-- 7a6ff16a85beb730c172d5d25cf1b5e1be885c56 by Laramie Leavitt <lar@google.com>: Internal change. PiperOrigin-RevId: 254454546 -- ff8f9bafaefc26d451f576ea4a06d150aed63f6f by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254451562 -- deefc5b651b479ce36f0b4ef203e119c0c8936f2 by CJ Johnson <johnsoncj@google.com>: Account for subtracting unsigned values from the size of InlinedVector PiperOrigin-RevId: 254450625 -- 3c677316a27bcadc17e41957c809ca472d5fef14 by Andy Soffer <asoffer@google.com>: Add C++17's std::make_from_tuple to absl/utility/utility.h PiperOrigin-RevId: 254411573 -- 4ee3536a918830eeec402a28fc31a62c7c90b940 by CJ Johnson <johnsoncj@google.com>: Adds benchmark for the rest of the InlinedVector public API PiperOrigin-RevId: 254408378 -- e5a21a00700ee83498ff1efbf649169756463ee4 by CJ Johnson <johnsoncj@google.com>: Updates the definition of InlinedVector::shrink_to_fit() to be exception safe and adds exception safety tests for it. PiperOrigin-RevId: 254401387 -- 2ea82e72b86d82d78b4e4712a63a55981b53c64b by Laramie Leavitt <lar@google.com>: Use absl::InsecureBitGen in place of std::mt19937 in tests absl/random/...distribution_test.cc PiperOrigin-RevId: 254289444 -- fa099e02c413a7ffda732415e8105cad26a90337 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254286334 -- ce34b7f36933b30cfa35b9c9a5697a792b5666e4 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254273059 -- 6f9c473da7c2090c2e85a37c5f00622e8a912a89 by Jorg Brown <jorg@google.com>: Change absl::container_internal::CompressedTuple to instantiate its internal Storage class with the name of the type it's holding, rather than the name of the Tuple. This is not an externally-visible change, other than less compiler memory is used and less debug information is generated. PiperOrigin-RevId: 254269285 -- 8bd3c186bf2fc0c55d8a2dd6f28a5327502c9fba by Andy Soffer <asoffer@google.com>: Adding short-hand IntervalClosed for IntervalClosedClosed and IntervalOpen for IntervalOpenOpen. PiperOrigin-RevId: 254252419 -- ea957f99b6a04fccd42aa05605605f3b44b1ecfd by Abseil Team <absl-team@google.com>: Do not directly use __SIZEOF_INT128__. In order to avoid linker errors when building with clang-cl (__fixunsdfti, __udivti3 and __fixunssfti are undefined), this CL uses ABSL_HAVE_INTRINSIC_INT128 which is not defined for clang-cl. PiperOrigin-RevId: 254250739 -- 89ab385cd26b34d64130bce856253aaba96d2345 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254242321 -- cffc793d93eca6d6bdf7de733847b6ab4a255ae9 by CJ Johnson <johnsoncj@google.com>: Adds benchmark for InlinedVector::reserve(size_type) PiperOrigin-RevId: 254199226 -- c90c7a9fa3c8f0c9d5114036979548b055ea2f2a by Gennadiy Rozental <rogeeff@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 254072387 -- c4c388beae016c9570ab54ffa1d52660e4a85b7b by Laramie Leavitt <lar@google.com>: Internal cleanup. PiperOrigin-RevId: 254062381 -- d3c992e221cc74e5372d0c8fa410170b6a43c062 by Tom Manshreck <shreck@google.com>: Update distributions.h to Abseil standards PiperOrigin-RevId: 254054946 -- d15ad0035c34ef11b14fadc5a4a2d3ec415f5518 by CJ Johnson <johnsoncj@google.com>: Removes functions with only one caller from the implementation details of InlinedVector by manually inlining the definitions PiperOrigin-RevId: 254005427 -- 2f37e807efc3a8ef1f4b539bdd379917d4151520 by Andy Soffer <asoffer@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253999861 -- 24ed1694b6430791d781ed533a8f8ccf6cac5856 by CJ Johnson <johnsoncj@google.com>: Updates the definition of InlinedVector::assign(...)