraits::value_type;
 | |
| 
 | |
|   constexpr node_handle() {}
 | |
| 
 | |
|   value_type& value() const {
 | |
|     return Base::PolicyTraits::element(this->slot());
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <typename, typename, typename, typename>
 | |
|   friend class raw_hash_set;
 | |
| 
 | |
|   node_handle(const Alloc& a, typename Base::slot_type* s) : Base(a, s) {}
 | |
| };
 | |
| 
 | |
| // For maps.
 | |
| template <typename Policy, typename Alloc>
 | |
| class node_handle<Policy, Alloc, absl::void_t<typename Policy::mapped_type>>
 | |
|     : public node_handle_base<Policy, Alloc> {
 | |
|   using Base = typename node_handle::node_handle_base;
 | |
| 
 | |
|  public:
 | |
|   using key_type = typename Policy::key_type;
 | |
|   using mapped_type = typename Policy::mapped_type;
 | |
| 
 | |
|   constexpr node_handle() {}
 | |
| 
 | |
|   auto key() const -> decltype(Base::PolicyTraits::key(this->slot())) {
 | |
|     return Base::PolicyTraits::key(this->slot());
 | |
|   }
 | |
| 
 | |
|   mapped_type& mapped() const {
 | |
|     return Base::PolicyTraits::value(
 | |
|         &Base::PolicyTraits::element(this->slot()));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <typename, typename, typename, typename>
 | |
|   friend class raw_hash_set;
 | |
| 
 | |
|   node_handle(const Alloc& a, typename Base::slot_type* s) : Base(a, s) {}
 | |
| };
 | |
| 
 | |
| // Implement the insert_return_type<> concept of C++17.
 | |
| template <class Iterator, class NodeType>
 | |
| struct insert_return_type {
 | |
|   Iterator position;
 | |
|   bool inserted;
 | |
|   NodeType node;
 | |
| };
 | |
| 
 | |
| // Policy: a policy defines how to perform different operations on
 | |
| // the slots of the hashtable (see hash_policy_traits.h for the full interface
 | |
| // of policy).
 | |
| //
 | |
| // Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The
 | |
| // functor should accept a key and return size_t as hash. For best performance
 | |
| // it is important that the hash function provides high entropy across all bits
 | |
| // of the hash.
 | |
| //
 | |
| // Eq: a (possibly polymorphic) functor that compares two keys for equality. It
 | |
| // should accept two (of possibly different type) keys and return a bool: true
 | |
| // if they are equal, false if they are not. If two keys compare equal, then
 | |
| // their hash values as defined by Hash MUST be equal.
 | |
| //
 | |
| // Allocator: an Allocator [http://devdocs.io/cpp/concept/allocator] with which
 | |
| // the storage of the hashtable will be allocated and the elements will be
 | |
| // constructed and destroyed.
 | |
| template <class Policy, class Hash, class Eq, class Alloc>
 | |
| class raw_hash_set {
 | |
|   using PolicyTraits = hash_policy_traits<Policy>;
 | |
|   using KeyArgImpl =
 | |
|       KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>;
 | |
| 
 | |
|  public:
 | |
|   using init_type = typename PolicyTraits::init_type;
 | |
|   using key_type = typename PolicyTraits::key_type;
 | |
|   // TODO(sbenza): Hide slot_type as it is an implementation detail. Needs user
 | |
|   // code fixes!
 | |
|   using slot_type = typename PolicyTraits::slot_type;
 | |
|   using allocator_type = Alloc;
 | |
|   using size_type = size_t;
 | |
|   using difference_type = ptrdiff_t;
 | |
|   using hasher = Hash;
 | |
|   using key_equal = Eq;
 | |
|   using policy_type = Policy;
 | |
|   using value_type = typename PolicyTraits::value_type;
 | |
|   using reference = value_type&;
 | |
|   using const_reference = const value_type&;
 | |
|   using pointer = typename absl::allocator_traits<
 | |
|       allocator_type>::template rebind_traits<value_type>::pointer;
 | |
|   using const_pointer = typename absl::allocator_traits<
 | |
|       allocator_type>::template rebind_traits<value_type>::const_pointer;
 | |
| 
 | |
|   // Alias used for heterogeneous lookup functions.
 | |
|   // `key_arg<K>` evaluates to `K` when the functors are transparent and to
 | |
|   // `key_type` otherwise. It permits template argument deduction on `K` for the
 | |
|   // transparent case.
 | |
|   template <class K>
 | |
|   using key_arg = typename KeyArgImpl::template type<K, key_type>;
 | |
| 
 | |
|  private:
 | |
|   // Give an early error when key_type is not hashable/eq.
 | |
|   auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k));
 | |
|   auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k));
 | |
| 
 | |
|   using Layout = absl::container_internal::Layout<ctrl_t, slot_type>;
 | |
| 
 | |
|   static Layout MakeLayout(size_t capacity) {
 | |
|     assert(IsValidCapacity(capacity));
 | |
|     return Layout(capacity + Group::kWidth + 1, capacity);
 | |
|   }
 | |
| 
 | |
|   using AllocTraits = absl::allocator_traits<allocator_type>;
 | |
|   using SlotAlloc = typename absl::allocator_traits<
 | |
|       allocator_type>::template rebind_alloc<slot_type>;
 | |
|   using SlotAllocTraits = typename absl::allocator_traits<
 | |
|       allocator_type>::template rebind_traits<slot_type>;
 | |
| 
 | |
|   static_assert(std::is_lvalue_reference<reference>::value,
 | |
|                 "Policy::element() must return a reference");
 | |
| 
 | |
|   template <typename T>
 | |
|   struct SameAsElementReference
 | |
|       : std::is_same<typename std::remove_cv<
 | |
|                          typename std::remove_reference<reference>::type>::type,
 | |
|                      typename std::remove_cv<
 | |
|                          typename std::remove_reference<T>::type>::type> {};
 | |
| 
 | |
|   // An enabler for insert(T&&): T must be convertible to init_type or be the
 | |
|   // same as [cv] value_type [ref].
 | |
|   // Note: we separate SameAsElementReference into its own type to avoid using
 | |
|   // reference unless we need to. MSVC doesn't seem to like it in some
 | |
|   // cases.
 | |
|   template <class T>
 | |
|   using RequiresInsertable = typename std::enable_if<
 | |
|       absl::disjunction<std::is_convertible<T, init_type>,
 | |
|                         SameAsElementReference<T>>::value,
 | |
|       int>::type;
 | |
| 
 | |
|   // RequiresNotInit is a workaround for gcc prior to 7.1.
 | |
|   // See https://godbolt.org/g/Y4xsUh.
 | |
|   template <class T>
 | |
|   using RequiresNotInit =
 | |
|       typename std::enable_if<!std::is_same<T, init_type>::value, int>::type;
 | |
| 
 | |
|   template <class... Ts>
 | |
|   using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>;
 | |
| 
 | |
|  public:
 | |
|   static_assert(std::is_same<pointer, value_type*>::value,
 | |
|                 "Allocators with custom pointer types are not supported");
 | |
|   static_assert(std::is_same<const_pointer, const value_type*>::value,
 | |
|                 "Allocators with custom pointer types are not supported");
 | |
| 
 | |
|   class iterator {
 | |
|     friend class raw_hash_set;
 | |
| 
 | |
|    public:
 | |
|     using iterator_category = std::forward_iterator_tag;
 | |
|     using value_type = typename raw_hash_set::value_type;
 | |
|     using reference =
 | |
|         absl::conditional_t<PolicyTraits::constant_iterators::value,
 | |
|                             const value_type&, value_type&>;
 | |
|     using pointer = absl::remove_reference_t<reference>*;
 | |
|     using difference_type = typename raw_hash_set::difference_type;
 | |
| 
 | |
|     iterator() {}
 | |
| 
 | |
|     // PRECONDITION: not an end() iterator.
 | |
|     reference operator*() const { return PolicyTraits::element(slot_); }
 | |
| 
 | |
|     // PRECONDITION: not an end() iterator.
 | |
|     pointer operator->() const { return &operator*(); }
 | |
| 
 | |
|     // PRECONDITION: not an end() iterator.
