git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			951 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			951 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| // The implementation of the absl::Duration class, which is declared in
 | |
| // //absl/time.h.  This class behaves like a numeric type; it has no public
 | |
| // methods and is used only through the operators defined here.
 | |
| //
 | |
| // Implementation notes:
 | |
| //
 | |
| // An absl::Duration is represented as
 | |
| //
 | |
| //   rep_hi_ : (int64_t)  Whole seconds
 | |
| //   rep_lo_ : (uint32_t) Fractions of a second
 | |
| //
 | |
| // The seconds value (rep_hi_) may be positive or negative as appropriate.
 | |
| // The fractional seconds (rep_lo_) is always a positive offset from rep_hi_.
 | |
| // The API for Duration guarantees at least nanosecond resolution, which
 | |
| // means rep_lo_ could have a max value of 1B - 1 if it stored nanoseconds.
 | |
| // However, to utilize more of the available 32 bits of space in rep_lo_,
 | |
| // we instead store quarters of a nanosecond in rep_lo_ resulting in a max
 | |
| // value of 4B - 1.  This allows us to correctly handle calculations like
 | |
| // 0.5 nanos + 0.5 nanos = 1 nano.  The following example shows the actual
 | |
| // Duration rep using quarters of a nanosecond.
 | |
| //
 | |
| //    2.5 sec = {rep_hi_=2,  rep_lo_=2000000000}  // lo = 4 * 500000000
 | |
| //   -2.5 sec = {rep_hi_=-3, rep_lo_=2000000000}
 | |
| //
 | |
| // Infinite durations are represented as Durations with the rep_lo_ field set
 | |
| // to all 1s.
 | |
| //
 | |
| //   +InfiniteDuration:
 | |
| //     rep_hi_ : kint64max
 | |
| //     rep_lo_ : ~0U
 | |
| //
 | |
| //   -InfiniteDuration:
 | |
| //     rep_hi_ : kint64min
 | |
| //     rep_lo_ : ~0U
 | |
| //
 | |
| // Arithmetic overflows/underflows to +/- infinity and saturates.
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #include <winsock2.h>  // for timeval
 | |
| #endif
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cctype>
 | |
| #include <cerrno>
 | |
| #include <cmath>
 | |
| #include <cstdint>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <ctime>
 | |
| #include <functional>
 | |
| #include <limits>
 | |
| #include <string>
 | |
| 
 | |
| #include "absl/base/casts.h"
 | |
| #include "absl/base/macros.h"
 | |
| #include "absl/numeric/int128.h"
 | |
| #include "absl/strings/strip.h"
 | |
| #include "absl/time/time.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| using time_internal::kTicksPerNanosecond;
 | |
| using time_internal::kTicksPerSecond;
 | |
| 
 | |
| constexpr int64_t kint64max = std::numeric_limits<int64_t>::max();
 | |
| constexpr int64_t kint64min = std::numeric_limits<int64_t>::min();
 | |
| 
 | |
| // Can't use std::isinfinite() because it doesn't exist on windows.
 | |
| inline bool IsFinite(double d) {
 | |
|   if (std::isnan(d)) return false;
 | |
|   return d != std::numeric_limits<double>::infinity() &&
 | |
|          d != -std::numeric_limits<double>::infinity();
 | |
| }
 | |
| 
 | |
| inline bool IsValidDivisor(double d) {
 | |
|   if (std::isnan(d)) return false;
 | |
|   return d != 0.0;
 | |
| }
 | |
| 
 | |
| // Can't use std::round() because it is only available in C++11.
 | |
| // Note that we ignore the possibility of floating-point over/underflow.
 | |
| template <typename Double>
 | |
| inline double Round(Double d) {
 | |
|   return d < 0 ? std::ceil(d - 0.5) : std::floor(d + 0.5);
 | |
| }
 | |
| 
 | |
| // *sec may be positive or negative.  *ticks must be in the range
 | |
| // -kTicksPerSecond < *ticks < kTicksPerSecond.  If *ticks is negative it
 | |
| // will be normalized to a positive value by adjusting *sec accordingly.
 | |
| inline void NormalizeTicks(int64_t* sec, int64_t* ticks) {
 | |
|   if (*ticks < 0) {
 | |
|     --*sec;
 | |
|     *ticks += kTicksPerSecond;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Makes a uint128 from the absolute value of the given scalar.
 | |
| inline uint128 MakeU128(int64_t a) {
 | |
|   uint128 u128 = 0;
 | |
|   if (a < 0) {
 | |
|     ++u128;
 | |
|     ++a;  // Makes it safe to negate 'a'
 | |
|     a = -a;
 | |
|   }
 | |
|   u128 += static_cast<uint64_t>(a);
 | |
|   return u128;
 | |
| }
 | |
| 
 | |
| // Makes a uint128 count of ticks out of the absolute value of the Duration.
 | |
| inline uint128 MakeU128Ticks(Duration d) {
 | |
|   int64_t rep_hi = time_internal::GetRepHi(d);
 | |
|   uint32_t rep_lo = time_internal::GetRepLo(d);
 | |
|   if (rep_hi < 0) {
 | |
|     ++rep_hi;
 | |
|     rep_hi = -rep_hi;
 | |
|     rep_lo = kTicksPerSecond - rep_lo;
 | |
|   }
 | |
|   uint128 u128 = static_cast<uint64_t>(rep_hi);
 | |
|   u128 *= static_cast<uint64_t>(kTicksPerSecond);
 | |
|   u128 += rep_lo;
 | |
|   return u128;
 | |
| }
 | |
| 
 | |
| // Breaks a uint128 of ticks into a Duration.