/InlinedVector::operator=(...) to new, exception-safe implementations with exception safety tests to boot PiperOrigin-RevId: 253993691 -- 5613d95f5a7e34a535cfaeadce801441e990843e by CJ Johnson <johnsoncj@google.com>: Adds benchmarks for InlinedVector::shrink_to_fit() PiperOrigin-RevId: 253989647 -- 2a96ddfdac40bbb8cb6a7f1aeab90917067c6e63 by Abseil Team <absl-team@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253927497 -- bf1aff8fc9ffa921ad74643e9525ecf25b0d8dc1 by Andy Soffer <asoffer@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253920512 -- bfc03f4a3dcda3cf3a4b84bdb84cda24e3394f41 by Laramie Leavitt <lar@google.com>: Internal change. PiperOrigin-RevId: 253886486 -- 05036cfcc078ca7c5f581a00dfb0daed568cbb69 by Eric Fiselier <ericwf@google.com>: Don't include `winsock2.h` because it drags in `windows.h` and friends, and they define awful macros like OPAQUE, ERROR, and more. This has the potential to break abseil users. Instead we only forward declare `timeval` and require Windows users include `winsock2.h` themselves. This is both inconsistent and poor QoI, but so including 'windows.h' is bad too. PiperOrigin-RevId: 253852615 GitOrigin-RevId: 7a6ff16a85beb730c172d5d25cf1b5e1be885c56 Change-Id: Icd6aff87da26f29ec8915da856f051129987cef6
		
			
				
	
	
		
			422 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			422 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "absl/random/exponential_distribution.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <random>
 | |
| #include <sstream>
 | |
| #include <string>
 | |
| #include <type_traits>
 | |
| #include <vector>
 | |
| 
 | |
| #include "gmock/gmock.h"
 | |
| #include "gtest/gtest.h"
 | |
| #include "absl/base/internal/raw_logging.h"
 | |
| #include "absl/base/macros.h"
 | |
| #include "absl/random/internal/chi_square.h"
 | |
| #include "absl/random/internal/distribution_test_util.h"
 | |
| #include "absl/random/internal/sequence_urbg.h"
 | |
| #include "absl/random/random.h"
 | |
| #include "absl/strings/str_cat.h"
 | |
| #include "absl/strings/str_format.h"
 | |
| #include "absl/strings/str_replace.h"
 | |
| #include "absl/strings/strip.h"
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| using absl::random_internal::kChiSquared;
 | |
| 
 | |
| template <typename RealType>
 | |
| class ExponentialDistributionTypedTest : public ::testing::Test {};
 | |
| 
 | |
| using RealTypes = ::testing::Types<float, double, long double>;
 | |
| TYPED_TEST_CASE(ExponentialDistributionTypedTest, RealTypes);
 | |
| 
 | |
| TYPED_TEST(ExponentialDistributionTypedTest, SerializeTest) {
 | |
|   using param_type =
 | |
|       typename absl::exponential_distribution<TypeParam>::param_type;
 | |
| 
 | |
|   const TypeParam kParams[] = {
 | |
|       // Cases around 1.
 | |
|       1,                                           //
 | |
|       std::nextafter(TypeParam(1), TypeParam(0)),  // 1 - epsilon
 | |
|       std::nextafter(TypeParam(1), TypeParam(2)),  // 1 + epsilon
 | |
|       // Typical cases.
 | |
|       TypeParam(1e-8), TypeParam(1e-4), TypeParam(1), TypeParam(2),
 | |
|       TypeParam(1e4), TypeParam(1e8), TypeParam(1e20), TypeParam(2.5),
 | |
|       // Boundary cases.
 | |
|       std::numeric_limits<TypeParam>::max(),
 | |
|       std::numeric_limits<TypeParam>::epsilon(),
 | |
|       std::nextafter(std::numeric_limits<TypeParam>::min(),
 | |
|                      TypeParam(1)),           // min + epsilon
 | |
|       std::numeric_limits<TypeParam>::min(),  // smallest normal
 | |
|       // There are some errors dealing with denorms on apple platforms.
