-- 7a6ff16a85beb730c172d5d25cf1b5e1be885c56 by Laramie Leavitt <lar@google.com>: Internal change. PiperOrigin-RevId: 254454546 -- ff8f9bafaefc26d451f576ea4a06d150aed63f6f by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254451562 -- deefc5b651b479ce36f0b4ef203e119c0c8936f2 by CJ Johnson <johnsoncj@google.com>: Account for subtracting unsigned values from the size of InlinedVector PiperOrigin-RevId: 254450625 -- 3c677316a27bcadc17e41957c809ca472d5fef14 by Andy Soffer <asoffer@google.com>: Add C++17's std::make_from_tuple to absl/utility/utility.h PiperOrigin-RevId: 254411573 -- 4ee3536a918830eeec402a28fc31a62c7c90b940 by CJ Johnson <johnsoncj@google.com>: Adds benchmark for the rest of the InlinedVector public API PiperOrigin-RevId: 254408378 -- e5a21a00700ee83498ff1efbf649169756463ee4 by CJ Johnson <johnsoncj@google.com>: Updates the definition of InlinedVector::shrink_to_fit() to be exception safe and adds exception safety tests for it. PiperOrigin-RevId: 254401387 -- 2ea82e72b86d82d78b4e4712a63a55981b53c64b by Laramie Leavitt <lar@google.com>: Use absl::InsecureBitGen in place of std::mt19937 in tests absl/random/...distribution_test.cc PiperOrigin-RevId: 254289444 -- fa099e02c413a7ffda732415e8105cad26a90337 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254286334 -- ce34b7f36933b30cfa35b9c9a5697a792b5666e4 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254273059 -- 6f9c473da7c2090c2e85a37c5f00622e8a912a89 by Jorg Brown <jorg@google.com>: Change absl::container_internal::CompressedTuple to instantiate its internal Storage class with the name of the type it's holding, rather than the name of the Tuple. This is not an externally-visible change, other than less compiler memory is used and less debug information is generated. PiperOrigin-RevId: 254269285 -- 8bd3c186bf2fc0c55d8a2dd6f28a5327502c9fba by Andy Soffer <asoffer@google.com>: Adding short-hand IntervalClosed for IntervalClosedClosed and IntervalOpen for IntervalOpenOpen. PiperOrigin-RevId: 254252419 -- ea957f99b6a04fccd42aa05605605f3b44b1ecfd by Abseil Team <absl-team@google.com>: Do not directly use __SIZEOF_INT128__. In order to avoid linker errors when building with clang-cl (__fixunsdfti, __udivti3 and __fixunssfti are undefined), this CL uses ABSL_HAVE_INTRINSIC_INT128 which is not defined for clang-cl. PiperOrigin-RevId: 254250739 -- 89ab385cd26b34d64130bce856253aaba96d2345 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254242321 -- cffc793d93eca6d6bdf7de733847b6ab4a255ae9 by CJ Johnson <johnsoncj@google.com>: Adds benchmark for InlinedVector::reserve(size_type) PiperOrigin-RevId: 254199226 -- c90c7a9fa3c8f0c9d5114036979548b055ea2f2a by Gennadiy Rozental <rogeeff@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 254072387 -- c4c388beae016c9570ab54ffa1d52660e4a85b7b by Laramie Leavitt <lar@google.com>: Internal cleanup. PiperOrigin-RevId: 254062381 -- d3c992e221cc74e5372d0c8fa410170b6a43c062 by Tom Manshreck <shreck@google.com>: Update distributions.h to Abseil standards PiperOrigin-RevId: 254054946 -- d15ad0035c34ef11b14fadc5a4a2d3ec415f5518 by CJ Johnson <johnsoncj@google.com>: Removes functions with only one caller from the implementation details of InlinedVector by manually inlining the definitions PiperOrigin-RevId: 254005427 -- 2f37e807efc3a8ef1f4b539bdd379917d4151520 by Andy Soffer <asoffer@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253999861 -- 24ed1694b6430791d781ed533a8f8ccf6cac5856 by CJ Johnson <johnsoncj@google.com>: Updates the definition of InlinedVector::assign(...)