 | |
|     iterator& operator++() {
 | |
|       ++ctrl_;
 | |
|       ++slot_;
 | |
|       skip_empty_or_deleted();
 | |
|       return *this;
 | |
|     }
 | |
|     // PRECONDITION: not an end() iterator.
 | |
|     iterator operator++(int) {
 | |
|       auto tmp = *this;
 | |
|       ++*this;
 | |
|       return tmp;
 | |
|     }
 | |
| 
 | |
|     friend bool operator==(const iterator& a, const iterator& b) {
 | |
|       return a.ctrl_ == b.ctrl_;
 | |
|     }
 | |
|     friend bool operator!=(const iterator& a, const iterator& b) {
 | |
|       return !(a == b);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     iterator(ctrl_t* ctrl) : ctrl_(ctrl) {}  // for end()
 | |
|     iterator(ctrl_t* ctrl, slot_type* slot) : ctrl_(ctrl), slot_(slot) {}
 | |
| 
 | |
|     void skip_empty_or_deleted() {
 | |
|       while (IsEmptyOrDeleted(*ctrl_)) {
 | |
|         // ctrl is not necessarily aligned to Group::kWidth. It is also likely
 | |
|         // to read past the space for ctrl bytes and into slots. This is ok
 | |
|         // because ctrl has sizeof() == 1 and slot has sizeof() >= 1 so there
 | |
|         // is no way to read outside the combined slot array.
 | |
|         uint32_t shift = Group{ctrl_}.CountLeadingEmptyOrDeleted();
 | |
|         ctrl_ += shift;
 | |
|         slot_ += shift;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ctrl_t* ctrl_ = nullptr;
 | |
|     // To avoid uninitialized member warnigs, put slot_ in an anonymous union.
 | |
|     // The member is not initialized on singleton and end iterators.
 | |
|     union {
 | |
|       slot_type* slot_;
 | |
|     };
 | |
|   };
 | |
| 
 | |
|   class const_iterator {
 | |
|     friend class raw_hash_set;
 | |
| 
 | |
|    public:
 | |
|     using iterator_category = typename iterator::iterator_category;
 | |
|     using value_type = typename raw_hash_set::value_type;
 | |
|     using reference = typename raw_hash_set::const_reference;
 | |
|     using pointer = typename raw_hash_set::const_pointer;
 | |
|     using difference_type = typename raw_hash_set::difference_type;
 | |
| 
 | |
|     const_iterator() {}
 | |
|     // Implicit construction from iterator.
 | |
|     const_iterator(iterator i) : inner_(std::move(i)) {}
 | |
| 
 | |
|     reference operator*() const { return *inner_; }
 | |
|     pointer operator->() const { return inner_.operator->(); }
 | |
| 
 | |
|     const_iterator& operator++() {
 | |
|       ++inner_;
 | |
|       return *this;
 | |
|     }
 | |
|     const_iterator operator++(int) { return inner_++; }
 | |
| 
 | |
|     friend bool operator==(const const_iterator& a, const const_iterator& b) {
 | |
|       return a.inner_ == b.inner_;
 | |
|     }
 | |
|     friend bool operator!=(const const_iterator& a, const const_iterator& b) {
 | |
|       return !(a == b);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     const_iterator(const ctrl_t* ctrl, const slot_type* slot)
 | |
|         : inner_(const_cast<ctrl_t*>(ctrl), const_cast<slot_type*>(slot)) {}
 | |
| 
 | |
|     iterator inner_;
 | |
|   };
 | |
| 
 | |
|   using node_type = container_internal::node_handle<Policy, Alloc>;
 | |
| 
 | |
|   raw_hash_set() noexcept(
 | |
|       std::is_nothrow_default_constructible<hasher>::value&&
 | |
|           std::is_nothrow_default_constructible<key_equal>::value&&
 | |
|               std::is_nothrow_default_constructible<allocator_type>::value) {}
 | |
| 
 | |
|   explicit raw_hash_set(size_t bucket_count, const hasher& hash = hasher(),
 | |
|                         const key_equal& eq = key_equal(),
 | |
|                         const allocator_type& alloc = allocator_type())
 | |
|       : ctrl_(EmptyGroup()), settings_(0, hash, eq, alloc) {
 | |
|     if (bucket_count) {
 | |
|       capacity_ = NormalizeCapacity(bucket_count);
 | |
|       growth_left() = static_cast<size_t>(capacity_ * kMaxLoadFactor);
 | |
|       initialize_slots();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   raw_hash_set(size_t bucket_count, const hasher& hash,
 | |
|                const allocator_type& alloc)
 | |
|       : raw_hash_set(bucket_count, hash, key_equal(), alloc) {}
 | |
| 
 | |
|   raw_hash_set(size_t bucket_count, const allocator_type& alloc)
 | |
|       : raw_hash_set(bucket_count, hasher(), key_equal(), alloc) {}
 | |
| 
 | |
|   explicit raw_hash_set(const allocator_type& alloc)
 | |
|       : raw_hash_set(0, hasher(), key_equal(), alloc) {}
 | |
| 
 | |
|   template <class InputIter>
 | |
|   raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0,
 | |
|                const hasher& hash = hasher(), const key_equal& eq = key_equal(),
 | |
|                const allocator_type& alloc = allocator_type())
 | |
|       : raw_hash_set(bucket_count, hash, eq, alloc) {
 | |
|     insert(first, last);
 | |
|   }
 | |
| 
 | |
|   template <class InputIter>
 | |
|   raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
 | |
|                const hasher& hash, const allocator_type& alloc)
 | |
|       : raw_hash_set(first, last, bucket_count, hash, key_equal(), alloc) {}
 | |
| 
 | |
|   template <class InputIter>
 | |
|   raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
 | |
|                const allocator_type& alloc)
 | |
|       : raw_hash_set(first, last, bucket_count, hasher(), key_equal(), alloc) {}
 | |
| 
 | |
|   template <class InputIter>
 | |
|   raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc)
 | |
|       : raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {}
 | |
| 
 | |
|   // Instead of accepting std::initializer_list<value_type> as the first
 | |
|   // argument like std::unordered_set<value_type> does, we have two overloads
 | |
|   // that accept std::initializer_list<T> and std::initializer_list<init_type>.
 | |
|   // This is advantageous for performance.
 | |
|   //
 | |
|   //   // Turns {"abc", "def"} into std::initializer_list<std::string>, then copies
 | |
|   //   // the strings into the set.
 | |
|   //   std::unordered_set<std::string> s = {"abc", "def"};
 | |
|   //
 | |
|   //   // Turns {"abc", "def"} into std::initializer_list<const char*>, then
 | |
|   //   // copies the strings into the set.
 | |
|   //   absl::flat_hash_set<std::string> s = {"abc", "def"};
 | |
|   //
 | |
|   // The same trick is used in insert().
 | |
|   //
 | |
|   // The enabler is necessary to prevent this constructor from triggering where
 | |
|   // the copy constructor is meant to be called.
 | |
|   //
 | |
|   //   absl::flat_hash_set<int> a, b{a};
 | |
|   //
 | |
|   // RequiresNotInit<T> is a workaround for gcc prior to 7.1.