 | |
| inline Duration MakeDurationFromU128(uint128 u128, bool is_neg) {
 | |
|   int64_t rep_hi;
 | |
|   uint32_t rep_lo;
 | |
|   const uint64_t h64 = Uint128High64(u128);
 | |
|   const uint64_t l64 = Uint128Low64(u128);
 | |
|   if (h64 == 0) {  // fastpath
 | |
|     const uint64_t hi = l64 / kTicksPerSecond;
 | |
|     rep_hi = static_cast<int64_t>(hi);
 | |
|     rep_lo = static_cast<uint32_t>(l64 - hi * kTicksPerSecond);
 | |
|   } else {
 | |
|     // kMaxRepHi64 is the high 64 bits of (2^63 * kTicksPerSecond).
 | |
|     // Any positive tick count whose high 64 bits are >= kMaxRepHi64
 | |
|     // is not representable as a Duration.  A negative tick count can
 | |
|     // have its high 64 bits == kMaxRepHi64 but only when the low 64
 | |
|     // bits are all zero, otherwise it is not representable either.
 | |
|     const uint64_t kMaxRepHi64 = 0x77359400UL;
 | |
|     if (h64 >= kMaxRepHi64) {
 | |
|       if (is_neg && h64 == kMaxRepHi64 && l64 == 0) {
 | |
|         // Avoid trying to represent -kint64min below.
 | |
|         return time_internal::MakeDuration(kint64min);
 | |
|       }
 | |
|       return is_neg ? -InfiniteDuration() : InfiniteDuration();
 | |
|     }
 | |
|     const uint128 kTicksPerSecond128 = static_cast<uint64_t>(kTicksPerSecond);
 | |
|     const uint128 hi = u128 / kTicksPerSecond128;
 | |
|     rep_hi = static_cast<int64_t>(Uint128Low64(hi));
 | |
|     rep_lo =
 | |
|         static_cast<uint32_t>(Uint128Low64(u128 - hi * kTicksPerSecond128));
 | |
|   }
 | |
|   if (is_neg) {
 | |
|     rep_hi = -rep_hi;
 | |
|     if (rep_lo != 0) {
 | |
|       --rep_hi;
 | |
|       rep_lo = kTicksPerSecond - rep_lo;
 | |
|     }
 | |
|   }
 | |
|   return time_internal::MakeDuration(rep_hi, rep_lo);
 | |
| }
 | |
| 
 | |
| // Convert between int64_t and uint64_t, preserving representation. This
 | |
| // allows us to do arithmetic in the unsigned domain, where overflow has
 | |
| // well-defined behavior. See operator+=() and operator-=().
 | |
| //
 | |
| // C99 7.20.1.1.1, as referenced by C++11 18.4.1.2, says, "The typedef
 | |
| // name intN_t designates a signed integer type with width N, no padding
 | |
| // bits, and a two's complement representation." So, we can convert to
 | |
| // and from the corresponding uint64_t value using a bit cast.
 | |
| inline uint64_t EncodeTwosComp(int64_t v) {
 | |
|   return absl::bit_cast<uint64_t>(v);
 | |
| }
 | |
| inline int64_t DecodeTwosComp(uint64_t v) { return absl::bit_cast<int64_t>(v); }
 | |
| 
 | |
| // Note: The overflow detection in this function is done using greater/less *or
 | |
| // equal* because kint64max/min is too large to be represented exactly in a
 | |
| // double (which only has 53 bits of precision). In order to avoid assigning to
 | |
| // rep->hi a double value that is too large for an int64_t (and therefore is
 | |
| // undefined), we must consider computations that equal kint64max/min as a
 | |
| // double as overflow cases.
 | |
| inline bool SafeAddRepHi(double a_hi, double b_hi, Duration* d) {
 | |
|   double c = a_hi + b_hi;
 | |
|   if (c >= static_cast<double>(kint64max)) {
 | |
|     *d = InfiniteDuration();
 | |
|     return false;
 | |
|   }
 | |
|   if (c <= static_cast<double>(kint64min)) {
 | |
|     *d = -InfiniteDuration();
 | |
|     return false;
 | |
|   }
 | |
|   *d = time_internal::MakeDuration(c, time_internal::GetRepLo(*d));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // A functor that's similar to std::multiplies<T>, except this returns the max
 | |
| // T value instead of overflowing. This is only defined for uint128.
 | |
| template <typename Ignored>
 | |
| struct SafeMultiply {
 | |
|   uint128 operator()(uint128 a, uint128 b) const {
 | |
|     // b hi is always zero because it originated as an int64_t.
 | |
|     assert(Uint128High64(b) == 0);
 | |
|     // Fastpath to avoid the expensive overflow check with division.
 | |
|     if (Uint128High64(a) == 0) {
 | |
|       return (((Uint128Low64(a) | Uint128Low64(b)) >> 32) == 0)
 | |
|                  ? static_cast<uint128>(Uint128Low64(a) * Uint128Low64(b))
 | |
|                  : a * b;
 | |
|     }
 | |
|     return b == 0 ? b : (a > kuint128max / b) ? kuint128max : a * b;
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Scales (i.e., multiplies or divides, depending on the Operation template)
 | |
| // the Duration d by the int64_t r.