/InlinedVector::operator=(...) to new, exception-safe implementations with exception safety tests to boot PiperOrigin-RevId: 253993691 -- 5613d95f5a7e34a535cfaeadce801441e990843e by CJ Johnson <johnsoncj@google.com>: Adds benchmarks for InlinedVector::shrink_to_fit() PiperOrigin-RevId: 253989647 -- 2a96ddfdac40bbb8cb6a7f1aeab90917067c6e63 by Abseil Team <absl-team@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253927497 -- bf1aff8fc9ffa921ad74643e9525ecf25b0d8dc1 by Andy Soffer <asoffer@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253920512 -- bfc03f4a3dcda3cf3a4b84bdb84cda24e3394f41 by Laramie Leavitt <lar@google.com>: Internal change. PiperOrigin-RevId: 253886486 -- 05036cfcc078ca7c5f581a00dfb0daed568cbb69 by Eric Fiselier <ericwf@google.com>: Don't include `winsock2.h` because it drags in `windows.h` and friends, and they define awful macros like OPAQUE, ERROR, and more. This has the potential to break abseil users. Instead we only forward declare `timeval` and require Windows users include `winsock2.h` themselves. This is both inconsistent and poor QoI, but so including 'windows.h' is bad too. PiperOrigin-RevId: 253852615 GitOrigin-RevId: 7a6ff16a85beb730c172d5d25cf1b5e1be885c56 Change-Id: Icd6aff87da26f29ec8915da856f051129987cef6
		
			
				
	
	
		
			494 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			494 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "absl/random/distributions.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstdint>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include "gtest/gtest.h"
 | |
| #include "absl/random/internal/distribution_test_util.h"
 | |
| #include "absl/random/random.h"
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| constexpr int kSize = 400000;
 | |
| 
 | |
| class RandomDistributionsTest : public testing::Test {};
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, UniformBoundFunctions) {
 | |
|   using absl::IntervalClosedClosed;
 | |
|   using absl::IntervalClosedOpen;
 | |
|   using absl::IntervalOpenClosed;
 | |
|   using absl::IntervalOpenOpen;
 | |
|   using absl::random_internal::uniform_lower_bound;
 | |
|   using absl::random_internal::uniform_upper_bound;
 | |
| 
 | |
|   // absl::uniform_int_distribution natively assumes IntervalClosedClosed
 | |
|   // absl::uniform_real_distribution natively assumes IntervalClosedOpen
 | |
| 
 | |
|   EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, 0, 100), 1);
 | |
|   EXPECT_EQ(uniform_lower_bound(IntervalOpenOpen, 0, 100), 1);
 | |
|   EXPECT_GT(uniform_lower_bound<float>(IntervalOpenClosed, 0, 1.0), 0);
 | |
|   EXPECT_GT(uniform_lower_bound<float>(IntervalOpenOpen, 0, 1.0), 0);
 | |
|   EXPECT_GT(uniform_lower_bound<double>(IntervalOpenClosed, 0, 1.0), 0);
 | |
|   EXPECT_GT(uniform_lower_bound<double>(IntervalOpenOpen, 0, 1.0), 0);
 | |
| 
 | |
|   EXPECT_EQ(uniform_lower_bound(IntervalClosedClosed, 0, 100), 0);
 | |
|   EXPECT_EQ(uniform_lower_bound(IntervalClosedOpen, 0, 100), 0);
 | |
|   EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedClosed, 0, 1.0), 0);
 | |
|   EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedOpen, 0, 1.0), 0);