 | |
|   template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
 | |
|   raw_hash_set(std::initializer_list<T> init, size_t bucket_count = 0,
 | |
|                const hasher& hash = hasher(), const key_equal& eq = key_equal(),
 | |
|                const allocator_type& alloc = allocator_type())
 | |
|       : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
 | |
| 
 | |
|   raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count = 0,
 | |
|                const hasher& hash = hasher(), const key_equal& eq = key_equal(),
 | |
|                const allocator_type& alloc = allocator_type())
 | |
|       : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
 | |
| 
 | |
|   template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
 | |
|   raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
 | |
|                const hasher& hash, const allocator_type& alloc)
 | |
|       : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
 | |
| 
 | |
|   raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
 | |
|                const hasher& hash, const allocator_type& alloc)
 | |
|       : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
 | |
| 
 | |
|   template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
 | |
|   raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
 | |
|                const allocator_type& alloc)
 | |
|       : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
 | |
| 
 | |
|   raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
 | |
|                const allocator_type& alloc)
 | |
|       : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
 | |
| 
 | |
|   template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
 | |
|   raw_hash_set(std::initializer_list<T> init, const allocator_type& alloc)
 | |
|       : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
 | |
| 
 | |
|   raw_hash_set(std::initializer_list<init_type> init,
 | |
|                const allocator_type& alloc)
 | |
|       : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
 | |
| 
 | |
|   raw_hash_set(const raw_hash_set& that)
 | |
|       : raw_hash_set(that, AllocTraits::select_on_container_copy_construction(
 | |
|                                that.alloc_ref())) {}
 | |
| 
 | |
|   raw_hash_set(const raw_hash_set& that, const allocator_type& a)
 | |
|       : raw_hash_set(0, that.hash_ref(), that.eq_ref(), a) {
 | |
|     reserve(that.size());
 | |
|     // Because the table is guaranteed to be empty, we can do something faster
 | |
|     // than a full `insert`.
 | |
|     for (const auto& v : that) {
 | |
|       const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v);
 | |
|       auto target = find_first_non_full(hash);
 | |
|       set_ctrl(target.offset, H2(hash));
 | |
|       emplace_at(target.offset, v);
 | |
|       infoz_.RecordInsert(hash, target.probe_length);
 | |
|     }
 | |
|     size_ = that.size();
 | |
|     growth_left() -= that.size();
 | |
|   }
 | |
| 
 | |
|   raw_hash_set(raw_hash_set&& that) noexcept(
 | |
|       std::is_nothrow_copy_constructible<hasher>::value&&
 | |
|           std::is_nothrow_copy_constructible<key_equal>::value&&
 | |
|               std::is_nothrow_copy_constructible<allocator_type>::value)
 | |
|       : ctrl_(absl::exchange(that.ctrl_, EmptyGroup())),
 | |
|         slots_(absl::exchange(that.slots_, nullptr)),
 | |
|         size_(absl::exchange(that.size_, 0)),
 | |
|         capacity_(absl::exchange(that.capacity_, 0)),
 | |
|         infoz_(absl::exchange(that.infoz_, HashtablezInfoHandle())),
 | |
|         // Hash, equality and allocator are copied instead of moved because
 | |
|         // `that` must be left valid. If Hash is std::function<Key>, moving it
 | |
|         // would create a nullptr functor that cannot be called.
 | |
|         settings_(that.settings_) {
 | |
|     // growth_left was copied above, reset the one from `that`.
 | |
|     that.growth_left() = 0;
 | |
|   }
 | |
| 
 | |
|   raw_hash_set(raw_hash_set&& that, const allocator_type& a)
 | |
|       : ctrl_(EmptyGroup()),
 | |
|         slots_(nullptr),
 | |
|         size_(0),
 | |
|         capacity_(0),
 | |
|         settings_(0, that.hash_ref(), that.eq_ref(), a) {
 | |
|     if (a == that.alloc_ref()) {
 | |
|       std::swap(ctrl_, that.ctrl_);
 | |
|       std::swap(slots_, that.slots_);
 | |
|       std::swap(size_, that.size_);
 | |
|       std::swap(capacity_, that.capacity_);
 | |
|       std::swap(growth_left(), that.growth_left());
 | |
|       std::swap(infoz_, that.infoz_);
 | |
|     } else {
 | |
|       reserve(that.size());
 | |
|       // Note: this will copy elements of dense_set and unordered_set instead of
 | |
|       // moving them. This can be fixed if it ever becomes an issue.
 | |
|       for (auto& elem : that) insert(std::move(elem));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   raw_hash_set& operator=(const raw_hash_set& that) {
 | |
|     raw_hash_set tmp(that,
 | |
|                      AllocTraits::propagate_on_container_copy_assignment::value
 | |
|                          ? that.alloc_ref()
 | |
|                          : alloc_ref());
 | |
|     swap(tmp);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   raw_hash_set& operator=(raw_hash_set&& that) noexcept(
 | |
|       absl::allocator_traits<allocator_type>::is_always_equal::value&&
 | |
|           std::is_nothrow_move_assignable<hasher>::value&&
 | |
|               std::is_nothrow_move_assignable<key_equal>::value) {
 | |
|     // TODO(sbenza): We should only use the operations from the noexcept clause
 | |
|     // to make sure we actually adhere to that contract.
 | |
|     return move_assign(
 | |
|         std::move(that),
 | |
|         typename AllocTraits::propagate_on_container_move_assignment());
 | |
|   }
 | |
| 
 | |
|   ~raw_hash_set() { destroy_slots(); }
 | |
| 
 | |
|   iterator begin() {
 | |
|     auto it = iterator_at(0);
 | |
|     it.skip_empty_or_deleted();
 | |
|     return it;
 | |
|   }
 | |
|   iterator end() { return {ctrl_ + capacity_}; }
 | |
| 
 | |
|   const_iterator begin() const {
 | |
|     return const_cast<raw_hash_set*>(this)->begin();
 | |
|   }
 | |
|   const_iterator end() const { return const_cast<raw_hash_set*>(this)->end(); }
 | |
|   const_iterator cbegin() const { return begin(); }
 | |
|   const_iterator cend() const { return end(); }
 | |
| 
 | |
|   bool empty() const { return !size(); }
 | |
|   size_t size() const { return size_; }
 | |
|   size_t capacity() const { return capacity_; }
 | |
|   size_t max_size() const { return (std::numeric_limits<size_t>::max)(); }
 | |
| 
 | |
|   void clear() {
 | |
|     // Iterating over this container is O(bucket_count()). When bucket_count()
 | |
|     // is much greater than size(), iteration becomes prohibitively expensive.
 | |
|     // For clear() it is more important to reuse the allocated array when the
 | |
|     // container is small because allocation takes comparatively long time
 | |
|     // compared to destruction of the elements of the container. So we pick the
 | |
|     // largest bucket_count() threshold for which iteration is still fast and
 | |
|     // past that we simply deallocate the array.
 | |
|     if (capacity_ > 127) {
 | |
|       destroy_slots();
 | |
|     } else if (capacity_) {
 | |
|       for (size_t i = 0; i != capacity_; ++i) {
 | |
|         if (IsFull(ctrl_[i])) {
 | |
|           PolicyTraits::destroy(&alloc_ref(), slots_ + i);
 | |
|         }
 | |
|       }
 | |
|       size_ = 0;
 | |
|       reset_ctrl();
 | |
|       growth_left() = static_cast<size_t>(capacity_ * kMaxLoadFactor);
 | |
|     }
 | |
|     assert(empty());
 | |
|     infoz_.RecordStorageChanged(size_, capacity_);
 | |
|   }
 | |
| 
 | |
|   // This overload kicks in when the argument is an rvalue of insertable and
 | |
|   // decomposable type other than init_type.
 | |
|   //
 | |
|   //   flat_hash_map<std::string, int> m;
 | |
|   //   m.insert(std::make_pair("abc", 42));
 | |
|   template <class T, RequiresInsertable<T> = 0,
 | |
|             typename std::enable_if<IsDecomposable<T>::value, int>::type = 0,
 | |
|             T* = nullptr>
 | |
|   std::pair<iterator, bool> insert(T&& value) {
 | |
|     return emplace(std::forward<T>(value));
 | |
|   }
 | |
| 
 | |
|   // This overload kicks in when the argument is a bitfield or an lvalue of
 | |
|   // insertable and decomposable type.
 | |
|   //
 | |
|   //   union { int n : 1; };
 | |
|   //   flat_hash_set<int> s;
 | |
|   //   s.insert(n);
 | |
|   //
 | |
|   //   flat_hash_set<std::string> s;
 | |
|   //   const char* p = "hello";
 | |
|   //   s.insert(p);
 | |
|   //
 | |
|   // TODO(romanp): Once we stop supporting gcc 5.1 and below, replace
 | |
|   // RequiresInsertable<T> with RequiresInsertable<const T&>.
 | |
|   // We are hitting this bug: https://godbolt.org/g/1Vht4f.