 | |
|       std::numeric_limits<TypeParam>::denorm_min(),  // smallest denorm
 | |
|       std::numeric_limits<TypeParam>::min() / 2,     // denorm
 | |
|       std::nextafter(std::numeric_limits<TypeParam>::min(),
 | |
|                      TypeParam(0)),  // denorm_max
 | |
|   };
 | |
| 
 | |
|   constexpr int kCount = 1000;
 | |
|   absl::InsecureBitGen gen;
 | |
| 
 | |
|   for (const TypeParam lambda : kParams) {
 | |
|     // Some values may be invalid; skip those.
 | |
|     if (!std::isfinite(lambda)) continue;
 | |
|     ABSL_ASSERT(lambda > 0);
 | |
| 
 | |
|     const param_type param(lambda);
 | |
| 
 | |
|     absl::exponential_distribution<TypeParam> before(lambda);
 | |
|     EXPECT_EQ(before.lambda(), param.lambda());
 | |
| 
 | |
|     {
 | |
|       absl::exponential_distribution<TypeParam> via_param(param);
 | |
|       EXPECT_EQ(via_param, before);
 | |
|       EXPECT_EQ(via_param.param(), before.param());
 | |
|     }
 | |
| 
 | |
|     // Smoke test.
 | |
|     auto sample_min = before.max();
 | |
|     auto sample_max = before.min();
 | |
|     for (int i = 0; i < kCount; i++) {
 | |
|       auto sample = before(gen);
 | |
|       EXPECT_GE(sample, before.min()) << before;
 | |
|       EXPECT_LE(sample, before.max()) << before;
 | |
|       if (sample > sample_max) sample_max = sample;
 | |
|       if (sample < sample_min) sample_min = sample;
 | |
|     }
 | |
|     if (!std::is_same<TypeParam, long double>::value) {
 | |
|       ABSL_INTERNAL_LOG(INFO,
 | |
|                         absl::StrFormat("Range {%f}: %f, %f, lambda=%f", lambda,
 | |
|                                         sample_min, sample_max, lambda));
 | |
|     }
 | |
| 
 | |
|     std::stringstream ss;
 | |
|     ss << before;
 | |
| 
 | |
|     if (!std::isfinite(lambda)) {
 | |
|       // Streams do not deserialize inf/nan correctly.
 | |
|       continue;
 | |
|     }
 | |
|     // Validate stream serialization.
 | |
|     absl::exponential_distribution<TypeParam> after(34.56f);
 | |
| 
 | |
|     EXPECT_NE(before.lambda(), after.lambda());
 | |
|     EXPECT_NE(before.param(), after.param());
 | |
|     EXPECT_NE(before, after);
 | |
| 
 | |
|     ss >> after;
 | |
| 
 | |
| #if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \
 | |
|     defined(__ppc__) || defined(__PPC__)
 | |
|     if (std::is_same<TypeParam, long double>::value) {
 | |
|       // Roundtripping floating point values requires sufficient precision to
 | |
|       // reconstruct the exact value. It turns out that long double has some
 | |
|       // errors doing this on ppc, particularly for values
 | |
|       // near {1.0 +/- epsilon}.