 | |
|   EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedClosed, 0, 1.0), 0);
 | |
|   EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedOpen, 0, 1.0), 0);
 | |
| 
 | |
|   EXPECT_EQ(uniform_upper_bound(IntervalOpenOpen, 0, 100), 99);
 | |
|   EXPECT_EQ(uniform_upper_bound(IntervalClosedOpen, 0, 100), 99);
 | |
|   EXPECT_EQ(uniform_upper_bound<float>(IntervalOpenOpen, 0, 1.0), 1.0);
 | |
|   EXPECT_EQ(uniform_upper_bound<float>(IntervalClosedOpen, 0, 1.0), 1.0);
 | |
|   EXPECT_EQ(uniform_upper_bound<double>(IntervalOpenOpen, 0, 1.0), 1.0);
 | |
|   EXPECT_EQ(uniform_upper_bound<double>(IntervalClosedOpen, 0, 1.0), 1.0);
 | |
| 
 | |
|   EXPECT_EQ(uniform_upper_bound(IntervalOpenClosed, 0, 100), 100);
 | |
|   EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, 0, 100), 100);
 | |
|   EXPECT_GT(uniform_upper_bound<float>(IntervalOpenClosed, 0, 1.0), 1.0);
 | |
|   EXPECT_GT(uniform_upper_bound<float>(IntervalClosedClosed, 0, 1.0), 1.0);
 | |
|   EXPECT_GT(uniform_upper_bound<double>(IntervalOpenClosed, 0, 1.0), 1.0);
 | |
|   EXPECT_GT(uniform_upper_bound<double>(IntervalClosedClosed, 0, 1.0), 1.0);
 | |
| 
 | |
|   // Negative value tests
 | |
|   EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, -100, -1), -99);
 | |
|   EXPECT_EQ(uniform_lower_bound(IntervalOpenOpen, -100, -1), -99);
 | |
|   EXPECT_GT(uniform_lower_bound<float>(IntervalOpenClosed, -2.0, -1.0), -2.0);
 | |
|   EXPECT_GT(uniform_lower_bound<float>(IntervalOpenOpen, -2.0, -1.0), -2.0);
 | |
|   EXPECT_GT(uniform_lower_bound<double>(IntervalOpenClosed, -2.0, -1.0), -2.0);
 | |
|   EXPECT_GT(uniform_lower_bound<double>(IntervalOpenOpen, -2.0, -1.0), -2.0);
 | |
| 
 | |
|   EXPECT_EQ(uniform_lower_bound(IntervalClosedClosed, -100, -1), -100);
 | |
|   EXPECT_EQ(uniform_lower_bound(IntervalClosedOpen, -100, -1), -100);
 | |
|   EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedClosed, -2.0, -1.0), -2.0);
 | |
|   EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedOpen, -2.0, -1.0), -2.0);
 | |
|   EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedClosed, -2.0, -1.0),
 | |
|             -2.0);
 | |
|   EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedOpen, -2.0, -1.0), -2.0);
 | |
| 
 | |
|   EXPECT_EQ(uniform_upper_bound(IntervalOpenOpen, -100, -1), -2);
 | |
|   EXPECT_EQ(uniform_upper_bound(IntervalClosedOpen, -100, -1), -2);
 | |
|   EXPECT_EQ(uniform_upper_bound<float>(IntervalOpenOpen, -2.0, -1.0), -1.0);
 | |
|   EXPECT_EQ(uniform_upper_bound<float>(IntervalClosedOpen, -2.0, -1.0), -1.0);
 | |
|   EXPECT_EQ(uniform_upper_bound<double>(IntervalOpenOpen, -2.0, -1.0), -1.0);
 | |
|   EXPECT_EQ(uniform_upper_bound<double>(IntervalClosedOpen, -2.0, -1.0), -1.0);
 | |
| 
 | |
|   EXPECT_EQ(uniform_upper_bound(IntervalOpenClosed, -100, -1), -1);
 | |
|   EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, -100, -1), -1);
 | |
|   EXPECT_GT(uniform_upper_bound<float>(IntervalOpenClosed, -2.0, -1.0), -1.0);
 | |
|   EXPECT_GT(uniform_upper_bound<float>(IntervalClosedClosed, -2.0, -1.0), -1.0);
 | |
|   EXPECT_GT(uniform_upper_bound<double>(IntervalOpenClosed, -2.0, -1.0), -1.0);
 | |
|   EXPECT_GT(uniform_upper_bound<double>(IntervalClosedClosed, -2.0, -1.0),
 | |
|             -1.0);
 | |
| 
 | |
|   // Edge cases: the next value toward itself is itself.