 | |
| template <template <typename> class Operation>
 | |
| inline Duration ScaleFixed(Duration d, int64_t r) {
 | |
|   const uint128 a = MakeU128Ticks(d);
 | |
|   const uint128 b = MakeU128(r);
 | |
|   const uint128 q = Operation<uint128>()(a, b);
 | |
|   const bool is_neg = (time_internal::GetRepHi(d) < 0) != (r < 0);
 | |
|   return MakeDurationFromU128(q, is_neg);
 | |
| }
 | |
| 
 | |
| // Scales (i.e., multiplies or divides, depending on the Operation template)
 | |
| // the Duration d by the double r.
 | |
| template <template <typename> class Operation>
 | |
| inline Duration ScaleDouble(Duration d, double r) {
 | |
|   Operation<double> op;
 | |
|   double hi_doub = op(time_internal::GetRepHi(d), r);
 | |
|   double lo_doub = op(time_internal::GetRepLo(d), r);
 | |
| 
 | |
|   double hi_int = 0;
 | |
|   double hi_frac = std::modf(hi_doub, &hi_int);
 | |
| 
 | |
|   // Moves hi's fractional bits to lo.
 | |
|   lo_doub /= kTicksPerSecond;
 | |
|   lo_doub += hi_frac;
 | |
| 
 | |
|   double lo_int = 0;
 | |
|   double lo_frac = std::modf(lo_doub, &lo_int);
 | |
| 
 | |
|   // Rolls lo into hi if necessary.
 | |
|   int64_t lo64 = Round(lo_frac * kTicksPerSecond);
 | |
| 
 | |
|   Duration ans;
 | |
|   if (!SafeAddRepHi(hi_int, lo_int, &ans)) return ans;
 | |
|   int64_t hi64 = time_internal::GetRepHi(ans);
 | |
|   if (!SafeAddRepHi(hi64, lo64 / kTicksPerSecond, &ans)) return ans;
 | |
|   hi64 = time_internal::GetRepHi(ans);
 | |
|   lo64 %= kTicksPerSecond;
 | |
|   NormalizeTicks(&hi64, &lo64);
 | |
|   return time_internal::MakeDuration(hi64, lo64);
 | |
| }
 | |
| 
 | |
| // Tries to divide num by den as fast as possible by looking for common, easy
 | |
| // cases. If the division was done, the quotient is in *q and the remainder is
 | |
| // in *rem and true will be returned.
 | |
| inline bool IDivFastPath(const Duration num, const Duration den, int64_t* q,
 | |
|                          Duration* rem) {
 | |
|   // Bail if num or den is an infinity.
 | |
|   if (time_internal::IsInfiniteDuration(num) ||
 | |
|       time_internal::IsInfiniteDuration(den))
 | |
|     return false;
 | |
| 
 | |
|   int64_t num_hi = time_internal::GetRepHi(num);
 | |
|   uint32_t num_lo = time_internal::GetRepLo(num);
 | |
|   int64_t den_hi = time_internal::GetRepHi(den);
 | |
|   uint32_t den_lo = time_internal::GetRepLo(den);
 | |
| 
 | |
|   if (den_hi == 0 && den_lo == kTicksPerNanosecond) {
 | |
|     // Dividing by 1ns
 | |
|     if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000000) {
 | |
|       *q = num_hi * 1000000000 + num_lo / kTicksPerNanosecond;
 | |
|       *rem = time_internal::MakeDuration(0, num_lo % den_lo);
 | |
|       return true;
 | |
|     }
 | |
|   } else if (den_hi == 0 && den_lo == 100 * kTicksPerNanosecond) {
 | |
|     // Dividing by 100ns (common when converting to Universal time)
 | |
|     if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 10000000) {
 | |
|       *q = num_hi * 10000000 + num_lo / (100 * kTicksPerNanosecond);
 | |
|       *rem = time_internal::MakeDuration(0, num_lo % den_lo);
 | |
|       return true;
 | |
|     }
 | |
|   } else if (den_hi == 0 && den_lo == 1000 * kTicksPerNanosecond) {
 | |
|     // Dividing by 1us
 | |
|     if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000) {
 | |
|       *q = num_hi * 1000000 + num_lo / (1000 * kTicksPerNanosecond);
 | |
|       *rem = time_internal::MakeDuration(0, num_lo % den_lo);
 | |
|       return true;
 | |
|     }
 | |
|   } else if (den_hi == 0 && den_lo == 1000000 * kTicksPerNanosecond) {
 | |
|     // Dividing by 1ms
 | |
|     if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000) {
 | |
|       *q = num_hi * 1000 + num_lo / (1000000 * kTicksPerNanosecond);
 | |
|       *rem = time_internal::MakeDuration(0, num_lo % den_lo);
 | |
|       return true;
 | |
|     }
 | |
|   } else if (den_hi > 0 && den_lo == 0) {
 | |
|     // Dividing by positive multiple of 1s
 | |
|     if (num_hi >= 0) {
 | |
|       if (den_hi == 1) {
 | |
|         *q = num_hi;
 | |
|         *rem = time_internal::MakeDuration(0, num_lo);
 | |
|         return true;
 | |
|       }
 | |
|       *q = num_hi / den_hi;
 | |
|       *rem = time_internal::MakeDuration(num_hi % den_hi, num_lo);
 | |
|       return true;
 | |
|     }
 | |
|     if (num_lo != 0) {
 | |
|       num_hi += 1;
 | |
|     }
 | |
|     int64_t quotient = num_hi / den_hi;
 | |
|     int64_t rem_sec = num_hi % den_hi;
 | |
|     if (rem_sec > 0) {
 | |
|       rem_sec -= den_hi;
 | |
|       quotient += 1;
 | |
|     }
 | |
|     if (num_lo != 0) {
 | |
|       rem_sec -= 1;
 | |
|     }
 | |
|     *q = quotient;
 | |
|     *rem = time_internal::MakeDuration(rem_sec, num_lo);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| namespace time_internal {
 | |
| 
 | |
| // The 'satq' argument indicates whether the quotient should saturate at the
 | |
| // bounds of int64_t.  If it does saturate, the difference will spill over to
 | |
| // the remainder.  If it does not saturate, the remainder remain accurate,
 | |
| // but the returned quotient will over/underflow int64_t and should not be used.