 | |
|   template <
 | |
|       class T, RequiresInsertable<T> = 0,
 | |
|       typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
 | |
|   std::pair<iterator, bool> insert(const T& value) {
 | |
|     return emplace(value);
 | |
|   }
 | |
| 
 | |
|   // This overload kicks in when the argument is an rvalue of init_type. Its
 | |
|   // purpose is to handle brace-init-list arguments.
 | |
|   //
 | |
|   //   flat_hash_set<std::string, int> s;
 | |
|   //   s.insert({"abc", 42});
 | |
|   std::pair<iterator, bool> insert(init_type&& value) {
 | |
|     return emplace(std::move(value));
 | |
|   }
 | |
| 
 | |
|   template <class T, RequiresInsertable<T> = 0,
 | |
|             typename std::enable_if<IsDecomposable<T>::value, int>::type = 0,
 | |
|             T* = nullptr>
 | |
|   iterator insert(const_iterator, T&& value) {
 | |
|     return insert(std::forward<T>(value)).first;
 | |
|   }
 | |
| 
 | |
|   // TODO(romanp): Once we stop supporting gcc 5.1 and below, replace
 | |
|   // RequiresInsertable<T> with RequiresInsertable<const T&>.
 | |
|   // We are hitting this bug: https://godbolt.org/g/1Vht4f.
 | |
|   template <
 | |
|       class T, RequiresInsertable<T> = 0,
 | |
|       typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
 | |
|   iterator insert(const_iterator, const T& value) {
 | |
|     return insert(value).first;
 | |
|   }
 | |
| 
 | |
|   iterator insert(const_iterator, init_type&& value) {
 | |
|     return insert(std::move(value)).first;
 | |
|   }
 | |
| 
 | |
|   template <class InputIt>
 | |
|   void insert(InputIt first, InputIt last) {
 | |
|     for (; first != last; ++first) insert(*first);
 | |
|   }
 | |
| 
 | |
|   template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0>
 | |
|   void insert(std::initializer_list<T> ilist) {
 | |
|     insert(ilist.begin(), ilist.end());
 | |
|   }
 | |
| 
 | |
|   void insert(std::initializer_list<init_type> ilist) {
 | |
|     insert(ilist.begin(), ilist.end());
 | |
|   }
 | |
| 
 | |
|   insert_return_type<iterator, node_type> insert(node_type&& node) {
 | |
|     if (!node) return {end(), false, node_type()};
 | |
|     const auto& elem = PolicyTraits::element(node.slot());
 | |
|     auto res = PolicyTraits::apply(
 | |
|         InsertSlot<false>{*this, std::move(*node.slot())}, elem);
 | |
|     if (res.second) {
 | |
|       node.reset();
 | |
|       return {res.first, true, node_type()};
 | |
|     } else {
 | |
|       return {res.first, false, std::move(node)};
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   iterator insert(const_iterator, node_type&& node) {
 | |
|     return insert(std::move(node)).first;
 | |
|   }
 | |
| 
 | |
|   // This overload kicks in if we can deduce the key from args. This enables us
 | |
|   // to avoid constructing value_type if an entry with the same key already
 | |
|   // exists.
 | |
|   //
 | |
|   // For example:
 | |
|   //
 | |
|   //   flat_hash_map<std::string, std::string> m = {{"abc", "def"}};
 | |
|   //   // Creates no std::string copies and makes no heap allocations.
 | |
|   //   m.emplace("abc", "xyz");
 | |
|   template <class... Args, typename std::enable_if<
 | |
|                                IsDecomposable<Args...>::value, int>::type = 0>
 | |
|   std::pair<iterator, bool> emplace(Args&&... args) {
 | |
|     return PolicyTraits::apply(EmplaceDecomposable{*this},
 | |
|                                std::forward<Args>(args)...);
 | |
|   }
 | |
| 
 | |
|   // This overload kicks in if we cannot deduce the key from args. It constructs
 | |
|   // value_type unconditionally and then either moves it into the table or
 | |
|   // destroys.
 | |
|   template <class... Args, typename std::enable_if<
 | |
|                                !IsDecomposable<Args...>::value, int>::type = 0>
 | |
|   std::pair<iterator, bool> emplace(Args&&... args) {
 | |
|     typename std::aligned_storage<sizeof(slot_type), alignof(slot_type)>::type
 | |
|         raw;
 | |
|     slot_type* slot = reinterpret_cast<slot_type*>(&raw);
 | |
| 
 | |
|     PolicyTraits::construct(&alloc_ref(), slot, std::forward<Args>(args)...);
 | |
|     const auto& elem = PolicyTraits::element(slot);
 | |
|     return PolicyTraits::apply(InsertSlot<true>{*this, std::move(*slot)}, elem);
 | |
|   }
 | |
| 
 | |
|   template <class... Args>
 | |
|   iterator emplace_hint(const_iterator, Args&&... args) {
 | |
|     return emplace(std::forward<Args>(args)...).first;
 | |
|   }
 | |
| 
 | |
|   // Extension API: support for lazy emplace.
 | |
|   //
 | |
|   // Looks up key in the table. If found, returns the iterator to the element.
 | |
|   // Otherwise calls f with one argument of type raw_hash_set::constructor. f
 | |
|   // MUST call raw_hash_set::constructor with arguments as if a
 | |
|   // raw_hash_set::value_type is constructed, otherwise the behavior is
 | |
|   // undefined.
 | |
|   //
 | |
|   // For example:
 | |
|   //
 | |
|   //   std::unordered_set<ArenaString> s;
 | |
|   //   // Makes ArenaStr even if "abc" is in the map.
 | |
|   //   s.insert(ArenaString(&arena, "abc"));
 | |
|   //
 | |
|   //   flat_hash_set<ArenaStr> s;
 | |
|   //   // Makes ArenaStr only if "abc" is not in the map.
 | |
|   //   s.lazy_emplace("abc", [&](const constructor& ctor) {
 | |
|   //     ctor(&arena, "abc");
 | |
|   //   });
 | |
|   //
 | |
|   // WARNING: This API is currently experimental. If there is a way to implement
 | |
|   // the same thing with the rest of the API, prefer that.
 | |
|   class constructor {
 | |
|     friend class raw_hash_set;
 | |
| 
 | |
|    public:
 | |
|     template <class... Args>
 | |
|     void operator()(Args&&... args) const {
 | |
|       assert(*slot_);
 | |
|       PolicyTraits::construct(alloc_, *slot_, std::forward<Args>(args)...);
 | |
|       *slot_ = nullptr;
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     constructor(allocator_type* a, slot_type** slot) : alloc_(a), slot_(slot) {}
 | |
| 
 | |
|     allocator_type* alloc_;
 | |
|     slot_type** slot_;
 | |
|   };
 | |
| 
 | |
|   template <class K = key_type, class F>
 | |
|   iterator lazy_emplace(const key_arg<K>& key, F&& f) {
 | |
|     auto res = find_or_prepare_insert(key);
 | |
|     if (res.second) {
 | |
|       slot_type* slot = slots_ + res.first;
 | |
|       std::forward<F>(f)(constructor(&alloc_ref(), &slot));
 | |
|       assert(!slot);
 | |
|     }
 | |
|     return iterator_at(res.first);
 | |
|   }
 | |
| 
 | |
|   // Extension API: support for heterogeneous keys.
 | |
|   //
 | |
|   //   std::unordered_set<std::string> s;
 | |
|   //   // Turns "abc" into std::string.
 | |
|   //   s.erase("abc");
 | |
|   //
 | |
|   //   flat_hash_set<std::string> s;
 | |
|   //   // Uses "abc" directly without copying it into std::string.
