-- 7a6ff16a85beb730c172d5d25cf1b5e1be885c56 by Laramie Leavitt <lar@google.com>: Internal change. PiperOrigin-RevId: 254454546 -- ff8f9bafaefc26d451f576ea4a06d150aed63f6f by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254451562 -- deefc5b651b479ce36f0b4ef203e119c0c8936f2 by CJ Johnson <johnsoncj@google.com>: Account for subtracting unsigned values from the size of InlinedVector PiperOrigin-RevId: 254450625 -- 3c677316a27bcadc17e41957c809ca472d5fef14 by Andy Soffer <asoffer@google.com>: Add C++17's std::make_from_tuple to absl/utility/utility.h PiperOrigin-RevId: 254411573 -- 4ee3536a918830eeec402a28fc31a62c7c90b940 by CJ Johnson <johnsoncj@google.com>: Adds benchmark for the rest of the InlinedVector public API PiperOrigin-RevId: 254408378 -- e5a21a00700ee83498ff1efbf649169756463ee4 by CJ Johnson <johnsoncj@google.com>: Updates the definition of InlinedVector::shrink_to_fit() to be exception safe and adds exception safety tests for it. PiperOrigin-RevId: 254401387 -- 2ea82e72b86d82d78b4e4712a63a55981b53c64b by Laramie Leavitt <lar@google.com>: Use absl::InsecureBitGen in place of std::mt19937 in tests absl/random/...distribution_test.cc PiperOrigin-RevId: 254289444 -- fa099e02c413a7ffda732415e8105cad26a90337 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254286334 -- ce34b7f36933b30cfa35b9c9a5697a792b5666e4 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254273059 -- 6f9c473da7c2090c2e85a37c5f00622e8a912a89 by Jorg Brown <jorg@google.com>: Change absl::container_internal::CompressedTuple to instantiate its internal Storage class with the name of the type it's holding, rather than the name of the Tuple. This is not an externally-visible change, other than less compiler memory is used and less debug information is generated. PiperOrigin-RevId: 254269285 -- 8bd3c186bf2fc0c55d8a2dd6f28a5327502c9fba by Andy Soffer <asoffer@google.com>: Adding short-hand IntervalClosed for IntervalClosedClosed and IntervalOpen for IntervalOpenOpen. PiperOrigin-RevId: 254252419 -- ea957f99b6a04fccd42aa05605605f3b44b1ecfd by Abseil Team <absl-team@google.com>: Do not directly use __SIZEOF_INT128__. In order to avoid linker errors when building with clang-cl (__fixunsdfti, __udivti3 and __fixunssfti are undefined), this CL uses ABSL_HAVE_INTRINSIC_INT128 which is not defined for clang-cl. PiperOrigin-RevId: 254250739 -- 89ab385cd26b34d64130bce856253aaba96d2345 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254242321 -- cffc793d93eca6d6bdf7de733847b6ab4a255ae9 by CJ Johnson <johnsoncj@google.com>: Adds benchmark for InlinedVector::reserve(size_type) PiperOrigin-RevId: 254199226 -- c90c7a9fa3c8f0c9d5114036979548b055ea2f2a by Gennadiy Rozental <rogeeff@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 254072387 -- c4c388beae016c9570ab54ffa1d52660e4a85b7b by Laramie Leavitt <lar@google.com>: Internal cleanup. PiperOrigin-RevId: 254062381 -- d3c992e221cc74e5372d0c8fa410170b6a43c062 by Tom Manshreck <shreck@google.com>: Update distributions.h to Abseil standards PiperOrigin-RevId: 254054946 -- d15ad0035c34ef11b14fadc5a4a2d3ec415f5518 by CJ Johnson <johnsoncj@google.com>: Removes functions with only one caller from the implementation details of InlinedVector by manually inlining the definitions PiperOrigin-RevId: 254005427 -- 2f37e807efc3a8ef1f4b539bdd379917d4151520 by Andy Soffer <asoffer@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253999861 -- 24ed1694b6430791d781ed533a8f8ccf6cac5856 by CJ Johnson <johnsoncj@google.com>: Updates the definition of InlinedVector::assign(...)/InlinedVector::operator=(...) to new, exception-safe implementations with exception safety tests to boot PiperOrigin-RevId: 253993691 -- 5613d95f5a7e34a535cfaeadce801441e990843e by CJ Johnson <johnsoncj@google.com>: Adds benchmarks for InlinedVector::shrink_to_fit() PiperOrigin-RevId: 253989647 -- 2a96ddfdac40bbb8cb6a7f1aeab90917067c6e63 by Abseil Team <absl-team@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253927497 -- bf1aff8fc9ffa921ad74643e9525ecf25b0d8dc1 by Andy Soffer <asoffer@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253920512 -- bfc03f4a3dcda3cf3a4b84bdb84cda24e3394f41 by Laramie Leavitt <lar@google.com>: Internal change. PiperOrigin-RevId: 253886486 -- 05036cfcc078ca7c5f581a00dfb0daed568cbb69 by Eric Fiselier <ericwf@google.com>: Don't include `winsock2.h` because it drags in `windows.h` and friends, and they define awful macros like OPAQUE, ERROR, and more. This has the potential to break abseil users. Instead we only forward declare `timeval` and require Windows users include `winsock2.h` themselves. This is both inconsistent and poor QoI, but so including 'windows.h' is bad too. PiperOrigin-RevId: 253852615 GitOrigin-RevId: 7a6ff16a85beb730c172d5d25cf1b5e1be885c56 Change-Id: Icd6aff87da26f29ec8915da856f051129987cef6
		
