git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			232 lines
		
	
	
	
		
			7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			232 lines
		
	
	
	
		
			7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "absl/random/internal/chi_square.h"
 | |
| 
 | |
| #include <cmath>
 | |
| 
 | |
| #include "absl/random/internal/distribution_test_util.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| namespace random_internal {
 | |
| namespace {
 | |
| 
 | |
| #if defined(__EMSCRIPTEN__)
 | |
| // Workaround __EMSCRIPTEN__ error: llvm_fma_f64 not found.
 | |
| inline double fma(double x, double y, double z) {
 | |
|   return (x * y) + z;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // Use Horner's method to evaluate a polynomial.
 | |
| template <typename T, unsigned N>
 | |
| inline T EvaluatePolynomial(T x, const T (&poly)[N]) {
 | |
| #if !defined(__EMSCRIPTEN__)
 | |
|   using std::fma;
 | |
| #endif
 | |
|   T p = poly[N - 1];
 | |
|   for (unsigned i = 2; i <= N; i++) {
 | |
|     p = fma(p, x, poly[N - i]);
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| static constexpr int kLargeDOF = 150;
 | |
| 
 | |
| // Returns the probability of a normal z-value.
 | |
| //
 | |
| // Adapted from the POZ function in:
 | |
| //     Ibbetson D, Algorithm 209
 | |
| //     Collected Algorithms of the CACM 1963 p. 616
 | |
| //
 | |
| double POZ(double z) {
 | |
|   static constexpr double kP1[] = {
 | |
|       0.797884560593,  -0.531923007300, 0.319152932694,
 | |
|       -0.151968751364, 0.059054035642,  -0.019198292004,
 | |
|       0.005198775019,  -0.001075204047, 0.000124818987,
 | |
|   };
 | |
|   static constexpr double kP2[] = {
 | |
|       0.999936657524,  0.000535310849,  -0.002141268741, 0.005353579108,
 | |
|       -0.009279453341, 0.011630447319,  -0.010557625006, 0.006549791214,
 | |
|       -0.002034254874, -0.000794620820, 0.001390604284,  -0.000676904986,
 | |
|       -0.000019538132, 0.000152529290,  -0.000045255659,
 | |
|   };
 | |
| 
 | |
|   const double kZMax = 6.0;  // Maximum meaningful z-value.
 | |
|   if (z == 0.0) {
 | |
|     return 0.5;
 | |
|   }
 | |
|   double x;
 | |
|   double y = 0.5 * std::fabs(z);
 | |
|   if (y >= (kZMax * 0.5)) {
 | |
|     x = 1.0;
 | |
|   } else if (y < 1.0) {
 | |
|     double w = y * y;
 | |
|     x = EvaluatePolynomial(w, kP1) * y * 2.0;
 | |
|   } else {
 | |
|     y -= 2.0;
 | |
|     x = EvaluatePolynomial(y, kP2);
 | |
|   }
 | |
|   return z > 0.0 ? ((x + 1.0) * 0.5) : ((1.0 - x) * 0.5);
 | |
| }
 | |
| 
 | |
| // Approximates the survival function of the normal distribution.
 | |
| //
 | |
| // Algorithm 26.2.18, from:
 | |
| // [Abramowitz and Stegun, Handbook of Mathematical Functions,p.932]
 | |
| // http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf
 | |
| //
 | |
| double normal_survival(double z) {
 | |
|   // Maybe replace with the alternate formulation.
 | |
|   // 0.5 * erfc((x - mean)/(sqrt(2) * sigma))
 | |
|   static constexpr double kR[] = {
 | |
|       1.0, 0.196854, 0.115194, 0.000344, 0.019527,
 | |
|   };
 | |
|   double r = EvaluatePolynomial(z, kR);
 | |
|   r *= r;
 | |
|   return 0.5 / (r * r);
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| // Calculates the critical chi-square value given degrees-of-freedom and a
 | |
| // p-value, usually using bisection. Also known by the name CRITCHI.
 | |
| double ChiSquareValue(int dof, double p) {
 | |
|   static constexpr double kChiEpsilon =
 | |
|       0.000001;  // Accuracy of the approximation.
 | |
|   static constexpr double kChiMax =
 | |
|       99999.0;  // Maximum chi-squared value.
 | |
| 
 | |
|   const double p_value = 1.0 - p;
 | |
|   if (dof < 1 || p_value > 1.0) {
 | |
|     return 0.0;
 | |
|   }
 | |
| 
 | |
|   if (dof > kLargeDOF) {
 | |
|     // For large degrees of freedom, use the normal approximation by
 | |
|     //     Wilson, E. B. and Hilferty, M. M. (1931)
 | |
|     //                     chi^2 - mean
 | |
|     //                Z = --------------
 | |
|     //                        stddev
 | |
|     const double z = InverseNormalSurvival(p_value);
 | |
