git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			247 lines
		
	
	
	
		
			7.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			247 lines
		
	
	
	
		
			7.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2017 The Abseil Authors.
 | 
						||
//
 | 
						||
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						||
// you may not use this file except in compliance with the License.
 | 
						||
// You may obtain a copy of the License at
 | 
						||
//
 | 
						||
//      https://www.apache.org/licenses/LICENSE-2.0
 | 
						||
//
 | 
						||
// Unless required by applicable law or agreed to in writing, software
 | 
						||
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						||
// See the License for the specific language governing permissions and
 | 
						||
// limitations under the License.
 | 
						||
 | 
						||
#ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
 | 
						||
#define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
 | 
						||
 | 
						||
#include <cassert>
 | 
						||
#include <cmath>
 | 
						||
#include <istream>
 | 
						||
#include <limits>
 | 
						||
#include <numeric>
 | 
						||
#include <type_traits>
 | 
						||
#include <utility>
 | 
						||
#include <vector>
 | 
						||
 | 
						||
#include "absl/random/bernoulli_distribution.h"
 | 
						||
#include "absl/random/internal/iostream_state_saver.h"
 | 
						||
#include "absl/random/uniform_int_distribution.h"
 | 
						||
 | 
						||
namespace absl {
 | 
						||
ABSL_NAMESPACE_BEGIN
 | 
						||
 | 
						||
// absl::discrete_distribution
 | 
						||
//
 | 
						||
// A discrete distribution produces random integers i, where 0 <= i < n
 | 
						||
// distributed according to the discrete probability function:
 | 
						||
//
 | 
						||
//     P(i|p0,...,pn−1)=pi
 | 
						||
//
 | 
						||
// This class is an implementation of discrete_distribution (see
 | 
						||
// [rand.dist.samp.discrete]).
 | 
						||
//
 | 
						||
// The algorithm used is Walker's Aliasing algorithm, described in Knuth, Vol 2.
 | 
						||
// absl::discrete_distribution takes O(N) time to precompute the probabilities
 | 
						||
// (where N is the number of possible outcomes in the distribution) at
 | 
						||
// construction, and then takes O(1) time for each variate generation.  Many
 | 
						||
// other implementations also take O(N) time to construct an ordered sequence of
 | 
						||
// partial sums, plus O(log N) time per variate to binary search.
 | 
						||
//
 | 
						||
template <typename IntType = int>
 | 
						||
class discrete_distribution {
 | 
						||
 public:
 | 
						||
  using result_type = IntType;
 | 
						||
 | 
						||
  class param_type {
 | 
						||
   public:
 | 
						||
    using distribution_type = discrete_distribution;
 | 
						||
 | 
						||
    param_type() { init(); }
 | 
						||
 | 
						||
    template <typename InputIterator>
 | 
						||
    explicit param_type(InputIterator begin, InputIterator end)
 | 
						||
        : p_(begin, end) {
 | 
						||
      init();
 | 
						||
    }
 | 
						||
 | 
						||
    explicit param_type(std::initializer_list<double> weights) : p_(weights) {
 | 
						||
      init();
 | 
						||
    }
 | 
						||
 | 
						||
    template <class UnaryOperation>
 | 
						||
    explicit param_type(size_t nw, double xmin, double xmax,
 | 
						||
                        UnaryOperation fw) {
 | 
						||
      if (nw > 0) {
 | 
						||
        p_.reserve(nw);
 | 
						||
        double delta = (xmax - xmin) / static_cast<double>(nw);
 | 
						||
        assert(delta > 0);
 | 
						||
        double t = delta * 0.5;
 | 
						||
        for (size_t i = 0; i < nw; ++i) {
 | 
						||
          p_.push_back(fw(xmin + i * delta + t));
 | 
						||
        }
 | 
						||
      }
 | 
						||
      init();
 | 
						||
    }
 | 
						||
 | 
						||
    const std::vector<double>& probabilities() const { return p_; }
 | 
						||
    size_t n() const { return p_.size() - 1; }
 | 
						||
 | 
						||
    friend bool operator==(const param_type& a, const param_type& b) {
 | 
						||
      return a.probabilities() == b.probabilities();
 | 
						||
    }
 | 
						||
 | 
						||
    friend bool operator!=(const param_type& a, const param_type& b) {
 | 
						||
      return !(a == b);
 | 
						||
    }
 | 
						||
 | 
						||
   private:
 | 
						||
    friend class discrete_distribution;
 | 
						||
 | 
						||
    void init();
 | 
						||
 | 
						||
    std::vector<double> p_;                     // normalized probabilities
 | 
						||
    std::vector<std::pair<double, size_t>> q_;  // (acceptance, alternate) pairs
 | 
						||
 | 
						||
    static_assert(std::is_integral<result_type>::value,
 | 
						||
                  "Class-template absl::discrete_distribution<> must be "
 | 
						||