 | |
|       if (lambda <= std::numeric_limits<double>::max() &&
 | |
|           lambda >= std::numeric_limits<double>::lowest()) {
 | |
|         EXPECT_EQ(static_cast<double>(before.lambda()),
 | |
|                   static_cast<double>(after.lambda()))
 | |
|             << ss.str();
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     EXPECT_EQ(before.lambda(), after.lambda())  //
 | |
|         << ss.str() << " "                      //
 | |
|         << (ss.good() ? "good " : "")           //
 | |
|         << (ss.bad() ? "bad " : "")             //
 | |
|         << (ss.eof() ? "eof " : "")             //
 | |
|         << (ss.fail() ? "fail " : "");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // http://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm
 | |
| 
 | |
| class ExponentialModel {
 | |
|  public:
 | |
|   explicit ExponentialModel(double lambda)
 | |
|       : lambda_(lambda), beta_(1.0 / lambda) {}
 | |
| 
 | |
|   double lambda() const { return lambda_; }
 | |
| 
 | |
|   double mean() const { return beta_; }
 | |
|   double variance() const { return beta_ * beta_; }
 | |
|   double stddev() const { return std::sqrt(variance()); }
 | |
|   double skew() const { return 2; }
 | |
|   double kurtosis() const { return 6.0; }
 | |
| 
 | |
|   double CDF(double x) { return 1.0 - std::exp(-lambda_ * x); }
 | |
| 
 | |
|   // The inverse CDF, or PercentPoint function of the distribution
 | |
|   double InverseCDF(double p) {
 | |
|     ABSL_ASSERT(p >= 0.0);
 | |
|     ABSL_ASSERT(p < 1.0);
 | |
|     return -beta_ * std::log(1.0 - p);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const double lambda_;
 | |
|   const double beta_;
 | |
| };
 | |
| 
 | |
| struct Param {
 | |
|   double lambda;
 | |
|   double p_fail;
 | |
|   int trials;
 | |
| };
 | |
| 
 | |
| class ExponentialDistributionTests : public testing::TestWithParam<Param>,
 | |
|                                      public ExponentialModel {
 | |
|  public:
 | |
|   ExponentialDistributionTests() : ExponentialModel(GetParam().lambda) {}
 | |
| 
 | |
|   // SingleZTest provides a basic z-squared test of the mean vs. expected
 | |
|   // mean for data generated by the poisson distribution.
 | |
|   template <typename D>
 | |
|   bool SingleZTest(const double p, const size_t samples);
 | |
| 
 | |
|   // SingleChiSquaredTest provides a basic chi-squared test of the normal
 | |
|   // distribution.
 | |
|   template <typename D>
 | |
|   double SingleChiSquaredTest();
 | |
| 
 | |
|   absl::InsecureBitGen rng_;
 | |
| };
 | |
| 
 | |
| template <typename D>
 | |
| bool ExponentialDistributionTests::SingleZTest(const double p,
 | |
|                                                const size_t samples) {
 | |
|   D dis(lambda());
 | |
| 
 | |
|   std::vector<double> data;
 | |
|   data.reserve(samples);
 | |
|   for (size_t i = 0; i < samples; i++) {
 | |
|     const double x = dis(rng_);
 | |
|     data.push_back(x);
 | |
|   }
 | |
| 
 | |
|   const auto m = absl::random_internal::ComputeDistributionMoments(data);
 | |
|   const double max_err = absl::random_internal::MaxErrorTolerance(p);
 | |
|   const double z = absl::random_internal::ZScore(mean(), m);
 | |
|   const bool pass = absl::random_internal::Near("z", z, 0.0, max_err);
 | |
| 
 | |
|   if (!pass) {
 | |
|     ABSL_INTERNAL_LOG(
 | |
|         INFO, absl::StrFormat("p=%f max_err=%f\n"
 | |
|                               " lambda=%f\n"
 | |
|                               " mean=%f vs. %f\n"
 | |
|                               " stddev=%f vs. %f\n"
 | |
|                               " skewness=%f vs. %f\n"
 | |
|                               " kurtosis=%f vs. %f\n"
 | |
|                               " z=%f vs. 0",
 | |
|                               p, max_err, lambda(), m.mean, mean(),
 | |
|                               std::sqrt(m.variance), stddev(), m.skewness,
 | |
|                               skew(), m.kurtosis, kurtosis(), z));
 | |
|   }
 | |
|   return pass;
 | |
| }
 | |
| 
 | |
| template <typename D>
 | |
| double ExponentialDistributionTests::SingleChiSquaredTest() {
 | |
|   const size_t kSamples = 10000;
 | |
|   const int kBuckets = 50;
 | |
| 
 | |
|   // The InverseCDF is the percent point function of the distribution, and can
 | |
|   // be used to assign buckets roughly uniformly.