			
				
	
	
		
			260 lines
		
	
	
	
		
			8.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			260 lines
		
	
	
	
		
			8.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #ifndef ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_
 | |
| #define ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_
 | |
| 
 | |
| // absl::gaussian_distribution implements the Ziggurat algorithm
 | |
| // for generating random gaussian numbers.
 | |
| //
 | |
| // Implementation based on "The Ziggurat Method for Generating Random Variables"
 | |
| // by George Marsaglia and Wai Wan Tsang: http://www.jstatsoft.org/v05/i08/
 | |
| //
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstdint>
 | |
| #include <istream>
 | |
| #include <limits>
 | |
| #include <type_traits>
 | |
| 
 | |
| #include "absl/random/internal/distribution_impl.h"
 | |
| #include "absl/random/internal/fast_uniform_bits.h"
 | |
| #include "absl/random/internal/iostream_state_saver.h"
 | |
| 
 | |
| namespace absl {
 | |
| namespace random_internal {
 | |
| 
 | |
| // absl::gaussian_distribution_base implements the underlying ziggurat algorithm
 | |
| // using the ziggurat tables generated by the gaussian_distribution_gentables
 | |
| // binary.
 | |
| //
 | |
| // The specific algorithm has some of the improvements suggested by the
 | |
| // 2005 paper, "An Improved Ziggurat Method to Generate Normal Random Samples",
 | |
| // Jurgen A Doornik.  (https://www.doornik.com/research/ziggurat.pdf)
 | |
| class gaussian_distribution_base {
 | |
|  public:
 | |
|   template <typename URBG>
 | |
|   inline double zignor(URBG& g);  // NOLINT(runtime/references)
 | |
| 
 | |
|  private:
 | |
|   friend class TableGenerator;
 | |
| 
 | |
|   template <typename URBG>
 | |
|   inline double zignor_fallback(URBG& g,  // NOLINT(runtime/references)
 | |
|                                 bool neg);
 | |
| 
 | |
|   // Constants used for the gaussian distribution.
 | |
|   static constexpr double kR = 3.442619855899;  // Start of the tail.
 | |
|   static constexpr double kRInv = 0.29047645161474317;  // ~= (1.0 / kR) .
 | |
|   static constexpr double kV = 9.91256303526217e-3;
 | |
|   static constexpr uint64_t kMask = 0x07f;
 | |
| 
 | |
|   // The ziggurat tables store the pdf(f) and inverse-pdf(x) for equal-area
 | |
|   // points on one-half of the normal distribution, where the pdf function,
 | |
|   // pdf = e ^ (-1/2 *x^2), assumes that the mean = 0 & stddev = 1.
 | |
|   //
 | |
|   // These tables are just over 2kb in size; larger tables might improve the
 | |
|   // distributions, but also lead to more cache pollution.
 | |
|   //
 | |
|   // x = {3.71308, 3.44261, 3.22308, ..., 0}
 | |
|   // f = {0.00101, 0.00266, 0.00554, ..., 1}
 | |
|   struct Tables {
 | |
|     double x[kMask + 2];
 | |
|     double f[kMask + 2];
 | |
|   };
 | |
|   static const Tables zg_;
 | |
|   random_internal::FastUniformBits<uint64_t> fast_u64_;
 | |
| };
 | |
| 
 | |
| }  // namespace random_internal
 | |
| 
 | |
| // absl::gaussian_distribution:
 | |
| // Generates a number conforming to a Gaussian distribution.
 | |
| template <typename RealType = double>
 | |
| class gaussian_distribution : random_internal::gaussian_distribution_base {
 | |
|  public:
 | |
|   using result_type = RealType;
 | |
| 
 | |
|   class param_type {
 | |
|    public:
 | |
|     using distribution_type = gaussian_distribution;
 | |
| 
 | |