 | |
|   //   s.erase("abc");
 | |
|   template <class K = key_type>
 | |
|   size_type erase(const key_arg<K>& key) {
 | |
|     auto it = find(key);
 | |
|     if (it == end()) return 0;
 | |
|     erase(it);
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   // Erases the element pointed to by `it`.  Unlike `std::unordered_set::erase`,
 | |
|   // this method returns void to reduce algorithmic complexity to O(1).  In
 | |
|   // order to erase while iterating across a map, use the following idiom (which
 | |
|   // also works for standard containers):
 | |
|   //
 | |
|   // for (auto it = m.begin(), end = m.end(); it != end;) {
 | |
|   //   if (<pred>) {
 | |
|   //     m.erase(it++);
 | |
|   //   } else {
 | |
|   //     ++it;
 | |
|   //   }
 | |
|   // }
 | |
|   void erase(const_iterator cit) { erase(cit.inner_); }
 | |
| 
 | |
|   // This overload is necessary because otherwise erase<K>(const K&) would be
 | |
|   // a better match if non-const iterator is passed as an argument.
 | |
|   void erase(iterator it) {
 | |
|     assert(it != end());
 | |
|     PolicyTraits::destroy(&alloc_ref(), it.slot_);
 | |
|     erase_meta_only(it);
 | |
|   }
 | |
| 
 | |
|   iterator erase(const_iterator first, const_iterator last) {
 | |
|     while (first != last) {
 | |
|       erase(first++);
 | |
|     }
 | |
|     return last.inner_;
 | |
|   }
 | |
| 
 | |
|   // Moves elements from `src` into `this`.
 | |
|   // If the element already exists in `this`, it is left unmodified in `src`.
 | |
|   template <typename H, typename E>
 | |
|   void merge(raw_hash_set<Policy, H, E, Alloc>& src) {  // NOLINT
 | |
|     assert(this != &src);
 | |
|     for (auto it = src.begin(), e = src.end(); it != e; ++it) {
 | |
|       if (PolicyTraits::apply(InsertSlot<false>{*this, std::move(*it.slot_)},
 | |
|                               PolicyTraits::element(it.slot_))
 | |
|               .second) {
 | |
|         src.erase_meta_only(it);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <typename H, typename E>
 | |
|   void merge(raw_hash_set<Policy, H, E, Alloc>&& src) {
 | |
|     merge(src);
 | |
|   }
 | |
| 
 | |
|   node_type extract(const_iterator position) {
 | |
|     node_type node(alloc_ref(), position.inner_.slot_);
 | |
|     erase_meta_only(position);
 | |
|     return node;
 | |
|   }
 | |
| 
 | |
|   template <
 | |
|       class K = key_type,
 | |
|       typename std::enable_if<!std::is_same<K, iterator>::value, int>::type = 0>
 | |
|   node_type extract(const key_arg<K>& key) {
 | |
|     auto it = find(key);
 | |
|     return it == end() ? node_type() : extract(const_iterator{it});
 | |
|   }
 | |
| 
 | |
|   void swap(raw_hash_set& that) noexcept(
 | |
|       IsNoThrowSwappable<hasher>() && IsNoThrowSwappable<key_equal>() &&
 | |
|       (!AllocTraits::propagate_on_container_swap::value ||
 | |
|        IsNoThrowSwappable<allocator_type>())) {
 | |
|     using std::swap;
 | |
|     swap(ctrl_, that.ctrl_);
 | |
|     swap(slots_, that.slots_);
 | |
|     swap(size_, that.size_);
 | |
|     swap(capacity_, that.capacity_);
 | |
|     swap(growth_left(), that.growth_left());
 | |
|     swap(hash_ref(), that.hash_ref());
 | |
|     swap(eq_ref(), that.eq_ref());
 | |
|     swap(infoz_, that.infoz_);
 | |
|     if (AllocTraits::propagate_on_container_swap::value) {
 | |
|       swap(alloc_ref(), that.alloc_ref());
 | |
|     } else {
 | |
|       // If the allocators do not compare equal it is officially undefined
 | |
|       // behavior. We choose to do nothing.
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void rehash(size_t n) {
 | |
|     if (n == 0 && capacity_ == 0) return;
 | |
|     if (n == 0 && size_ == 0) {
 | |
|       destroy_slots();
 | |
|       infoz_.RecordStorageChanged(size_, capacity_);
 | |
|       return;
 | |
|     }
 | |
|     auto m = NormalizeCapacity((std::max)(n, NumSlotsFast(size())));
 | |
|     // n == 0 unconditionally rehashes as per the standard.
 | |
|     if (n == 0 || m > capacity_) {
 | |
|       resize(m);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void reserve(size_t n) {
 | |
|     rehash(NumSlotsFast(n));
 | |
|   }
 | |
| 
 | |
|   // Extension API: support for heterogeneous keys.
 | |
|   //
 | |
|   //   std::unordered_set<std::string> s;
 | |
|   //   // Turns "abc" into std::string.
 | |
|   //   s.count("abc");
 | |
|   //
 | |
|   //   ch_set<std::string> s;
 | |
|   //   // Uses "abc" directly without copying it into std::string.
 | |
|   //   s.count("abc");
 | |
|   template <class K = key_type>
 | |
|   size_t count(const key_arg<K>& key) const {
 | |
|     return find(key) == end() ? 0 : 1;
 | |
|   }
 | |
| 
 | |
|   // Issues CPU prefetch instructions for the memory needed to find or insert
 | |
|   // a key.  Like all lookup functions, this support heterogeneous keys.
 | |
|   //
 | |
|   // NOTE: This is a very low level operation and should not be used without
 | |
|   // specific benchmarks indicating its importance.
 | |
|   template <class K = key_type>
 | |
|   void prefetch(const key_arg<K>& key) const {
 | |
|     (void)key;
 | |
| #if defined(__GNUC__)
 | |
|     auto seq = probe(hash_ref()(key));
 | |
|     __builtin_prefetch(static_cast<const void*>(ctrl_ + seq.offset()));
 | |
|     __builtin_prefetch(static_cast<const void*>(slots_ + seq.offset()));
 | |
| #endif  // __GNUC__
 | |
|   }
 | |
| 
 | |
|   // The API of find() has two extensions.
 | |
|   //
 | |
|   // 1. The hash can be passed by the user. It must be equal to the hash of the
 | |
|   // key.
 | |
|   //
 | |
|   // 2. The type of the key argument doesn't have to be key_type. This is so
 | |
|   // called heterogeneous key support.
 | |
|   template <class K = key_type>
 | |
|   iterator find(const key_arg<K>& key, size_t hash) {
 | |
|     auto seq = probe(hash);
 | |
|     while (true) {
 | |
|       Group g{ctrl_ + seq.offset()};
 | |
|       for (int i : g.Match(H2(hash))) {
 | |
|         if (ABSL_PREDICT_TRUE(PolicyTraits::apply(
 | |
|                 EqualElement<K>{key, eq_ref()},
 | |
|                 PolicyTraits::element(slots_ + seq.offset(i)))))
 | |
|           return iterator_at(seq.offset(i));
 | |
|       }
 | |
|       if (ABSL_PREDICT_TRUE(g.MatchEmpty())) return end();
 | |
|       seq.next();
 | |
|     }
 | |
|   }
 | |
|   template <class K = key_type>
 | |
|   iterator find(const key_arg<K>& key) {
 | |
|     return find(key, hash_ref()(key));
 | |
|   }
 | |
| 
 | |
|   template <class K = key_type>
 | |
|   const_iterator find(const key_arg<K>& key, size_t hash) const {
 | |
|     return const_cast<raw_hash_set*>(this)->find(key, hash);
 | |
|   }
 | |
|   template <class K = key_type>
 | |
|   const_iterator find(const key_arg<K>& key) const {
 | |
|     return find(key, hash_ref()(key));
 | |
|   }
 | |
| 
 | |
|   template <class K = key_type>
 | |
|   bool contains(const key_arg<K>& key) const {
 | |
|     return find(key) != end();
 | |
|   }
 | |
| 
 | |
|   template <class K = key_type>
 | |
|   std::pair<iterator, iterator> equal_range(const key_arg<K>& key) {
 | |
|     auto it = find(key);
 | |
|     if (it != end()) return {it, std::next(it)};
 | |
|     return {it, it};
 | |
|   }
 | |
|   template <class K = key_type>
 | |
|   std::pair<const_iterator, const_iterator> equal_range(
 | |
|       const key_arg<K>& key) const {
 | |
|     auto it = find(key);
 | |
|     if (it != end()) return {it, std::next(it)};
 | |
|     return {it, it};
 | |
|   }
 | |
| 
 | |
|   size_t bucket_count() const { return capacity_; }
 | |
|   float load_factor() const {
 | |
|     return capacity_ ? static_cast<double>(size()) / capacity_ : 0.0;
 | |
|   }
 | |
|   float max_load_factor() const { return 1.0f; }
 | |
|   void max_load_factor(float) {
 | |
|     // Does nothing.
