Instead of requiring the server component to be made aware of the location of the Nix builder via environment variables, this commit introduces a wrapper script for the builder that can simply exist on the builders $PATH. This is one step towards a slightly nicer out-of-the-box experience when using `nix-build -A nixery-bin`.
		
			
				
	
	
		
			352 lines
		
	
	
	
		
			9.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			352 lines
		
	
	
	
		
			9.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // This program reads an export reference graph (i.e. a graph representing the
 | |
| // runtime dependencies of a set of derivations) created by Nix and groups them
 | |
| // in a way that is likely to match the grouping for other derivation sets with
 | |
| // overlapping dependencies.
 | |
| //
 | |
| // This is used to determine which derivations to include in which layers of a
 | |
| // container image.
 | |
| //
 | |
| // # Inputs
 | |
| //
 | |
| // * a graph of Nix runtime dependencies, generated via exportReferenceGraph
 | |
| // * a file containing absolute popularity values of packages in the
 | |
| //   Nix package set (in the form of a direct reference count)
 | |
| // * a maximum number of layers to allocate for the image (the "layer budget")
 | |
| //
 | |
| // # Algorithm
 | |
| //
 | |
| // It works by first creating a (directed) dependency tree:
 | |
| //
 | |
| // img (root node)
 | |
| // │
 | |
| // ├───> A ─────┐
 | |
| // │            v
 | |
| // ├───> B ───> E
 | |
| // │            ^
 | |
| // ├───> C ─────┘
 | |
| // │     │
 | |
| // │     v
 | |
| // └───> D ───> F
 | |
| //       │
 | |
| //       └────> G
 | |
| //
 | |
| // Each node (i.e. package) is then visited to determine how important
 | |
| // it is to separate this node into its own layer, specifically:
 | |
| //
 | |
| // 1. Is the node within a certain threshold percentile of absolute
 | |
| //    popularity within all of nixpkgs? (e.g. `glibc`, `openssl`)
 | |
| //
 | |
| // 2. Is the node's runtime closure above a threshold size? (e.g. 100MB)
 | |
| //
 | |
| // In either case, a bit is flipped for this node representing each
 | |
| // condition and an edge to it is inserted directly from the image
 | |
| // root, if it does not already exist.
 | |
| //
 | |
| // For the rest of the example we assume 'G' is above the threshold
 | |
| // size and 'E' is popular.
 | |
| //
 | |
| // This tree is then transformed into a dominator tree:
 | |
| //
 | |
| // img
 | |
| // │
 | |
| // ├───> A
 | |
| // ├───> B
 | |
| // ├───> C
 | |
| // ├───> E
 | |
| // ├───> D ───> F
 | |
| // └───> G
 | |
| //
 | |
| // Specifically this means that the paths to A, B, C, E, G, and D
 | |
| // always pass through the root (i.e. are dominated by it), whilst F
 | |
| // is dominated by D (all paths go through it).
 | |
| //
 | |
| // The top-level subtrees are considered as the initially selected
 | |
| // layers.
 | |
| //
 | |
| // If the list of layers fits within the layer budget, it is returned.
 | |
| //
 | |
| // Otherwise, a merge rating is calculated for each layer. This is the
 | |
| // product of the layer's total size and its root node's popularity.
 | |
| //
 | |
| // Layers are then merged in ascending order of merge ratings until
 | |
| // they fit into the layer budget.
 | |
| //
 | |
| // # Threshold values
 | |
| //
 | |
| // Threshold values for the partitioning conditions mentioned above
 | |
| // have not yet been determined, but we will make a good first guess
 | |
| // based on gut feeling and proceed to measure their impact on cache
 | |
| // hits/misses.
 | |
| //
 | |
| // # Example
 | |
| //
 | |
| // Using the logic described above as well as the example presented in
 | |
| // the introduction, this program would create the following layer
 | |
| // groupings (assuming no additional partitioning):
 | |
| //
 | |
| // Layer budget: 1
 | |
| // Layers: { A, B, C, D, E, F, G }
 | |
| //
 | |
| // Layer budget: 2
 | |
| // Layers: { G }, { A, B, C, D, E, F }
 | |
| //
 | |
| // Layer budget: 3
 | |
| // Layers: { G }, { E }, { A, B, C, D, F }
 | |
| //
 | |
| // Layer budget: 4
 | |
| // Layers: { G }, { E }, { D, F }, { A, B, C }
 | |
| //
 | |
| // ...