 | |
| int64_t IDivDuration(bool satq, const Duration num, const Duration den,
 | |
|                    Duration* rem) {
 | |
|   int64_t q = 0;
 | |
|   if (IDivFastPath(num, den, &q, rem)) {
 | |
|     return q;
 | |
|   }
 | |
| 
 | |
|   const bool num_neg = num < ZeroDuration();
 | |
|   const bool den_neg = den < ZeroDuration();
 | |
|   const bool quotient_neg = num_neg != den_neg;
 | |
| 
 | |
|   if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {
 | |
|     *rem = num_neg ? -InfiniteDuration() : InfiniteDuration();
 | |
|     return quotient_neg ? kint64min : kint64max;
 | |
|   }
 | |
|   if (time_internal::IsInfiniteDuration(den)) {
 | |
|     *rem = num;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   const uint128 a = MakeU128Ticks(num);
 | |
|   const uint128 b = MakeU128Ticks(den);
 | |
|   uint128 quotient128 = a / b;
 | |
| 
 | |
|   if (satq) {
 | |
|     // Limits the quotient to the range of int64_t.
 | |
|     if (quotient128 > uint128(static_cast<uint64_t>(kint64max))) {
 | |
|       quotient128 = quotient_neg ? uint128(static_cast<uint64_t>(kint64min))
 | |
|                                  : uint128(static_cast<uint64_t>(kint64max));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const uint128 remainder128 = a - quotient128 * b;
 | |
|   *rem = MakeDurationFromU128(remainder128, num_neg);
 | |
| 
 | |
|   if (!quotient_neg || quotient128 == 0) {
 | |
|     return Uint128Low64(quotient128) & kint64max;
 | |
|   }
 | |
|   // The quotient needs to be negated, but we need to carefully handle
 | |
|   // quotient128s with the top bit on.
 | |
|   return -static_cast<int64_t>(Uint128Low64(quotient128 - 1) & kint64max) - 1;
 | |
| }
 | |
| 
 | |
| }  // namespace time_internal
 | |
| 
 | |
| //
 | |
| // Additive operators.
 | |
| //
 | |
| 
 | |
| Duration& Duration::operator+=(Duration rhs) {
 | |
|   if (time_internal::IsInfiniteDuration(*this)) return *this;
 | |
|   if (time_internal::IsInfiniteDuration(rhs)) return *this = rhs;
 | |
|   const int64_t orig_rep_hi = rep_hi_;
 | |
|   rep_hi_ =
 | |
|       DecodeTwosComp(EncodeTwosComp(rep_hi_) + EncodeTwosComp(rhs.rep_hi_));
 | |
|   if (rep_lo_ >= kTicksPerSecond - rhs.rep_lo_) {
 | |
|     rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) + 1);
 | |
|     rep_lo_ -= kTicksPerSecond;
 | |
|   }
 | |
|   rep_lo_ += rhs.rep_lo_;
 | |
|   if (rhs.rep_hi_ < 0 ? rep_hi_ > orig_rep_hi : rep_hi_ < orig_rep_hi) {
 | |
|     return *this = rhs.rep_hi_ < 0 ? -InfiniteDuration() : InfiniteDuration();
 | |
|   }
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| Duration& Duration::operator-=(Duration rhs) {
 | |
|   if (time_internal::IsInfiniteDuration(*this)) return *this;
 | |
|   if (time_internal::IsInfiniteDuration(rhs)) {
 | |
|     return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration();
 | |
|   }
 | |
|   const int64_t orig_rep_hi = rep_hi_;
 | |
|   rep_hi_ =
 | |
|       DecodeTwosComp(EncodeTwosComp(rep_hi_) - EncodeTwosComp(rhs.rep_hi_));
 | |
|   if (rep_lo_ < rhs.rep_lo_) {
 | |
|     rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) - 1);
 | |
|     rep_lo_ += kTicksPerSecond;
 | |
|   }
 | |
|   rep_lo_ -= rhs.rep_lo_;
 | |
|   if (rhs.rep_hi_ < 0 ? rep_hi_ < orig_rep_hi : rep_hi_ > orig_rep_hi) {
 | |
|     return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration();
 | |
|   }
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Multiplicative operators.
 | |
| //
 | |
| 
 | |
| Duration& Duration::operator*=(int64_t r) {
 | |
|   if (time_internal::IsInfiniteDuration(*this)) {
 | |
|     const bool is_neg = (r < 0) != (rep_hi_ < 0);
 | |
|     return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
 | |
|   }
 | |
|   return *this = ScaleFixed<SafeMultiply>(*this, r);
 | |
| }
 | |
| 
 | |
| Duration& Duration::operator*=(double r) {
 | |
|   if (time_internal::IsInfiniteDuration(*this) || !IsFinite(r)) {
 | |
|     const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0);
 | |
|     return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
 | |
|   }
 | |
|   return *this = ScaleDouble<std::multiplies>(*this, r);
 | |
| }
 | |
| 
 | |
| Duration& Duration::operator/=(int64_t r) {
 | |
|   if (time_internal::IsInfiniteDuration(*this) || r == 0) {
 | |
|     const bool is_neg = (r < 0) != (rep_hi_ < 0);
 | |
|     return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
 | |
|   }
 | |
|   return *this = ScaleFixed<std::divides>(*this, r);
 | |
| }
 | |
| 
 | |
| Duration& Duration::operator/=(double r) {
 | |
|   if (time_internal::IsInfiniteDuration(*this) || !IsValidDivisor(r)) {
 | |
|     const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0);
 | |
|     return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
 | |
|   }
 | |
|   return *this = ScaleDouble<std::divides>(*this, r);
 | |
| }
 | |
| 
 | |
| Duration& Duration::operator%=(Duration rhs) {
 | |
|   time_internal::IDivDuration(false, *this, rhs, this);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| double FDivDuration(Duration num, Duration den) {
 | |
|   // Arithmetic with infinity is sticky.