 | |
|   const double d = 1.0;
 | |
|   const float f = 1.0;
 | |
|   EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, d, d), d);
 | |
|   EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, f, f), f);
 | |
| 
 | |
|   EXPECT_GT(uniform_lower_bound(IntervalOpenClosed, 1.0, 2.0), 1.0);
 | |
|   EXPECT_LT(uniform_lower_bound(IntervalOpenClosed, 1.0, +0.0), 1.0);
 | |
|   EXPECT_LT(uniform_lower_bound(IntervalOpenClosed, 1.0, -0.0), 1.0);
 | |
|   EXPECT_LT(uniform_lower_bound(IntervalOpenClosed, 1.0, -1.0), 1.0);
 | |
| 
 | |
|   EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, 0.0f,
 | |
|                                 std::numeric_limits<float>::max()),
 | |
|             std::numeric_limits<float>::max());
 | |
|   EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, 0.0,
 | |
|                                 std::numeric_limits<double>::max()),
 | |
|             std::numeric_limits<double>::max());
 | |
| }
 | |
| 
 | |
| struct Invalid {};
 | |
| 
 | |
| template <typename A, typename B>
 | |
| auto InferredUniformReturnT(int)
 | |
|     -> decltype(absl::Uniform(std::declval<absl::InsecureBitGen&>(),
 | |
|                               std::declval<A>(), std::declval<B>()));
 | |
| 
 | |
| template <typename, typename>
 | |
| Invalid InferredUniformReturnT(...);
 | |
| 
 | |
| template <typename TagType, typename A, typename B>
 | |
| auto InferredTaggedUniformReturnT(int)
 | |
|     -> decltype(absl::Uniform(std::declval<TagType>(),
 | |
|                               std::declval<absl::InsecureBitGen&>(),
 | |
|                               std::declval<A>(), std::declval<B>()));
 | |
| 
 | |
| template <typename, typename, typename>
 | |
| Invalid InferredTaggedUniformReturnT(...);
 | |
| 
 | |
| // Given types <A, B, Expect>, CheckArgsInferType() verifies that
 | |
| //
 | |
| //   absl::Uniform(gen, A{}, B{})
 | |
| //
 | |
| // returns the type "Expect".
 | |
| //
 | |
| // This interface can also be used to assert that a given absl::Uniform()
 | |
| // overload does not exist / will not compile. Given types <A, B>, the
 | |
| // expression
 | |
| //
 | |
| //   decltype(absl::Uniform(..., std::declval<A>(), std::declval<B>()))
 | |
| //
 | |
| // will not compile, leaving the definition of InferredUniformReturnT<A, B> to
 | |
| // resolve (via SFINAE) to the overload which returns type "Invalid". This
 | |
| // allows tests to assert that an invocation such as
 | |
| //
 | |
| //   absl::Uniform(gen, 1.23f, std::numeric_limits<int>::max() - 1)
 | |
| //
 | |
| // should not compile, since neither type, float nor int, can precisely
 | |
| // represent both endpoint-values. Writing:
 | |
| //
 | |
| //   CheckArgsInferType<float, int, Invalid>()
 | |
| //
 | |
| // will assert that this overload does not exist.
 | |
| template <typename A, typename B, typename Expect>
 | |
| void CheckArgsInferType() {
 | |
|   static_assert(
 | |
|       absl::conjunction<
 | |
|           std::is_same<Expect, decltype(InferredUniformReturnT<A, B>(0))>,
 | |
|           std::is_same<Expect,
 | |
|                        decltype(InferredUniformReturnT<B, A>(0))>>::value,
 | |
|       "");
 | |
|   static_assert(
 | |
|       absl::conjunction<
 | |
|           std::is_same<Expect,
 | |
|                        decltype(InferredTaggedUniformReturnT<
 | |
|                                 absl::random_internal::IntervalOpenOpenT, A, B>(
 | |
|                            0))>,
 | |
|           std::is_same<Expect,
 | |
|                        decltype(InferredTaggedUniformReturnT<
 | |
|                                 absl::random_internal::IntervalOpenOpenT, B, A>(
 | |
|                            0))>>::value,
 | |