 | |
| //
 | |
| // Layer budget: 10
 | |
| // Layers: { E }, { D, F }, { A }, { B }, { C }
 | |
| package main
 | |
| 
 | |
| import (
 | |
| 	"encoding/json"
 | |
| 	"flag"
 | |
| 	"io/ioutil"
 | |
| 	"log"
 | |
| 	"regexp"
 | |
| 	"sort"
 | |
| 
 | |
| 	"gonum.org/v1/gonum/graph/flow"
 | |
| 	"gonum.org/v1/gonum/graph/simple"
 | |
| )
 | |
| 
 | |
| // closureGraph represents the structured attributes Nix outputs when asking it
 | |
| // for the exportReferencesGraph of a list of derivations.
 | |
| type exportReferences struct {
 | |
| 	References struct {
 | |
| 		Graph []string `json:"graph"`
 | |
| 	} `json:"exportReferencesGraph"`
 | |
| 
 | |
| 	Graph []struct {
 | |
| 		Size uint64   `json:"closureSize"`
 | |
| 		Path string   `json:"path"`
 | |
| 		Refs []string `json:"references"`
 | |
| 	} `json:"graph"`
 | |
| }
 | |
| 
 | |
| // Popularity data for each Nix package that was calculated in advance.
 | |
| //
 | |
| // Popularity is a number from 1-100 that represents the
 | |
| // popularity percentile in which this package resides inside
 | |
| // of the nixpkgs tree.
 | |
| type pkgsMetadata = map[string]int
 | |
| 
 | |
| // layer represents the data returned for each layer that Nix should
 | |
| // build for the container image.
 | |
| type layer struct {
 | |
| 	Contents    []string `json:"contents"`
 | |
| 	mergeRating uint64
 | |
| }
 | |
| 
 | |
| func (a layer) merge(b layer) layer {
 | |
| 	a.Contents = append(a.Contents, b.Contents...)
 | |
| 	a.mergeRating += b.mergeRating
 | |
| 	return a
 | |
| }
 | |
| 
 | |
| // closure as pointed to by the graph nodes.
 | |
| type closure struct {
 | |
| 	GraphID    int64
 | |
| 	Path       string
 | |
| 	Size       uint64
 | |
| 	Refs       []string
 | |
| 	Popularity int
 | |
| }
 | |
| 
 | |
| func (c *closure) ID() int64 {
 | |
| 	return c.GraphID
 | |
| }
 | |
| 
 | |
| var nixRegexp = regexp.MustCompile(`^/nix/store/[a-z0-9]+-`)
 | |
| 
 | |
| func (c *closure) DOTID() string {
 | |
| 	return nixRegexp.ReplaceAllString(c.Path, "")
 | |
| }
 | |
| 
 | |
| // bigOrPopular checks whether this closure should be considered for
 | |
| // separation into its own layer, even if it would otherwise only
 | |
| // appear in a subtree of the dominator tree.
 | |
| func (c *closure) bigOrPopular() bool {
 | |
| 	const sizeThreshold = 100 * 1000000 // 100MB
 | |
| 
 | |
| 	if c.Size > sizeThreshold {
 | |
| 		return true
 | |
| 	}
 | |
| 
 | |
| 	// The threshold value used here is currently roughly the
 | |
| 	// minimum number of references that only 1% of packages in
 | |
| 	// the entire package set have.
 | |
| 	//
 | |
| 	// TODO(tazjin): Do this more elegantly by calculating
 | |
| 	// percentiles for each package and using those instead.
 | |
| 	if c.Popularity >= 1000 {
 | |
| 		return true
 | |
| 	}
 | |
| 
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| func insertEdges(graph *simple.DirectedGraph, cmap *map[string]*closure, node *closure) {
 | |
| 	// Big or popular nodes get a separate edge from the top to
 | |
| 	// flag them for their own layer.
 | |
| 	if node.bigOrPopular() && !graph.HasEdgeFromTo(0, node.ID()) {
 | |
| 		edge := graph.NewEdge(graph.Node(0), node)
 | |
| 		graph.SetEdge(edge)
 | |
| 	}
 | |
| 
 | |
| 	for _, c := range node.Refs {
 | |
| 		// Nix adds a self reference to each node, which
 | |
| 		// should not be inserted.
 | |
| 		if c != node.Path {
 | |
| 			edge := graph.NewEdge(node, (*cmap)[c])
 | |
| 			graph.SetEdge(edge)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Create a graph structure from the references supplied by Nix.
 | |
| func buildGraph(refs *exportReferences, pop *pkgsMetadata) *simple.DirectedGraph {
 | |
| 	cmap := make(map[string]*closure)
 | |
| 	graph := simple.NewDirectedGraph()
 | |
| 
 | |
| 	// Insert all closures into the graph, as well as a fake root
 | |
| 	// closure which serves as the top of the tree.
 | |
| 	//
 | |
| 	// A map from store paths to IDs is kept to actually insert
 | |
| 	// edges below.
 | |
| 	root := &closure{
 | |
| 		GraphID: 0,
 | |
| 		Path:    "image_root",
 | |
| 	}
 | |
| 	graph.AddNode(root)
 | |
| 
 | |
| 	for idx, c := range refs.Graph {
 | |
| 		node := &closure{
 | |