 | |
|   if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {
 | |
|     return (num < ZeroDuration()) == (den < ZeroDuration())
 | |
|                ? std::numeric_limits<double>::infinity()
 | |
|                : -std::numeric_limits<double>::infinity();
 | |
|   }
 | |
|   if (time_internal::IsInfiniteDuration(den)) return 0.0;
 | |
| 
 | |
|   double a =
 | |
|       static_cast<double>(time_internal::GetRepHi(num)) * kTicksPerSecond +
 | |
|       time_internal::GetRepLo(num);
 | |
|   double b =
 | |
|       static_cast<double>(time_internal::GetRepHi(den)) * kTicksPerSecond +
 | |
|       time_internal::GetRepLo(den);
 | |
|   return a / b;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Trunc/Floor/Ceil.
 | |
| //
 | |
| 
 | |
| Duration Trunc(Duration d, Duration unit) {
 | |
|   return d - (d % unit);
 | |
| }
 | |
| 
 | |
| Duration Floor(const Duration d, const Duration unit) {
 | |
|   const absl::Duration td = Trunc(d, unit);
 | |
|   return td <= d ? td : td - AbsDuration(unit);
 | |
| }
 | |
| 
 | |
| Duration Ceil(const Duration d, const Duration unit) {
 | |
|   const absl::Duration td = Trunc(d, unit);
 | |
|   return td >= d ? td : td + AbsDuration(unit);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Factory functions.
 | |
| //
 | |
| 
 | |
| Duration DurationFromTimespec(timespec ts) {
 | |
|   if (static_cast<uint64_t>(ts.tv_nsec) < 1000 * 1000 * 1000) {
 | |
|     int64_t ticks = ts.tv_nsec * kTicksPerNanosecond;
 | |
|     return time_internal::MakeDuration(ts.tv_sec, ticks);
 | |
|   }
 | |
|   return Seconds(ts.tv_sec) + Nanoseconds(ts.tv_nsec);
 | |
| }
 | |
| 
 | |
| Duration DurationFromTimeval(timeval tv) {
 | |
|   if (static_cast<uint64_t>(tv.tv_usec) < 1000 * 1000) {
 | |
|     int64_t ticks = tv.tv_usec * 1000 * kTicksPerNanosecond;
 | |
|     return time_internal::MakeDuration(tv.tv_sec, ticks);
 | |
|   }
 | |
|   return Seconds(tv.tv_sec) + Microseconds(tv.tv_usec);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Conversion to other duration types.
 | |
| //
 | |
| 
 | |
| int64_t ToInt64Nanoseconds(Duration d) {
 | |
|   if (time_internal::GetRepHi(d) >= 0 &&
 | |
|       time_internal::GetRepHi(d) >> 33 == 0) {
 | |
|     return (time_internal::GetRepHi(d) * 1000 * 1000 * 1000) +
 | |
|            (time_internal::GetRepLo(d) / kTicksPerNanosecond);
 | |
|   }
 | |
|   return d / Nanoseconds(1);
 | |
| }
 | |
| int64_t ToInt64Microseconds(Duration d) {
 | |
|   if (time_internal::GetRepHi(d) >= 0 &&
 | |
|       time_internal::GetRepHi(d) >> 43 == 0) {
 | |
|     return (time_internal::GetRepHi(d) * 1000 * 1000) +
 | |
|            (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000));
 | |
|   }
 | |
|   return d / Microseconds(1);
 | |
| }
 | |
| int64_t ToInt64Milliseconds(Duration d) {
 | |
|   if (time_internal::GetRepHi(d) >= 0 &&
 | |
|       time_internal::GetRepHi(d) >> 53 == 0) {
 | |
|     return (time_internal::GetRepHi(d) * 1000) +
 | |
|            (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000 * 1000));
 | |
|   }
 | |
|   return d / Milliseconds(1);
 | |
| }
 | |
| int64_t ToInt64Seconds(Duration d) {
 | |
|   int64_t hi = time_internal::GetRepHi(d);
 | |
|   if (time_internal::IsInfiniteDuration(d)) return hi;
 | |
|   if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
 | |
|   return hi;
 | |
| }
 | |
| int64_t ToInt64Minutes(Duration d) {
 | |
|   int64_t hi = time_internal::GetRepHi(d);
 | |
|   if (time_internal::IsInfiniteDuration(d)) return hi;
 | |
|   if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
 | |
|   return hi / 60;
 | |
| }
 | |
| int64_t ToInt64Hours(Duration d) {
 | |
|   int64_t hi = time_internal::GetRepHi(d);
 | |
|   if (time_internal::IsInfiniteDuration(d)) return hi;
 | |
|   if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
 | |
|   return hi / (60 * 60);
 | |
| }
 | |
| 
 | |
| double ToDoubleNanoseconds(Duration d) {
 | |
|   return FDivDuration(d, Nanoseconds(1));
 | |
| }
 | |
| double ToDoubleMicroseconds(Duration d) {
 | |
|   return FDivDuration(d, Microseconds(1));
 | |
| }
 | |
| double ToDoubleMilliseconds(Duration d) {
 | |
|   return FDivDuration(d, Milliseconds(1));
 | |
| }
 | |
| double ToDoubleSeconds(Duration d) {
 | |
|   return FDivDuration(d, Seconds(1));
 | |
| }
 | |
| double ToDoubleMinutes(Duration d) {
 | |
|   return FDivDuration(d, Minutes(1));
 | |
| }
 | |
| double ToDoubleHours(Duration d) {
 | |
|   return FDivDuration(d, Hours(1));
 | |
| }
 | |
| 
 | |
| timespec ToTimespec(Duration d) {
 | |
|   timespec ts;
 | |
|   if (!time_internal::IsInfiniteDuration(d)) {
 | |
|     int64_t rep_hi = time_internal::GetRepHi(d);
 | |
|     uint32_t rep_lo = time_internal::GetRepLo(d);
 | |
|     if (rep_hi < 0) {
 | |
|       // Tweak the fields so that unsigned division of rep_lo
 | |
|       // maps to truncation (towards zero) for the timespec.