|     explicit param_type(result_type mean = 0, result_type stddev = 1)
 | |
|         : mean_(mean), stddev_(stddev) {}
 | |
| 
 | |
|     // Returns the mean distribution parameter.  The mean specifies the location
 | |
|     // of the peak.  The default value is 0.0.
 | |
|     result_type mean() const { return mean_; }
 | |
| 
 | |
|     // Returns the deviation distribution parameter.  The default value is 1.0.
 | |
|     result_type stddev() const { return stddev_; }
 | |
| 
 | |
|     friend bool operator==(const param_type& a, const param_type& b) {
 | |
|       return a.mean_ == b.mean_ && a.stddev_ == b.stddev_;
 | |
|     }
 | |
| 
 | |
|     friend bool operator!=(const param_type& a, const param_type& b) {
 | |
|       return !(a == b);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     result_type mean_;
 | |
|     result_type stddev_;
 | |
| 
 | |
|     static_assert(
 | |
|         std::is_floating_point<RealType>::value,
 | |
|         "Class-template absl::gaussian_distribution<> must be parameterized "
 | |
|         "using a floating-point type.");
 | |
|   };
 | |
| 
 | |
|   gaussian_distribution() : gaussian_distribution(0) {}
 | |
| 
 | |
|   explicit gaussian_distribution(result_type mean, result_type stddev = 1)
 | |
|       : param_(mean, stddev) {}
 | |
| 
 | |
|   explicit gaussian_distribution(const param_type& p) : param_(p) {}
 | |
| 
 | |
|   void reset() {}
 | |
| 
 | |
|   // Generating functions
 | |
|   template <typename URBG>
 | |
|   result_type operator()(URBG& g) {  // NOLINT(runtime/references)
 | |
|     return (*this)(g, param_);
 | |
|   }
 | |
| 
 | |
|   template <typename URBG>
 | |
|   result_type operator()(URBG& g,  // NOLINT(runtime/references)
 | |
|                          const param_type& p);
 | |
| 
 | |
|   param_type param() const { return param_; }
 | |
|   void param(const param_type& p) { param_ = p; }
 | |
| 
 | |
|   result_type(min)() const {
 | |
|     return -std::numeric_limits<result_type>::infinity();
 | |
|   }
 | |
|   result_type(max)() const {
 | |
|     return std::numeric_limits<result_type>::infinity();
 | |
|   }
 | |
| 
 | |
|   result_type mean() const { return param_.mean(); }
 | |
|   result_type stddev() const { return param_.stddev(); }
 | |
| 
 | |
|   friend bool operator==(const gaussian_distribution& a,
 | |
|                          const gaussian_distribution& b) {
 | |
|     return a.param_ == b.param_;
 | |
|   }
 | |
|   friend bool operator!=(const gaussian_distribution& a,
 | |
|                          const gaussian_distribution& b) {
 | |
|     return a.param_ != b.param_;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   param_type param_;
 | |
| };
 | |
| 
 | |
| // --------------------------------------------------------------------------
 | |
| // Implementation details only below
 | |
| // --------------------------------------------------------------------------
 | |
| 
 | |
| template <typename RealType>
 | |
| template <typename URBG>
 | |
| typename gaussian_distribution<RealType>::result_type
 | |
| gaussian_distribution<RealType>::operator()(
 | |
|     URBG& g,  // NOLINT(runtime/references)
 | |
|     const param_type& p) {
 | |
|   return p.mean() + p.stddev() * static_cast<result_type>(zignor(g));
 | |
| }
 | |
| 
 | |
| template <typename CharT, typename Traits, typename RealType>
 | |
| std::basic_ostream<CharT, Traits>& operator<<(
 | |
|     std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