| 			GraphID: int64(idx + 1), // inc because of root node
 | |
| 			Path:    c.Path,
 | |
| 			Size:    c.Size,
 | |
| 			Refs:    c.Refs,
 | |
| 		}
 | |
| 
 | |
| 		if p, ok := (*pop)[node.DOTID()]; ok {
 | |
| 			node.Popularity = p
 | |
| 		} else {
 | |
| 			node.Popularity = 1
 | |
| 		}
 | |
| 
 | |
| 		graph.AddNode(node)
 | |
| 		cmap[c.Path] = node
 | |
| 	}
 | |
| 
 | |
| 	// Insert the top-level closures with edges from the root
 | |
| 	// node, then insert all edges for each closure.
 | |
| 	for _, p := range refs.References.Graph {
 | |
| 		edge := graph.NewEdge(root, cmap[p])
 | |
| 		graph.SetEdge(edge)
 | |
| 	}
 | |
| 
 | |
| 	for _, c := range cmap {
 | |
| 		insertEdges(graph, &cmap, c)
 | |
| 	}
 | |
| 
 | |
| 	return graph
 | |
| }
 | |
| 
 | |
| // Extracts a subgraph starting at the specified root from the
 | |
| // dominator tree. The subgraph is converted into a flat list of
 | |
| // layers, each containing the store paths and merge rating.
 | |
| func groupLayer(dt *flow.DominatorTree, root *closure) layer {
 | |
| 	size := root.Size
 | |
| 	contents := []string{root.Path}
 | |
| 	children := dt.DominatedBy(root.ID())
 | |
| 
 | |
| 	// This iteration does not use 'range' because the list being
 | |
| 	// iterated is modified during the iteration (yes, I'm sorry).
 | |
| 	for i := 0; i < len(children); i++ {
 | |
| 		child := children[i].(*closure)
 | |
| 		size += child.Size
 | |
| 		contents = append(contents, child.Path)
 | |
| 		children = append(children, dt.DominatedBy(child.ID())...)
 | |
| 	}
 | |
| 
 | |
| 	return layer{
 | |
| 		Contents: contents,
 | |
| 		// TODO(tazjin): The point of this is to factor in
 | |
| 		// both the size and the popularity when making merge
 | |
| 		// decisions, but there might be a smarter way to do
 | |
| 		// it than a plain multiplication.
 | |
| 		mergeRating: uint64(root.Popularity) * size,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Calculate the dominator tree of the entire package set and group
 | |
| // each top-level subtree into a layer.
 | |
| //
 | |
| // Layers are merged together until they fit into the layer budget,
 | |
| // based on their merge rating.
 | |
| func dominate(budget int, graph *simple.DirectedGraph) []layer {
 | |
| 	dt := flow.Dominators(graph.Node(0), graph)
 | |
| 
 | |
| 	var layers []layer
 | |
| 	for _, n := range dt.DominatedBy(dt.Root().ID()) {
 | |
| 		layers = append(layers, groupLayer(&dt, n.(*closure)))
 | |
| 	}
 | |
| 
 | |
| 	sort.Slice(layers, func(i, j int) bool {
 | |
| 		return layers[i].mergeRating < layers[j].mergeRating
 | |
| 	})
 | |
| 
 | |
| 	if len(layers) > budget {
 | |
| 		log.Printf("Ideal image has %v layers, but budget is %v\n", len(layers), budget)
 | |
| 	}
 | |
| 
 | |
| 	for len(layers) > budget {
 | |
| 		merged := layers[0].merge(layers[1])
 | |
| 		layers[1] = merged
 | |
| 		layers = layers[1:]
 | |
| 	}
 | |
| 
 | |
| 	return layers
 | |
| }
 | |
| 
 | |
| func main() {
 | |
| 	graphFile := flag.String("graph", ".attrs.json", "Input file containing graph")
 | |
| 	popFile := flag.String("pop", "popularity.json", "Package popularity data")
 | |
| 	outFile := flag.String("out", "layers.json", "File to write layers to")
 | |
| 	layerBudget := flag.Int("budget", 94, "Total layer budget available")
 | |
| 	flag.Parse()
 | |
| 
 | |
| 	// Parse graph data
 | |
| 	file, err := ioutil.ReadFile(*graphFile)
 | |
| 	if err != nil {
 | |
| 		log.Fatalf("Failed to load input: %s\n", err)
 | |
| 	}
 | |
| 
 | |
| 	var refs exportReferences
 | |
| 	err = json.Unmarshal(file, &refs)
 | |
| 	if err != nil {
 | |
| 		log.Fatalf("Failed to deserialise input: %s\n", err)
 | |
| 	}
 | |
| 
 | |
| 	// Parse popularity data
 | |
| 	popBytes, err := ioutil.ReadFile(*popFile)
 | |
| 	if err != nil {
 | |
| 		log.Fatalf("Failed to load input: %s\n", err)
 | |
| 	}
 | |
| 
 | |
| 	var pop pkgsMetadata
 | |
| 	err = json.Unmarshal(popBytes, &pop)
 | |
| 	if err != nil {
 | |
| 		log.Fatalf("Failed to deserialise input: %s\n", err)
 | |
| 	}
 | |
| 
 | |
| 	graph := buildGraph(&refs, &pop)
 | |
| 	layers := dominate(*layerBudget, graph)
 | |
| 
 | |
| 	j, _ := json.Marshal(layers)
 | |
| 	ioutil.WriteFile(*outFile, j, 0644)
 | |
| }
 |