 | |
|       rep_lo += kTicksPerNanosecond - 1;
 | |
|       if (rep_lo >= kTicksPerSecond) {
 | |
|         rep_hi += 1;
 | |
|         rep_lo -= kTicksPerSecond;
 | |
|       }
 | |
|     }
 | |
|     ts.tv_sec = rep_hi;
 | |
|     if (ts.tv_sec == rep_hi) {  // no time_t narrowing
 | |
|       ts.tv_nsec = rep_lo / kTicksPerNanosecond;
 | |
|       return ts;
 | |
|     }
 | |
|   }
 | |
|   if (d >= ZeroDuration()) {
 | |
|     ts.tv_sec = std::numeric_limits<time_t>::max();
 | |
|     ts.tv_nsec = 1000 * 1000 * 1000 - 1;
 | |
|   } else {
 | |
|     ts.tv_sec = std::numeric_limits<time_t>::min();
 | |
|     ts.tv_nsec = 0;
 | |
|   }
 | |
|   return ts;
 | |
| }
 | |
| 
 | |
| timeval ToTimeval(Duration d) {
 | |
|   timeval tv;
 | |
|   timespec ts = ToTimespec(d);
 | |
|   if (ts.tv_sec < 0) {
 | |
|     // Tweak the fields so that positive division of tv_nsec
 | |
|     // maps to truncation (towards zero) for the timeval.
 | |
|     ts.tv_nsec += 1000 - 1;
 | |
|     if (ts.tv_nsec >= 1000 * 1000 * 1000) {
 | |
|       ts.tv_sec += 1;
 | |
|       ts.tv_nsec -= 1000 * 1000 * 1000;
 | |
|     }
 | |
|   }
 | |
|   tv.tv_sec = ts.tv_sec;
 | |
|   if (tv.tv_sec != ts.tv_sec) {  // narrowing
 | |
|     if (ts.tv_sec < 0) {
 | |
|       tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min();
 | |
|       tv.tv_usec = 0;
 | |
|     } else {
 | |
|       tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max();
 | |
|       tv.tv_usec = 1000 * 1000 - 1;
 | |
|     }
 | |
|     return tv;
 | |
|   }
 | |
|   tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000);  // suseconds_t
 | |
|   return tv;
 | |
| }
 | |
| 
 | |
| std::chrono::nanoseconds ToChronoNanoseconds(Duration d) {
 | |
|   return time_internal::ToChronoDuration<std::chrono::nanoseconds>(d);
 | |
| }
 | |
| std::chrono::microseconds ToChronoMicroseconds(Duration d) {
 | |
|   return time_internal::ToChronoDuration<std::chrono::microseconds>(d);
 | |
| }
 | |
| std::chrono::milliseconds ToChronoMilliseconds(Duration d) {
 | |
|   return time_internal::ToChronoDuration<std::chrono::milliseconds>(d);
 | |
| }
 | |
| std::chrono::seconds ToChronoSeconds(Duration d) {
 | |
|   return time_internal::ToChronoDuration<std::chrono::seconds>(d);
 | |
| }
 | |
| std::chrono::minutes ToChronoMinutes(Duration d) {
 | |
|   return time_internal::ToChronoDuration<std::chrono::minutes>(d);
 | |
| }
 | |
| std::chrono::hours ToChronoHours(Duration d) {
 | |
|   return time_internal::ToChronoDuration<std::chrono::hours>(d);
 | |
| }
 | |
| 
 | |
| //
 | |
| // To/From string formatting.
 | |
| //
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Formats a positive 64-bit integer in the given field width.  Note that
 | |
| // it is up to the caller of Format64() to ensure that there is sufficient
 | |
| // space before ep to hold the conversion.
 | |
| char* Format64(char* ep, int width, int64_t v) {
 | |
|   do {
 | |
|     --width;
 | |
|     *--ep = '0' + (v % 10);  // contiguous digits
 | |
|   } while (v /= 10);
 | |
|   while (--width >= 0) *--ep = '0';  // zero pad
 | |
|   return ep;
 | |
| }
 | |
| 
 | |
| // Helpers for FormatDuration() that format 'n' and append it to 'out'
 | |
| // followed by the given 'unit'.  If 'n' formats to "0", nothing is
 | |
| // appended (not even the unit).