 | |
|     const gaussian_distribution<RealType>& x) {
 | |
|   auto saver = random_internal::make_ostream_state_saver(os);
 | |
|   os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);
 | |
|   os << x.mean() << os.fill() << x.stddev();
 | |
|   return os;
 | |
| }
 | |
| 
 | |
| template <typename CharT, typename Traits, typename RealType>
 | |
| std::basic_istream<CharT, Traits>& operator>>(
 | |
|     std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)
 | |
|     gaussian_distribution<RealType>& x) {   // NOLINT(runtime/references)
 | |
|   using result_type = typename gaussian_distribution<RealType>::result_type;
 | |
|   using param_type = typename gaussian_distribution<RealType>::param_type;
 | |
| 
 | |
|   auto saver = random_internal::make_istream_state_saver(is);
 | |
|   auto mean = random_internal::read_floating_point<result_type>(is);
 | |
|   if (is.fail()) return is;
 | |
|   auto stddev = random_internal::read_floating_point<result_type>(is);
 | |
|   if (!is.fail()) {
 | |
|     x.param(param_type(mean, stddev));
 | |
|   }
 | |
|   return is;
 | |
| }
 | |
| 
 | |
| namespace random_internal {
 | |
| 
 | |
| template <typename URBG>
 | |
| inline double gaussian_distribution_base::zignor_fallback(URBG& g, bool neg) {
 | |
|   // This fallback path happens approximately 0.05% of the time.
 | |
|   double x, y;
 | |
|   do {
 | |
|     // kRInv = 1/r, U(0, 1)
 | |
|     x = kRInv * std::log(RandU64ToDouble<PositiveValueT, false>(fast_u64_(g)));
 | |
|     y = -std::log(RandU64ToDouble<PositiveValueT, false>(fast_u64_(g)));
 | |
|   } while ((y + y) < (x * x));
 | |
|   return neg ? (x - kR) : (kR - x);
 | |
| }
 | |
| 
 | |
| template <typename URBG>
 | |
| inline double gaussian_distribution_base::zignor(
 | |
|     URBG& g) {  // NOLINT(runtime/references)
 | |
|   while (true) {
 | |
|     // We use a single uint64_t to generate both a double and a strip.
 | |
|     // These bits are unused when the generated double is > 1/2^5.
 | |
|     // This may introduce some bias from the duplicated low bits of small
 | |
|     // values (those smaller than 1/2^5, which all end up on the left tail).
 | |
|     uint64_t bits = fast_u64_(g);
 | |
|     int i = static_cast<int>(bits & kMask);  // pick a random strip
 | |
|     double j = RandU64ToDouble<SignedValueT, false>(bits);  // U(-1, 1)
 | |
|     const double x = j * zg_.x[i];
 | |
| 
 | |
|     // Retangular box. Handles >97% of all cases.
 | |
|     // For any given box, this handles between 75% and 99% of values.
 | |
|     // Equivalent to U(01) < (x[i+1] / x[i]), and when i == 0, ~93.5%
 | |
|     if (std::abs(x) < zg_.x[i + 1]) {
 | |
|       return x;
 | |
|     }
 | |
| 
 | |
|     // i == 0: Base box. Sample using a ratio of uniforms.
 | |
|     if (i == 0) {
 | |
|       // This path happens about 0.05% of the time.
 | |
|       return zignor_fallback(g, j < 0);
 | |
|     }
 | |
| 
 | |
|     // i > 0: Wedge samples using precomputed values.
 | |
|     double v = RandU64ToDouble<PositiveValueT, false>(fast_u64_(g));  // U(0, 1)
 | |
|     if ((zg_.f[i + 1] + v * (zg_.f[i] - zg_.f[i + 1])) <
 | |
|         std::exp(-0.5 * x * x)) {
 | |
|       return x;
 | |
|     }
 | |
| 
 | |
|     // The wedge was missed; reject the value and try again.
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace random_internal
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_
 |