 | |
|   }
 | |
| 
 | |
|   hasher hash_function() const { return hash_ref(); }
 | |
|   key_equal key_eq() const { return eq_ref(); }
 | |
|   allocator_type get_allocator() const { return alloc_ref(); }
 | |
| 
 | |
|   friend bool operator==(const raw_hash_set& a, const raw_hash_set& b) {
 | |
|     if (a.size() != b.size()) return false;
 | |
|     const raw_hash_set* outer = &a;
 | |
|     const raw_hash_set* inner = &b;
 | |
|     if (outer->capacity() > inner->capacity()) std::swap(outer, inner);
 | |
|     for (const value_type& elem : *outer)
 | |
|       if (!inner->has_element(elem)) return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   friend bool operator!=(const raw_hash_set& a, const raw_hash_set& b) {
 | |
|     return !(a == b);
 | |
|   }
 | |
| 
 | |
|   friend void swap(raw_hash_set& a,
 | |
|                    raw_hash_set& b) noexcept(noexcept(a.swap(b))) {
 | |
|     a.swap(b);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <class Container, typename Enabler>
 | |
|   friend struct absl::container_internal::hashtable_debug_internal::
 | |
|       HashtableDebugAccess;
 | |
| 
 | |
|   struct FindElement {
 | |
|     template <class K, class... Args>
 | |
|     const_iterator operator()(const K& key, Args&&...) const {
 | |
|       return s.find(key);
 | |
|     }
 | |
|     const raw_hash_set& s;
 | |
|   };
 | |
| 
 | |
|   struct HashElement {
 | |
|     template <class K, class... Args>
 | |
|     size_t operator()(const K& key, Args&&...) const {
 | |
|       return h(key);
 | |
|     }
 | |
|     const hasher& h;
 | |
|   };
 | |
| 
 | |
|   template <class K1>
 | |
|   struct EqualElement {
 | |
|     template <class K2, class... Args>
 | |
|     bool operator()(const K2& lhs, Args&&...) const {
 | |
|       return eq(lhs, rhs);
 | |
|     }
 | |
|     const K1& rhs;
 | |
|     const key_equal& eq;
 | |
|   };
 | |
| 
 | |
|   struct EmplaceDecomposable {
 | |
|     template <class K, class... Args>
 | |
|     std::pair<iterator, bool> operator()(const K& key, Args&&... args) const {
 | |
|       auto res = s.find_or_prepare_insert(key);
 | |
|       if (res.second) {
 | |
|         s.emplace_at(res.first, std::forward<Args>(args)...);
 | |
|       }
 | |
|       return {s.iterator_at(res.first), res.second};
 | |
|     }
 | |
|     raw_hash_set& s;
 | |
|   };
 | |
| 
 | |
|   template <bool do_destroy>
 | |
|   struct InsertSlot {
 | |
|     template <class K, class... Args>
 | |
|     std::pair<iterator, bool> operator()(const K& key, Args&&...) && {
 | |
|       auto res = s.find_or_prepare_insert(key);
 | |
|       if (res.second) {
 | |
|         PolicyTraits::transfer(&s.alloc_ref(), s.slots_ + res.first, &slot);
 | |
|       } else if (do_destroy) {
 | |
|         PolicyTraits::destroy(&s.alloc_ref(), &slot);
 | |
|       }
 | |
|       return {s.iterator_at(res.first), res.second};
 | |
|     }
 | |
|     raw_hash_set& s;
 | |
|     // Constructed slot. Either moved into place or destroyed.
 | |
|     slot_type&& slot;
 | |
|   };
 | |
| 
 | |
|   // Computes std::ceil(n / kMaxLoadFactor). Faster than calling std::ceil.
 | |
|   static inline size_t NumSlotsFast(size_t n) {
 | |
|     return static_cast<size_t>(
 | |
|         (n * kMaxLoadFactorDenominator + (kMaxLoadFactorNumerator - 1)) /
 | |
|         kMaxLoadFactorNumerator);
 | |
|   }
 | |
| 
 | |
|   // "erases" the object from the container, except that it doesn't actually
 | |
|   // destroy the object. It only updates all the metadata of the class.
 | |
|   // This can be used in conjunction with Policy::transfer to move the object to
 | |
|   // another place.
 | |
|   void erase_meta_only(const_iterator it) {
 | |
|     assert(IsFull(*it.inner_.ctrl_) && "erasing a dangling iterator");
 | |
|     --size_;
 | |
|     const size_t index = it.inner_.ctrl_ - ctrl_;
 | |
|     const size_t index_before = (index - Group::kWidth) & capacity_;
 | |
|     const auto empty_after = Group(it.inner_.ctrl_).MatchEmpty();
 | |
|     const auto empty_before = Group(ctrl_ + index_before).MatchEmpty();
 | |
| 
 | |
|     // We count how many consecutive non empties we have to the right and to the
 | |
|     // left of `it`. If the sum is >= kWidth then there is at least one probe
 | |
|     // window that might have seen a full group.
 | |
|     bool was_never_full =
 | |
|         empty_before && empty_after &&
 | |
|         static_cast<size_t>(empty_after.TrailingZeros() +
 | |
|                             empty_before.LeadingZeros()) < Group::kWidth;
 | |
| 
 | |
|     set_ctrl(index, was_never_full ? kEmpty : kDeleted);
 | |
|     growth_left() += was_never_full;
 | |
|     infoz_.RecordErase();
 | |
|   }
 | |
| 
 | |
|   void initialize_slots() {
 | |
|     assert(capacity_);
 | |
|     if (slots_ == nullptr) {
 | |
|       infoz_ = Sample();
 | |
|     }
 | |
| 
 | |
|     auto layout = MakeLayout(capacity_);
 | |
|     char* mem = static_cast<char*>(
 | |
|         Allocate<Layout::Alignment()>(&alloc_ref(), layout.AllocSize()));
 | |
|     ctrl_ = reinterpret_cast<ctrl_t*>(layout.template Pointer<0>(mem));
 | |
|     slots_ = layout.template Pointer<1>(mem);
 | |
|     reset_ctrl();
 | |
|     growth_left() = static_cast<size_t>(capacity_ * kMaxLoadFactor) - size_;
 | |
|     infoz_.RecordStorageChanged(size_, capacity_);
 | |
|   }
 | |
| 
 | |
|   void destroy_slots() {
 | |
|     if (!capacity_) return;
 | |
|     for (size_t i = 0; i != capacity_; ++i) {
 | |
|       if (IsFull(ctrl_[i])) {
 | |
|         PolicyTraits::destroy(&alloc_ref(), slots_ + i);
 | |
|       }
 | |
|     }
 | |
|     auto layout = MakeLayout(capacity_);
 | |
|     // Unpoison before returning the memory to the allocator.