 | |
| 
 | |
| // A type that encapsulates how to display a value of a particular unit. For
 | |
| // values that are displayed with fractional parts, the precision indicates
 | |
| // where to round the value. The precision varies with the display unit because
 | |
| // a Duration can hold only quarters of a nanosecond, so displaying information
 | |
| // beyond that is just noise.
 | |
| //
 | |
| // For example, a microsecond value of 42.00025xxxxx should not display beyond 5
 | |
| // fractional digits, because it is in the noise of what a Duration can
 | |
| // represent.
 | |
| struct DisplayUnit {
 | |
|   const char* abbr;
 | |
|   int prec;
 | |
|   double pow10;
 | |
| };
 | |
| const DisplayUnit kDisplayNano = {"ns", 2, 1e2};
 | |
| const DisplayUnit kDisplayMicro = {"us", 5, 1e5};
 | |
| const DisplayUnit kDisplayMilli = {"ms", 8, 1e8};
 | |
| const DisplayUnit kDisplaySec = {"s", 11, 1e11};
 | |
| const DisplayUnit kDisplayMin = {"m", -1, 0.0};   // prec ignored
 | |
| const DisplayUnit kDisplayHour = {"h", -1, 0.0};  // prec ignored
 | |
| 
 | |
| void AppendNumberUnit(std::string* out, int64_t n, DisplayUnit unit) {
 | |
|   char buf[sizeof("2562047788015216")];  // hours in max duration
 | |
|   char* const ep = buf + sizeof(buf);
 | |
|   char* bp = Format64(ep, 0, n);
 | |
|   if (*bp != '0' || bp + 1 != ep) {
 | |
|     out->append(bp, ep - bp);
 | |
|     out->append(unit.abbr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Note: unit.prec is limited to double's digits10 value (typically 15) so it
 | |
| // always fits in buf[].
 | |
| void AppendNumberUnit(std::string* out, double n, DisplayUnit unit) {
 | |
|   constexpr int kBufferSize = std::numeric_limits<double>::digits10;
 | |
|   const int prec = std::min(kBufferSize, unit.prec);
 | |
|   char buf[kBufferSize];  // also large enough to hold integer part
 | |
|   char* ep = buf + sizeof(buf);
 | |
|   double d = 0;
 | |
|   int64_t frac_part = Round(std::modf(n, &d) * unit.pow10);
 | |
|   int64_t int_part = d;
 | |
|   if (int_part != 0 || frac_part != 0) {
 | |
|     char* bp = Format64(ep, 0, int_part);  // always < 1000
 | |
|     out->append(bp, ep - bp);
 | |
|     if (frac_part != 0) {
 | |
|       out->push_back('.');
 | |
|       bp = Format64(ep, prec, frac_part);
 | |
|       while (ep[-1] == '0') --ep;
 | |
|       out->append(bp, ep - bp);
 | |
|     }
 | |
|     out->append(unit.abbr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| // From Go's doc at https://golang.org/pkg/time/#Duration.String
 | |
| //   [FormatDuration] returns a string representing the duration in the
 | |
| //   form "72h3m0.5s". Leading zero units are omitted.  As a special
 | |
| //   case, durations less than one second format use a smaller unit
 | |
| //   (milli-, micro-, or nanoseconds) to ensure that the leading digit
 | |
| //   is non-zero.  The zero duration formats as 0, with no unit.
 | |
| std::string FormatDuration(Duration d) {
 | |
|   const Duration min_duration = Seconds(kint64min);
 | |
|   if (d == min_duration) {
 | |
|     // Avoid needing to negate kint64min by directly returning what the
 | |
|     // following code should produce in that case.
 | |
|     return "-2562047788015215h30m8s";
 | |
|   }
 | |
|   std::string s;
 | |
|   if (d < ZeroDuration()) {
 | |
|     s.append("-");
 | |
|     d = -d;
 | |
|   }
 | |
|   if (d == InfiniteDuration()) {
 | |
|     s.append("inf");
 | |
|   } else if (d < Seconds(1)) {
 | |
|     // Special case for durations with a magnitude < 1 second.  The duration
 | |
|     // is printed as a fraction of a single unit, e.g., "1.2ms".
 | |
|     if (d < Microseconds(1)) {
 | |
|       AppendNumberUnit(&s, FDivDuration(d, Nanoseconds(1)), kDisplayNano);
 | |
|     } else if (d < Milliseconds(1)) {
 | |
|       AppendNumberUnit(&s, FDivDuration(d, Microseconds(1)), kDisplayMicro);
 | |
|     } else {
 | |
|       AppendNumberUnit(&s, FDivDuration(d, Milliseconds(1)), kDisplayMilli);
 | |
|     }
 | |
|   } else {
 | |
|     AppendNumberUnit(&s, IDivDuration(d, Hours(1), &d), kDisplayHour);
 | |
|     AppendNumberUnit(&s, IDivDuration(d, Minutes(1), &d), kDisplayMin);
 | |
|     AppendNumberUnit(&s, FDivDuration(d, Seconds(1)), kDisplaySec);
 | |
|   }
 | |
|   if (s.empty() || s == "-") {
 | |
|     s = "0";
 | |
|   }
 | |
|   return s;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // A helper for ParseDuration() that parses a leading number from the given
 | |
| // string and stores the result in *int_part/*frac_part/*frac_scale.  The
 | |
| // given string pointer is modified to point to the first unconsumed char.