|     const double mean = 1 - 2.0 / (9 * dof);
 | |
|     const double variance = 2.0 / (9 * dof);
 | |
|     // Cannot use this method if the variance is 0.
 | |
|     if (variance != 0) {
 | |
|       return std::pow(z * std::sqrt(variance) + mean, 3.0) * dof;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (p_value <= 0.0) return kChiMax;
 | |
| 
 | |
|   // Otherwise search for the p value by bisection
 | |
|   double min_chisq = 0.0;
 | |
|   double max_chisq = kChiMax;
 | |
|   double current = dof / std::sqrt(p_value);
 | |
|   while ((max_chisq - min_chisq) > kChiEpsilon) {
 | |
|     if (ChiSquarePValue(current, dof) < p_value) {
 | |
|       max_chisq = current;
 | |
|     } else {
 | |
|       min_chisq = current;
 | |
|     }
 | |
|     current = (max_chisq + min_chisq) * 0.5;
 | |
|   }
 | |
|   return current;
 | |
| }
 | |
| 
 | |
| // Calculates the p-value (probability) of a given chi-square value
 | |
| // and degrees of freedom.
 | |
| //
 | |
| // Adapted from the POCHISQ function from:
 | |
| //     Hill, I. D. and Pike, M. C.  Algorithm 299
 | |
| //     Collected Algorithms of the CACM 1963 p. 243
 | |
| //
 | |
| double ChiSquarePValue(double chi_square, int dof) {
 | |
|   static constexpr double kLogSqrtPi =
 | |
|       0.5723649429247000870717135;  // Log[Sqrt[Pi]]
 | |
|   static constexpr double kInverseSqrtPi =
 | |
|       0.5641895835477562869480795;  // 1/(Sqrt[Pi])
 | |
| 
 | |
|   // For large degrees of freedom, use the normal approximation by
 | |
|   //     Wilson, E. B. and Hilferty, M. M. (1931)
 | |
|   // Via Wikipedia:
 | |
|   //   By the Central Limit Theorem, because the chi-square distribution is the
 | |
|   //   sum of k independent random variables with finite mean and variance, it
 | |
|   //   converges to a normal distribution for large k.
 | |
|   if (dof > kLargeDOF) {
 | |
|     // Re-scale everything.
 | |
|     const double chi_square_scaled = std::pow(chi_square / dof, 1.0 / 3);
 | |
|     const double mean = 1 - 2.0 / (9 * dof);
 | |
|     const double variance = 2.0 / (9 * dof);
 | |
|     // If variance is 0, this method cannot be used.
 | |
|     if (variance != 0) {
 | |
|       const double z = (chi_square_scaled - mean) / std::sqrt(variance);
 | |
|       if (z > 0) {
 | |
|         return normal_survival(z);
 | |
|       } else if (z < 0) {
 | |
|         return 1.0 - normal_survival(-z);
 | |
|       } else {
 | |
|         return 0.5;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The chi square function is >= 0 for any degrees of freedom.
 | |
|   // In other words, probability that the chi square function >= 0 is 1.
 | |
|   if (chi_square <= 0.0) return 1.0;
 | |
| 
 | |
|   // If the degrees of freedom is zero, the chi square function is always 0 by
 | |
|   // definition. In other words, the probability that the chi square function
 | |
|   // is > 0 is zero (chi square values <= 0 have been filtered above).
 | |
|   if (dof < 1) return 0;
 | |
| 
 | |
|   auto capped_exp = [](double x) { return x < -20 ? 0.0 : std::exp(x); };
 | |
|   static constexpr double kBigX = 20;
 | |
| 
 | |
|   double a = 0.5 * chi_square;
 | |
|   const bool even = !(dof & 1);  // True if dof is an even number.
 | |
|   const double y = capped_exp(-a);
 | |
|   double s = even ? y : (2.0 * POZ(-std::sqrt(chi_square)));
 | |
| 
 | |
|   if (dof <= 2) {
 | |
|     return s;
 | |
|   }
 | |
| 
 | |
|   chi_square = 0.5 * (dof - 1.0);
 | |
|   double z = (even ? 1.0 : 0.5);
 | |
|   if (a > kBigX) {
 | |
|     double e = (even ? 0.0 : kLogSqrtPi);
 | |
|     double c = std::log(a);
 | |
|     while (z <= chi_square) {
 | |
|       e = std::log(z) + e;
 | |
|       s += capped_exp(c * z - a - e);
 | |
|       z += 1.0;
 | |
|     }
 | |
|     return s;
 | |
|   }
 | |
| 
 | |
|   double e = (even ? 1.0 : (kInverseSqrtPi / std::sqrt(a)));
 | |
|   double c = 0.0;
 | |
|   while (z <= chi_square) {
 | |
|     e = e * (a / z);
 | |
|     c = c + e;
 | |
|     z += 1.0;
 | |
|   }
 | |
|   return c * y + s;
 | |
| }
 | |
| 
 | |
| }  // namespace random_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 |