|       "");
 | |
| }
 | |
| 
 | |
| template <typename A, typename B, typename ExplicitRet>
 | |
| auto ExplicitUniformReturnT(int) -> decltype(
 | |
|     absl::Uniform<ExplicitRet>(*std::declval<absl::InsecureBitGen*>(),
 | |
|                                std::declval<A>(), std::declval<B>()));
 | |
| 
 | |
| template <typename, typename, typename ExplicitRet>
 | |
| Invalid ExplicitUniformReturnT(...);
 | |
| 
 | |
| template <typename TagType, typename A, typename B, typename ExplicitRet>
 | |
| auto ExplicitTaggedUniformReturnT(int) -> decltype(absl::Uniform<ExplicitRet>(
 | |
|     std::declval<TagType>(), *std::declval<absl::InsecureBitGen*>(),
 | |
|     std::declval<A>(), std::declval<B>()));
 | |
| 
 | |
| template <typename, typename, typename, typename ExplicitRet>
 | |
| Invalid ExplicitTaggedUniformReturnT(...);
 | |
| 
 | |
| // Given types <A, B, Expect>, CheckArgsReturnExpectedType() verifies that
 | |
| //
 | |
| //   absl::Uniform<Expect>(gen, A{}, B{})
 | |
| //
 | |
| // returns the type "Expect", and that the function-overload has the signature
 | |
| //
 | |
| //   Expect(URBG&, Expect, Expect)
 | |
| template <typename A, typename B, typename Expect>
 | |
| void CheckArgsReturnExpectedType() {
 | |
|   static_assert(
 | |
|       absl::conjunction<
 | |
|           std::is_same<Expect,
 | |
|                        decltype(ExplicitUniformReturnT<A, B, Expect>(0))>,
 | |
|           std::is_same<Expect, decltype(ExplicitUniformReturnT<B, A, Expect>(
 | |
|                                    0))>>::value,
 | |
|       "");
 | |
|   static_assert(
 | |
|       absl::conjunction<
 | |
|           std::is_same<Expect,
 | |
|                        decltype(ExplicitTaggedUniformReturnT<
 | |
|                                 absl::random_internal::IntervalOpenOpenT, A, B,
 | |
|                                 Expect>(0))>,
 | |
|           std::is_same<Expect,
 | |
|                        decltype(ExplicitTaggedUniformReturnT<
 | |
|                                 absl::random_internal::IntervalOpenOpenT, B, A,
 | |
|                                 Expect>(0))>>::value,
 | |
|       "");
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, UniformTypeInference) {
 | |
|   // Infers common types.
 | |
|   CheckArgsInferType<uint16_t, uint16_t, uint16_t>();
 | |
|   CheckArgsInferType<uint32_t, uint32_t, uint32_t>();
 | |
|   CheckArgsInferType<uint64_t, uint64_t, uint64_t>();
 | |
|   CheckArgsInferType<int16_t, int16_t, int16_t>();
 | |
|   CheckArgsInferType<int32_t, int32_t, int32_t>();
 | |
|   CheckArgsInferType<int64_t, int64_t, int64_t>();
 | |
|   CheckArgsInferType<float, float, float>();
 | |
|   CheckArgsInferType<double, double, double>();
 | |
| 
 | |
|   // Explicitly-specified return-values override inferences.
 | |
|   CheckArgsReturnExpectedType<int16_t, int16_t, int32_t>();
 | |
|   CheckArgsReturnExpectedType<uint16_t, uint16_t, int32_t>();
 | |
|   CheckArgsReturnExpectedType<int16_t, int16_t, int64_t>();
 | |
|   CheckArgsReturnExpectedType<int16_t, int32_t, int64_t>();
 | |
|   CheckArgsReturnExpectedType<int16_t, int32_t, double>();
 | |
|   CheckArgsReturnExpectedType<float, float, double>();
 | |
|   CheckArgsReturnExpectedType<int, int, int16_t>();
 | |
| 
 | |
|   // Properly promotes uint16_t.
 | |
|   CheckArgsInferType<uint16_t, uint32_t, uint32_t>();
 | |
|   CheckArgsInferType<uint16_t, uint64_t, uint64_t>();
 | |
|   CheckArgsInferType<uint16_t, int32_t, int32_t>();
 | |
|   CheckArgsInferType<uint16_t, int64_t, int64_t>();
 | |
|   CheckArgsInferType<uint16_t, float, float>();
 | |
|   CheckArgsInferType<uint16_t, double, double>();
 | |
| 
 | |
|   // Properly promotes int16_t.