 | |
|     SanitizerUnpoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_);
 | |
|     Deallocate<Layout::Alignment()>(&alloc_ref(), ctrl_, layout.AllocSize());
 | |
|     ctrl_ = EmptyGroup();
 | |
|     slots_ = nullptr;
 | |
|     size_ = 0;
 | |
|     capacity_ = 0;
 | |
|     growth_left() = 0;
 | |
|   }
 | |
| 
 | |
|   void resize(size_t new_capacity) {
 | |
|     assert(IsValidCapacity(new_capacity));
 | |
|     auto* old_ctrl = ctrl_;
 | |
|     auto* old_slots = slots_;
 | |
|     const size_t old_capacity = capacity_;
 | |
|     capacity_ = new_capacity;
 | |
|     initialize_slots();
 | |
| 
 | |
|     for (size_t i = 0; i != old_capacity; ++i) {
 | |
|       if (IsFull(old_ctrl[i])) {
 | |
|         size_t hash = PolicyTraits::apply(HashElement{hash_ref()},
 | |
|                                           PolicyTraits::element(old_slots + i));
 | |
|         size_t new_i = find_first_non_full(hash).offset;
 | |
|         set_ctrl(new_i, H2(hash));
 | |
|         PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, old_slots + i);
 | |
|       }
 | |
|     }
 | |
|     if (old_capacity) {
 | |
|       SanitizerUnpoisonMemoryRegion(old_slots,
 | |
|                                     sizeof(slot_type) * old_capacity);
 | |
|       auto layout = MakeLayout(old_capacity);
 | |
|       Deallocate<Layout::Alignment()>(&alloc_ref(), old_ctrl,
 | |
|                                       layout.AllocSize());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void drop_deletes_without_resize() ABSL_ATTRIBUTE_NOINLINE {
 | |
|     assert(IsValidCapacity(capacity_));
 | |
|     // Algorithm:
 | |
|     // - mark all DELETED slots as EMPTY
 | |
|     // - mark all FULL slots as DELETED
 | |
|     // - for each slot marked as DELETED
 | |
|     //     hash = Hash(element)
 | |
|     //     target = find_first_non_full(hash)
 | |
|     //     if target is in the same group
 | |
|     //       mark slot as FULL
 | |
|     //     else if target is EMPTY
 | |
|     //       transfer element to target
 | |
|     //       mark slot as EMPTY
 | |
|     //       mark target as FULL
 | |
|     //     else if target is DELETED
 | |
|     //       swap current element with target element
 | |
|     //       mark target as FULL
 | |
|     //       repeat procedure for current slot with moved from element (target)
 | |
|     ConvertDeletedToEmptyAndFullToDeleted(ctrl_, capacity_);
 | |
|     typename std::aligned_storage<sizeof(slot_type), alignof(slot_type)>::type
 | |
|         raw;
 | |
|     slot_type* slot = reinterpret_cast<slot_type*>(&raw);
 | |
|     for (size_t i = 0; i != capacity_; ++i) {
 | |
|       if (!IsDeleted(ctrl_[i])) continue;
 | |
|       size_t hash = PolicyTraits::apply(HashElement{hash_ref()},
 | |
|                                         PolicyTraits::element(slots_ + i));
 | |
|       size_t new_i = find_first_non_full(hash).offset;
 | |
| 
 | |
|       // Verify if the old and new i fall within the same group wrt the hash.
 | |
|       // If they do, we don't need to move the object as it falls already in the
 | |
|       // best probe we can.
 | |
|       const auto probe_index = [&](size_t pos) {
 | |
|         return ((pos - probe(hash).offset()) & capacity_) / Group::kWidth;
 | |
|       };
 | |
| 
 | |
|       // Element doesn't move.
 | |
|       if (ABSL_PREDICT_TRUE(probe_index(new_i) == probe_index(i))) {
 | |
|         set_ctrl(i, H2(hash));
 | |
|         continue;
 | |
|       }
 | |
|       if (IsEmpty(ctrl_[new_i])) {
 | |
|         // Transfer element to the empty spot.
 | |
|         // set_ctrl poisons/unpoisons the slots so we have to call it at the
 | |
|         // right time.
 | |
|         set_ctrl(new_i, H2(hash));
 | |
|         PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slots_ + i);
 | |
|         set_ctrl(i, kEmpty);
 | |
|       } else {
 | |
|         assert(IsDeleted(ctrl_[new_i]));
 | |
|         set_ctrl(new_i, H2(hash));
 | |
|         // Until we are done rehashing, DELETED marks previously FULL slots.
 | |
|         // Swap i and new_i elements.
 | |
|         PolicyTraits::transfer(&alloc_ref(), slot, slots_ + i);
 | |
|         PolicyTraits::transfer(&alloc_ref(), slots_ + i, slots_ + new_i);
 | |
|         PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slot);
 | |
|         --i;  // repeat
 | |
|       }
 | |
|     }
 | |
|     growth_left() = static_cast<size_t>(capacity_ * kMaxLoadFactor) - size_;
 | |
|   }
 | |
| 
 | |
|   void rehash_and_grow_if_necessary() {
 | |
|     if (capacity_ == 0) {
 | |
|       resize(Group::kWidth - 1);
 | |
|     } else if (size() <= kMaxLoadFactor / 2 * capacity_) {
 | |
|       // Squash DELETED without growing if there is enough capacity.
 | |
|       drop_deletes_without_resize();
 | |
|     } else {
 | |
|       // Otherwise grow the container.
 | |
|       resize(capacity_ * 2 + 1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool has_element(const value_type& elem) const {
 | |
|     size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, elem);
 | |
|     auto seq = probe(hash);
 | |
|     while (true) {
 | |
|       Group g{ctrl_ + seq.offset()};
 | |
|       for (int i : g.Match(H2(hash))) {
 | |
|         if (ABSL_PREDICT_TRUE(PolicyTraits::element(slots_ + seq.offset(i)) ==
 | |
|                               elem))
 | |
|           return true;
 | |
|       }
 | |
|       if (ABSL_PREDICT_TRUE(g.MatchEmpty())) return false;
 | |
|       seq.next();
 | |
|       assert(seq.index() < capacity_ && "full table!");
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Probes the raw_hash_set with the probe sequence for hash and returns the
 | |
|   // pointer to the first empty or deleted slot.
 | |
|   // NOTE: this function must work with tables having both kEmpty and kDelete
 | |
|   // in one group. Such tables appears during drop_deletes_without_resize.
 | |
|   //
 | |
|   // This function is very useful when insertions happen and:
 | |
|   // - the input is already a set
 | |
|   // - there are enough slots
 | |
|   // - the element with the hash is not in the table
 | |
|   struct FindInfo {
 | |
|     size_t offset;
 | |
|     size_t probe_length;
 | |
|   };
 | |
|   FindInfo find_first_non_full(size_t hash) {
 | |
|     auto seq = probe(hash);
 | |
|     while (true) {
 | |
|       Group g{ctrl_ + seq.offset()};
 | |
|       auto mask = g.MatchEmptyOrDeleted();
 | |
|       if (mask) {
 | |
| #if !defined(NDEBUG)
 | |
|         // We want to force small tables to have random entries too, so
 | |
|         // in debug build we will randomly insert in either the front or back of
 | |
|         // the group.
 | |
|         // TODO(kfm,sbenza): revisit after we do unconditional mixing
 | |
|         if (ShouldInsertBackwards(hash, ctrl_))
 | |
|           return {seq.offset(mask.HighestBitSet()), seq.index()};
 | |
|         else
 | |
|           return {seq.offset(mask.LowestBitSet()), seq.index()};
 | |
| #else
 | |
|         return {seq.offset(mask.LowestBitSet()), seq.index()};
 | |
| #endif
 | |
|       }
 | |
|       assert(seq.index() < capacity_ && "full table!");
 | |
|       seq.next();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // TODO(alkis): Optimize this assuming *this and that don't overlap.