 | |
|   std::vector<double> cutoffs;
 | |
|   const double kInc = 1.0 / static_cast<double>(kBuckets);
 | |
|   for (double p = kInc; p < 1.0; p += kInc) {
 | |
|     cutoffs.push_back(InverseCDF(p));
 | |
|   }
 | |
|   if (cutoffs.back() != std::numeric_limits<double>::infinity()) {
 | |
|     cutoffs.push_back(std::numeric_limits<double>::infinity());
 | |
|   }
 | |
| 
 | |
|   D dis(lambda());
 | |
| 
 | |
|   std::vector<int32_t> counts(cutoffs.size(), 0);
 | |
|   for (int j = 0; j < kSamples; j++) {
 | |
|     const double x = dis(rng_);
 | |
|     auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x);
 | |
|     counts[std::distance(cutoffs.begin(), it)]++;
 | |
|   }
 | |
| 
 | |
|   // Null-hypothesis is that the distribution is exponentially distributed
 | |
|   // with the provided lambda (not estimated from the data).
 | |
|   const int dof = static_cast<int>(counts.size()) - 1;
 | |
| 
 | |
|   // Our threshold for logging is 1-in-50.
 | |
|   const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);
 | |
| 
 | |
|   const double expected =
 | |
|       static_cast<double>(kSamples) / static_cast<double>(counts.size());
 | |
| 
 | |
|   double chi_square = absl::random_internal::ChiSquareWithExpected(
 | |
|       std::begin(counts), std::end(counts), expected);
 | |
|   double p = absl::random_internal::ChiSquarePValue(chi_square, dof);
 | |
| 
 | |
|   if (chi_square > threshold) {
 | |
|     for (int i = 0; i < cutoffs.size(); i++) {
 | |
|       ABSL_INTERNAL_LOG(
 | |
|           INFO, absl::StrFormat("%d : (%f) = %d", i, cutoffs[i], counts[i]));
 | |
|     }
 | |
| 
 | |
|     ABSL_INTERNAL_LOG(INFO,
 | |
|                       absl::StrCat("lambda ", lambda(), "\n",     //
 | |
|                                    " expected ", expected, "\n",  //
 | |
|                                    kChiSquared, " ", chi_square, " (", p, ")\n",
 | |
|                                    kChiSquared, " @ 0.98 = ", threshold));
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| TEST_P(ExponentialDistributionTests, ZTest) {
 | |
|   const size_t kSamples = 10000;
 | |
|   const auto& param = GetParam();
 | |
|   const int expected_failures =
 | |
|       std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail)));
 | |
|   const double p = absl::random_internal::RequiredSuccessProbability(
 | |
|       param.p_fail, param.trials);
 | |
| 
 | |
|   int failures = 0;
 | |
|   for (int i = 0; i < param.trials; i++) {
 | |
|     failures += SingleZTest<absl::exponential_distribution<double>>(p, kSamples)
 | |
|                     ? 0
 | |
|                     : 1;
 | |
|   }
 | |
|   EXPECT_LE(failures, expected_failures);
 | |
| }
 | |
| 
 | |
| TEST_P(ExponentialDistributionTests, ChiSquaredTest) {
 | |
|   const int kTrials = 20;
 | |
|   int failures = 0;
 | |
| 
 | |
|   for (int i = 0; i < kTrials; i++) {
 | |
|     double p_value =
 | |
|         SingleChiSquaredTest<absl::exponential_distribution<double>>();
 | |
|     if (p_value < 0.005) {  // 1/200
 | |
|       failures++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // There is a 0.10% chance of producing at least one failure, so raise the
 | |
|   // failure threshold high enough to allow for a flake rate < 10,000.