 | |
| bool ConsumeDurationNumber(const char** dpp, const char* ep, int64_t* int_part,
 | |
|                            int64_t* frac_part, int64_t* frac_scale) {
 | |
|   *int_part = 0;
 | |
|   *frac_part = 0;
 | |
|   *frac_scale = 1;  // invariant: *frac_part < *frac_scale
 | |
|   const char* start = *dpp;
 | |
|   for (; *dpp != ep; *dpp += 1) {
 | |
|     const int d = **dpp - '0';  // contiguous digits
 | |
|     if (d < 0 || 10 <= d) break;
 | |
| 
 | |
|     if (*int_part > kint64max / 10) return false;
 | |
|     *int_part *= 10;
 | |
|     if (*int_part > kint64max - d) return false;
 | |
|     *int_part += d;
 | |
|   }
 | |
|   const bool int_part_empty = (*dpp == start);
 | |
|   if (*dpp == ep || **dpp != '.') return !int_part_empty;
 | |
| 
 | |
|   for (*dpp += 1; *dpp != ep; *dpp += 1) {
 | |
|     const int d = **dpp - '0';  // contiguous digits
 | |
|     if (d < 0 || 10 <= d) break;
 | |
|     if (*frac_scale <= kint64max / 10) {
 | |
|       *frac_part *= 10;
 | |
|       *frac_part += d;
 | |
|       *frac_scale *= 10;
 | |
|     }
 | |
|   }
 | |
|   return !int_part_empty || *frac_scale != 1;
 | |
| }
 | |
| 
 | |
| // A helper for ParseDuration() that parses a leading unit designator (e.g.,
 | |
| // ns, us, ms, s, m, h) from the given string and stores the resulting unit
 | |
| // in "*unit".  The given string pointer is modified to point to the first
 | |
| // unconsumed char.
 | |
| bool ConsumeDurationUnit(const char** start, const char* end, Duration* unit) {
 | |
|   size_t size = end - *start;
 | |
|   switch (size) {
 | |
|     case 0:
 | |
|       return false;
 | |
|     default:
 | |
|       switch (**start) {
 | |
|         case 'n':
 | |
|           if (*(*start + 1) == 's') {
 | |
|             *start += 2;
 | |
|             *unit = Nanoseconds(1);
 | |
|             return true;
 | |
|           }
 | |
|           break;
 | |
|         case 'u':
 | |
|           if (*(*start + 1) == 's') {
 | |
|             *start += 2;
 | |
|             *unit = Microseconds(1);
 | |
|             return true;
 | |
|           }
 | |
|           break;
 | |
|         case 'm':
 | |
|           if (*(*start + 1) == 's') {
 | |
|             *start += 2;
 | |
|             *unit = Milliseconds(1);
 | |
|             return true;
 | |
|           }
 | |
|           break;
 | |
|         default:
 | |
|           break;
 | |
|       }
 | |
|       ABSL_FALLTHROUGH_INTENDED;
 | |
|     case 1:
 | |
|       switch (**start) {
 | |
|         case 's':
 | |
|           *unit = Seconds(1);
 | |
|           *start += 1;
 | |
|           return true;
 | |
|         case 'm':
 | |
|           *unit = Minutes(1);
 | |
|           *start += 1;
 | |
|           return true;
 | |
|         case 'h':
 | |
|           *unit = Hours(1);
 | |
|           *start += 1;
 | |
|           return true;
 | |
|         default:
 | |
|           return false;
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| // From Go's doc at https://golang.org/pkg/time/#ParseDuration
 | |
| //   [ParseDuration] parses a duration string. A duration string is
 | |
| //   a possibly signed sequence of decimal numbers, each with optional
 | |
| //   fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m".
 | |
| //   Valid time units are "ns", "us" "ms", "s", "m", "h".
 | |
| bool ParseDuration(absl::string_view dur_sv, Duration* d) {
 | |
|   int sign = 1;
 | |
|   if (absl::ConsumePrefix(&dur_sv, "-")) {
 | |
|     sign = -1;
 | |
|   } else {
 | |
|     absl::ConsumePrefix(&dur_sv, "+");
 | |
|   }
 | |
|   if (dur_sv.empty()) return false;
 | |
| 
 | |
|   // Special case for a string of "0".
 | |
|   if (dur_sv == "0") {
 | |
|     *d = ZeroDuration();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (dur_sv == "inf") {
 | |
|     *d = sign * InfiniteDuration();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const char* start = dur_sv.data();
 | |
|   const char* end = start + dur_sv.size();
 | |
| 
 | |
|   Duration dur;
 | |
|   while (start != end) {
 | |
|     int64_t int_part;
 | |
|     int64_t frac_part;
 | |
|     int64_t frac_scale;
 | |
|     Duration unit;
 | |
|     if (!ConsumeDurationNumber(&start, end, &int_part, &frac_part,
 | |
|                                &frac_scale) ||
 | |
|         !ConsumeDurationUnit(&start, end, &unit)) {
 | |
|       return false;
 | |
|     }
 | |
|     if (int_part != 0) dur += sign * int_part * unit;
 | |
|     if (frac_part != 0) dur += sign * frac_part * unit / frac_scale;
 | |
|   }
 | |
|   *d = dur;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AbslParseFlag(absl::string_view text, Duration* dst, std::string*) {
 | |
|   return ParseDuration(text, dst);
 | |
| }
 | |
| 
 | |
| std::string AbslUnparseFlag(Duration d) { return FormatDuration(d); }
 | |
| bool ParseFlag(const std::string& text, Duration* dst, std::string* ) {
 | |
|   return ParseDuration(text, dst);
 | |
| }
 | |
| 
 | |
| std::string UnparseFlag(Duration d) { return FormatDuration(d); }
 | |
| 
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 |