 | |
|   CheckArgsInferType<int16_t, int32_t, int32_t>();
 | |
|   CheckArgsInferType<int16_t, int64_t, int64_t>();
 | |
|   CheckArgsInferType<int16_t, float, float>();
 | |
|   CheckArgsInferType<int16_t, double, double>();
 | |
| 
 | |
|   // Invalid (u)int16_t-pairings do not compile.
 | |
|   // See "CheckArgsInferType" comments above, for how this is achieved.
 | |
|   CheckArgsInferType<uint16_t, int16_t, Invalid>();
 | |
|   CheckArgsInferType<int16_t, uint32_t, Invalid>();
 | |
|   CheckArgsInferType<int16_t, uint64_t, Invalid>();
 | |
| 
 | |
|   // Properly promotes uint32_t.
 | |
|   CheckArgsInferType<uint32_t, uint64_t, uint64_t>();
 | |
|   CheckArgsInferType<uint32_t, int64_t, int64_t>();
 | |
|   CheckArgsInferType<uint32_t, double, double>();
 | |
| 
 | |
|   // Properly promotes int32_t.
 | |
|   CheckArgsInferType<int32_t, int64_t, int64_t>();
 | |
|   CheckArgsInferType<int32_t, double, double>();
 | |
| 
 | |
|   // Invalid (u)int32_t-pairings do not compile.
 | |
|   CheckArgsInferType<uint32_t, int32_t, Invalid>();
 | |
|   CheckArgsInferType<int32_t, uint64_t, Invalid>();
 | |
|   CheckArgsInferType<int32_t, float, Invalid>();
 | |
|   CheckArgsInferType<uint32_t, float, Invalid>();
 | |
| 
 | |
|   // Invalid (u)int64_t-pairings do not compile.
 | |
|   CheckArgsInferType<uint64_t, int64_t, Invalid>();
 | |
|   CheckArgsInferType<int64_t, float, Invalid>();
 | |
|   CheckArgsInferType<int64_t, double, Invalid>();
 | |
| 
 | |
|   // Properly promotes float.
 | |
|   CheckArgsInferType<float, double, double>();
 | |
| 
 | |
|   // Examples.
 | |
|   absl::InsecureBitGen gen;
 | |
|   EXPECT_NE(1, absl::Uniform(gen, static_cast<uint16_t>(0), 1.0f));
 | |
|   EXPECT_NE(1, absl::Uniform(gen, 0, 1.0));
 | |
|   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen,
 | |
|                              static_cast<uint16_t>(0), 1.0f));
 | |
|   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, 0, 1.0));
 | |
|   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, -1, 1.0));
 | |
|   EXPECT_NE(1, absl::Uniform<double>(absl::IntervalOpenOpen, gen, -1, 1));
 | |
|   EXPECT_NE(1, absl::Uniform<float>(absl::IntervalOpenOpen, gen, 0, 1));
 | |
|   EXPECT_NE(1, absl::Uniform<float>(gen, 0, 1));
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, UniformNoBounds) {
 | |
|   absl::InsecureBitGen gen;
 | |
| 
 | |
|   absl::Uniform<uint8_t>(gen);
 | |
|   absl::Uniform<uint16_t>(gen);
 | |
|   absl::Uniform<uint32_t>(gen);
 | |
|   absl::Uniform<uint64_t>(gen);
 | |
| }
 | |
| 
 | |
| // TODO(lar): Validate properties of non-default interval-semantics.
 | |
| TEST_F(RandomDistributionsTest, UniformReal) {
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = absl::Uniform(gen, 0, 1.0);
 | |
|   }
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(0.5, moments.mean, 0.02);
 | |
|   EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
 | |
|   EXPECT_NEAR(0.0, moments.skewness, 0.02);
 | |
|   EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, UniformInt) {
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     const int64_t kMax = 1000000000000ll;
 | |
|     int64_t j = absl::Uniform(absl::IntervalClosedClosed, gen, 0, kMax);
 | |
|     // convert to double.