 | |
|   EXPECT_LE(failures, 4);
 | |
| }
 | |
| 
 | |
| std::vector<Param> GenParams() {
 | |
|   return {
 | |
|       Param{1.0, 0.02, 100},
 | |
|       Param{2.5, 0.02, 100},
 | |
|       Param{10, 0.02, 100},
 | |
|       // large
 | |
|       Param{1e4, 0.02, 100},
 | |
|       Param{1e9, 0.02, 100},
 | |
|       // small
 | |
|       Param{0.1, 0.02, 100},
 | |
|       Param{1e-3, 0.02, 100},
 | |
|       Param{1e-5, 0.02, 100},
 | |
|   };
 | |
| }
 | |
| 
 | |
| std::string ParamName(const ::testing::TestParamInfo<Param>& info) {
 | |
|   const auto& p = info.param;
 | |
|   std::string name = absl::StrCat("lambda_", absl::SixDigits(p.lambda));
 | |
|   return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(, ExponentialDistributionTests,
 | |
|                         ::testing::ValuesIn(GenParams()), ParamName);
 | |
| 
 | |
| // NOTE: absl::exponential_distribution is not guaranteed to be stable.
 | |
| TEST(ExponentialDistributionTest, StabilityTest) {
 | |
|   // absl::exponential_distribution stability relies on std::log1p and
 | |
|   // absl::uniform_real_distribution.
 | |
|   absl::random_internal::sequence_urbg urbg(
 | |
|       {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
 | |
|        0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
 | |
|        0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
 | |
|        0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
 | |
| 
 | |
|   std::vector<int> output(14);
 | |
| 
 | |
|   {
 | |
|     absl::exponential_distribution<double> dist;
 | |
|     std::generate(std::begin(output), std::end(output),
 | |
|                   [&] { return static_cast<int>(10000.0 * dist(urbg)); });
 | |
| 
 | |
|     EXPECT_EQ(14, urbg.invocations());
 | |
|     EXPECT_THAT(output,
 | |
|                 testing::ElementsAre(0, 71913, 14375, 5039, 1835, 861, 25936,
 | |
|                                      804, 126, 12337, 17984, 27002, 0, 71913));
 | |
|   }
 | |
| 
 | |
|   urbg.reset();
 | |
|   {
 | |
|     absl::exponential_distribution<float> dist;
 | |
|     std::generate(std::begin(output), std::end(output),
 | |
|                   [&] { return static_cast<int>(10000.0f * dist(urbg)); });
 | |
| 
 | |
|     EXPECT_EQ(14, urbg.invocations());
 | |
|     EXPECT_THAT(output,
 | |
|                 testing::ElementsAre(0, 71913, 14375, 5039, 1835, 861, 25936,
 | |
|                                      804, 126, 12337, 17984, 27002, 0, 71913));
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(ExponentialDistributionTest, AlgorithmBounds) {
 | |
|   // Relies on absl::uniform_real_distribution, so some of these comments
 | |
|   // reference that.
 | |
|   absl::exponential_distribution<double> dist;
 | |
| 
 | |
|   {
 | |
|     // This returns the smallest value >0 from absl::uniform_real_distribution.
 | |
|     absl::random_internal::sequence_urbg urbg({0x0000000000000001ull});
 | |
|     double a = dist(urbg);
 | |
|     EXPECT_EQ(a, 5.42101086242752217004e-20);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     // This returns a value very near 0.5 from absl::uniform_real_distribution.
 | |
|     absl::random_internal::sequence_urbg urbg({0x7fffffffffffffefull});
 | |
|     double a = dist(urbg);
 | |
|     EXPECT_EQ(a, 0.693147180559945175204);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     // This returns the largest value <1 from absl::uniform_real_distribution.
 | |
|     // WolframAlpha: ~39.1439465808987766283058547296341915292187253
 | |
|     absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFeFull});
 | |
|     double a = dist(urbg);
 | |
|     EXPECT_EQ(a, 36.7368005696771007251);
 | |
|   }
 | |
|   {
 | |
|     // This *ALSO* returns the largest value <1.
 | |
|     absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFFFull});
 | |
|     double a = dist(urbg);
 | |
|     EXPECT_EQ(a, 36.7368005696771007251);
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace
 |