 | |
|   raw_hash_set& move_assign(raw_hash_set&& that, std::true_type) {
 | |
|     raw_hash_set tmp(std::move(that));
 | |
|     swap(tmp);
 | |
|     return *this;
 | |
|   }
 | |
|   raw_hash_set& move_assign(raw_hash_set&& that, std::false_type) {
 | |
|     raw_hash_set tmp(std::move(that), alloc_ref());
 | |
|     swap(tmp);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   template <class K>
 | |
|   std::pair<size_t, bool> find_or_prepare_insert(const K& key) {
 | |
|     auto hash = hash_ref()(key);
 | |
|     auto seq = probe(hash);
 | |
|     while (true) {
 | |
|       Group g{ctrl_ + seq.offset()};
 | |
|       for (int i : g.Match(H2(hash))) {
 | |
|         if (ABSL_PREDICT_TRUE(PolicyTraits::apply(
 | |
|                 EqualElement<K>{key, eq_ref()},
 | |
|                 PolicyTraits::element(slots_ + seq.offset(i)))))
 | |
|           return {seq.offset(i), false};
 | |
|       }
 | |
|       if (ABSL_PREDICT_TRUE(g.MatchEmpty())) break;
 | |
|       seq.next();
 | |
|     }
 | |
|     return {prepare_insert(hash), true};
 | |
|   }
 | |
| 
 | |
|   size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE {
 | |
|     auto target = find_first_non_full(hash);
 | |
|     if (ABSL_PREDICT_FALSE(growth_left() == 0 &&
 | |
|                            !IsDeleted(ctrl_[target.offset]))) {
 | |
|       rehash_and_grow_if_necessary();
 | |
|       target = find_first_non_full(hash);
 | |
|     }
 | |
|     ++size_;
 | |
|     growth_left() -= IsEmpty(ctrl_[target.offset]);
 | |
|     set_ctrl(target.offset, H2(hash));
 | |
|     infoz_.RecordInsert(hash, target.probe_length);
 | |
|     return target.offset;
 | |
|   }
 | |
| 
 | |
|   // Constructs the value in the space pointed by the iterator. This only works
 | |
|   // after an unsuccessful find_or_prepare_insert() and before any other
 | |
|   // modifications happen in the raw_hash_set.
 | |
|   //
 | |
|   // PRECONDITION: i is an index returned from find_or_prepare_insert(k), where
 | |
|   // k is the key decomposed from `forward<Args>(args)...`, and the bool
 | |
|   // returned by find_or_prepare_insert(k) was true.
 | |
|   // POSTCONDITION: *m.iterator_at(i) == value_type(forward<Args>(args)...).
 | |
|   template <class... Args>
 | |
|   void emplace_at(size_t i, Args&&... args) {
 | |
|     PolicyTraits::construct(&alloc_ref(), slots_ + i,
 | |
|                             std::forward<Args>(args)...);
 | |
| 
 | |
|     assert(PolicyTraits::apply(FindElement{*this}, *iterator_at(i)) ==
 | |
|                iterator_at(i) &&
 | |
|            "constructed value does not match the lookup key");
 | |
|   }
 | |
| 
 | |
|   iterator iterator_at(size_t i) { return {ctrl_ + i, slots_ + i}; }
 | |
|   const_iterator iterator_at(size_t i) const { return {ctrl_ + i, slots_ + i}; }
 | |
| 
 | |
|  private:
 | |
|   friend struct RawHashSetTestOnlyAccess;
 | |
| 
 | |
|   probe_seq<Group::kWidth> probe(size_t hash) const {
 | |
|     return probe_seq<Group::kWidth>(H1(hash, ctrl_), capacity_);
 | |
|   }
 | |
| 
 | |
|   // Reset all ctrl bytes back to kEmpty, except the sentinel.
 | |
|   void reset_ctrl() {
 | |
|     std::memset(ctrl_, kEmpty, capacity_ + Group::kWidth);
 | |
|     ctrl_[capacity_] = kSentinel;
 | |
|     SanitizerPoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_);
 | |
|   }
 | |
| 
 | |
|   // Sets the control byte, and if `i < Group::kWidth`, set the cloned byte at
 | |
|   // the end too.
 | |
|   void set_ctrl(size_t i, ctrl_t h) {
 | |
|     assert(i < capacity_);
 | |
| 
 | |
|     if (IsFull(h)) {
 | |
|       SanitizerUnpoisonObject(slots_ + i);
 | |
|     } else {
 | |
|       SanitizerPoisonObject(slots_ + i);
 | |
|     }
 | |
| 
 | |
|     ctrl_[i] = h;
 | |
|     ctrl_[((i - Group::kWidth) & capacity_) + Group::kWidth] = h;
 | |
|   }
 | |
| 
 | |
|   size_t& growth_left() { return settings_.template get<0>(); }
 | |
| 
 | |
|   hasher& hash_ref() { return settings_.template get<1>(); }
 | |
|   const hasher& hash_ref() const { return settings_.template get<1>(); }
 | |
|   key_equal& eq_ref() { return settings_.template get<2>(); }
 | |
|   const key_equal& eq_ref() const { return settings_.template get<2>(); }
 | |
|   allocator_type& alloc_ref() { return settings_.template get<3>(); }
 | |
|   const allocator_type& alloc_ref() const {
 | |
|     return settings_.template get<3>();
 | |
|   }
 | |
| 
 | |
|   // On average each group has 2 empty slot (for the vectorized case).
 | |
|   static constexpr int64_t kMaxLoadFactorNumerator = 14;
 | |
|   static constexpr int64_t kMaxLoadFactorDenominator = 16;
 | |
|   static constexpr float kMaxLoadFactor =
 | |
|       1.0 * kMaxLoadFactorNumerator / kMaxLoadFactorDenominator;
 | |
| 
 | |
|   // TODO(alkis): Investigate removing some of these fields:
 | |
|   // - ctrl/slots can be derived from each other
 | |
|   // - size can be moved into the slot array
 | |
|   ctrl_t* ctrl_ = EmptyGroup();    // [(capacity + 1) * ctrl_t]
 | |
|   slot_type* slots_ = nullptr;     // [capacity * slot_type]
 | |
|   size_t size_ = 0;                // number of full slots
 | |
|   size_t capacity_ = 0;            // total number of slots
 | |
|   HashtablezInfoHandle infoz_;
 | |
|   absl::container_internal::CompressedTuple<size_t /* growth_left */, hasher,
 | |
|                                             key_equal, allocator_type>
 | |
|       settings_{0, hasher{}, key_equal{}, allocator_type{}};
 | |
| };
 | |
| 
 | |
| namespace hashtable_debug_internal {
 | |
| template <typename Set>
 | |
| struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> {
 | |
|   using Traits = typename Set::PolicyTraits;
 | |
|   using Slot = typename Traits::slot_type;
 | |
| 
 | |
|   static size_t GetNumProbes(const Set& set,
 | |
|                              const typename Set::key_type& key) {
 | |
|     size_t num_probes = 0;
 | |
|     size_t hash = set.hash_ref()(key);
 | |
|     auto seq = set.probe(hash);
 | |
|     while (true) {
 | |
|       container_internal::Group g{set.ctrl_ + seq.offset()};
 | |
|       for (int i : g.Match(container_internal::H2(hash))) {
 | |
|         if (Traits::apply(
 | |
|                 typename Set::template EqualElement<typename Set::key_type>{
 | |
|                     key, set.eq_ref()},
 | |
|                 Traits::element(set.slots_ + seq.offset(i))))
 | |
|           return num_probes;
 | |
|         ++num_probes;
 | |
|       }
 | |
|       if (g.MatchEmpty()) return num_probes;
 | |
|       seq.next();
 | |
|       ++num_probes;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   static size_t AllocatedByteSize(const Set& c) {
 | |
|     size_t capacity = c.capacity_;
 | |
|     if (capacity == 0) return 0;
 | |
|     auto layout = Set::MakeLayout(capacity);
 | |
|     size_t m = layout.AllocSize();
 | |
| 
 | |
|     size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
 | |
|     if (per_slot != ~size_t{}) {
 | |
|       m += per_slot * c.size();
 | |
|     } else {
 | |
|       for (size_t i = 0; i != capacity; ++i) {
 | |
|         if (container_internal::IsFull(c.ctrl_[i])) {
 | |
|           m += Traits::space_used(c.slots_ + i);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return m;
 | |
|   }
 | |
| 
 | |
|   static size_t LowerBoundAllocatedByteSize(size_t size) {
 | |
|     size_t capacity = container_internal::NormalizeCapacity(
 | |
|         std::ceil(size / Set::kMaxLoadFactor));
 | |
|     if (capacity == 0) return 0;
 | |
|     auto layout = Set::MakeLayout(capacity);
 | |
|     size_t m = layout.AllocSize();
 | |
|     size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
 | |
|     if (per_slot != ~size_t{}) {
 | |
|       m += per_slot * size;
 | |
|     }
 | |
|     return m;
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace hashtable_debug_internal
 | |
| }  // namespace container_internal
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
 |