 | |
|     values[i] = static_cast<double>(j) / static_cast<double>(kMax);
 | |
|   }
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(0.5, moments.mean, 0.02);
 | |
|   EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
 | |
|   EXPECT_NEAR(0.0, moments.skewness, 0.02);
 | |
|   EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
 | |
| 
 | |
|   /*
 | |
|   // NOTE: These are not supported by absl::Uniform, which is specialized
 | |
|   // on integer and real valued types.
 | |
| 
 | |
|   enum E { E0, E1 };    // enum
 | |
|   enum S : int { S0, S1 };    // signed enum
 | |
|   enum U : unsigned int { U0, U1 };  // unsigned enum
 | |
| 
 | |
|   absl::Uniform(gen, E0, E1);
 | |
|   absl::Uniform(gen, S0, S1);
 | |
|   absl::Uniform(gen, U0, U1);
 | |
|   */
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, Exponential) {
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = absl::Exponential<double>(gen);
 | |
|   }
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(1.0, moments.mean, 0.02);
 | |
|   EXPECT_NEAR(1.0, moments.variance, 0.025);
 | |
|   EXPECT_NEAR(2.0, moments.skewness, 0.1);
 | |
|   EXPECT_LT(5.0, moments.kurtosis);
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, PoissonDefault) {
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = absl::Poisson<int64_t>(gen);
 | |
|   }
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(1.0, moments.mean, 0.02);
 | |
|   EXPECT_NEAR(1.0, moments.variance, 0.02);
 | |
|   EXPECT_NEAR(1.0, moments.skewness, 0.025);
 | |
|   EXPECT_LT(2.0, moments.kurtosis);
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, PoissonLarge) {
 | |
|   constexpr double kMean = 100000000.0;
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = absl::Poisson<int64_t>(gen, kMean);
 | |
|   }
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(kMean, moments.mean, kMean * 0.015);
 | |
|   EXPECT_NEAR(kMean, moments.variance, kMean * 0.015);
 | |
|   EXPECT_NEAR(std::sqrt(kMean), moments.skewness, kMean * 0.02);
 | |
|   EXPECT_LT(2.0, moments.kurtosis);
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, Bernoulli) {
 | |
|   constexpr double kP = 0.5151515151;
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = absl::Bernoulli(gen, kP);
 | |
|   }
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(kP, moments.mean, 0.01);
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, Beta) {
 | |
|   constexpr double kAlpha = 2.0;
 | |
|   constexpr double kBeta = 3.0;
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = absl::Beta(gen, kAlpha, kBeta);
 | |
|   }
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(0.4, moments.mean, 0.01);
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, Zipf) {
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = absl::Zipf<int64_t>(gen, 100);
 | |
|   }
 | |
| 
 | |
|   // The mean of a zipf distribution is: H(N, s-1) / H(N,s).
 | |
|   // Given the parameter v = 1, this gives the following function:
 | |
|   // (Hn(100, 1) - Hn(1,1)) / (Hn(100,2) - Hn(1,2)) = 6.5944
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(6.5944, moments.mean, 2000) << moments;
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, Gaussian) {
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = absl::Gaussian<double>(gen);
 | |
|   }
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(0.0, moments.mean, 0.02);
 | |
|   EXPECT_NEAR(1.0, moments.variance, 0.04);
 | |
|   EXPECT_NEAR(0, moments.skewness, 0.2);
 | |
|   EXPECT_NEAR(3.0, moments.kurtosis, 0.5);
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, LogUniform) {
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = absl::LogUniform<int64_t>(gen, 0, (1 << 10) - 1);
 | |
|   }
 | |
| 
 | |
|   // The mean is the sum of the fractional means of the uniform distributions:
 | |
|   // [0..0][1..1][2..3][4..7][8..15][16..31][32..63]
 | |
|   // [64..127][128..255][256..511][512..1023]
 | |
|   const double mean = (0 + 1 + 1 + 2 + 3 + 4 + 7 + 8 + 15 + 16 + 31 + 32 + 63 +
 | |
|                        64 + 127 + 128 + 255 + 256 + 511 + 512 + 1023) /
 | |
|                       (2.0 * 11.0);
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(mean, moments.mean, 2) << moments;
 | |
| }
 | |
| 
 | |
| }  // namespace
 |