                  "parameterized using an integral type.");
 | 
						||
  };
 | 
						||
 | 
						||
  discrete_distribution() : param_() {}
 | 
						||
 | 
						||
  explicit discrete_distribution(const param_type& p) : param_(p) {}
 | 
						||
 | 
						||
  template <typename InputIterator>
 | 
						||
  explicit discrete_distribution(InputIterator begin, InputIterator end)
 | 
						||
      : param_(begin, end) {}
 | 
						||
 | 
						||
  explicit discrete_distribution(std::initializer_list<double> weights)
 | 
						||
      : param_(weights) {}
 | 
						||
 | 
						||
  template <class UnaryOperation>
 | 
						||
  explicit discrete_distribution(size_t nw, double xmin, double xmax,
 | 
						||
                                 UnaryOperation fw)
 | 
						||
      : param_(nw, xmin, xmax, std::move(fw)) {}
 | 
						||
 | 
						||
  void reset() {}
 | 
						||
 | 
						||
  // generating functions
 | 
						||
  template <typename URBG>
 | 
						||
  result_type operator()(URBG& g) {  // NOLINT(runtime/references)
 | 
						||
    return (*this)(g, param_);
 | 
						||
  }
 | 
						||
 | 
						||
  template <typename URBG>
 | 
						||
  result_type operator()(URBG& g,  // NOLINT(runtime/references)
 | 
						||
                         const param_type& p);
 | 
						||
 | 
						||
  const param_type& param() const { return param_; }
 | 
						||
  void param(const param_type& p) { param_ = p; }
 | 
						||
 | 
						||
  result_type(min)() const { return 0; }
 | 
						||
  result_type(max)() const {
 | 
						||
    return static_cast<result_type>(param_.n());
 | 
						||
  }  // inclusive
 | 
						||
 | 
						||
  // NOTE [rand.dist.sample.discrete] returns a std::vector<double> not a
 | 
						||
  // const std::vector<double>&.
 | 
						||
  const std::vector<double>& probabilities() const {
 | 
						||
    return param_.probabilities();
 | 
						||
  }
 | 
						||
 | 
						||
  friend bool operator==(const discrete_distribution& a,
 | 
						||
                         const discrete_distribution& b) {
 | 
						||
    return a.param_ == b.param_;
 | 
						||
  }
 | 
						||
  friend bool operator!=(const discrete_distribution& a,
 | 
						||
                         const discrete_distribution& b) {
 | 
						||
    return a.param_ != b.param_;
 | 
						||
  }
 | 
						||
 | 
						||
 private:
 | 
						||
  param_type param_;
 | 
						||
};
 | 
						||
 | 
						||
// --------------------------------------------------------------------------
 | 
						||
// Implementation details only below
 | 
						||
// --------------------------------------------------------------------------
 | 
						||
 | 
						||
namespace random_internal {
 | 
						||
 | 
						||
// Using the vector `*probabilities`, whose values are the weights or
 | 
						||
// probabilities of an element being selected, constructs the proportional
 | 
						||
// probabilities used by the discrete distribution.  `*probabilities` will be
 | 
						||
// scaled, if necessary, so that its entries sum to a value sufficiently close
 | 
						||
// to 1.0.
 | 
						||
std::vector<std::pair<double, size_t>> InitDiscreteDistribution(
 | 
						||
    std::vector<double>* probabilities);
 | 
						||
 | 
						||
}  // namespace random_internal
 | 
						||
 | 
						||
template <typename IntType>
 | 
						||
void discrete_distribution<IntType>::param_type::init() {
 | 
						||
  if (p_.empty()) {
 | 
						||
    p_.push_back(1.0);
 | 
						||
    q_.emplace_back(1.0, 0);
 | 
						||
  } else {
 | 
						||
    assert(n() <= (std::numeric_limits<IntType>::max)());
 | 
						||
    q_ = random_internal::InitDiscreteDistribution(&p_);
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
template <typename IntType>
 | 
						||
template <typename URBG>
 | 
						||
typename discrete_distribution<IntType>::result_type
 | 
						||
discrete_distribution<IntType>::operator()(
 | 
						||
    URBG& g,  // NOLINT(runtime/references)
 | 
						||
    const param_type& p) {
 | 
						||
  const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g);
 | 
						||
  const auto& q = p.q_[idx];
 | 
						||
  const bool selected = absl::bernoulli_distribution(q.first)(g);
 | 
						||
  return selected ? idx : static_cast<result_type>(q.second);
 | 
						||
}
 | 
						||
 | 
						||
template <typename CharT, typename Traits, typename IntType>
 | 
						||
std::basic_ostream<CharT, Traits>& operator<<(
 | 
						||
    std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
 | 
						||
    const discrete_distribution<IntType>& x) {
 | 
						||
  auto saver = random_internal::make_ostream_state_saver(os);
 | 
						||
  const auto& probabilities = x.param().probabilities();
 | 
						||
  os << probabilities.size();
 | 
						||
 | 
						||
  os.precision(random_internal::stream_precision_helper<double>::kPrecision);
 | 
						||
  for (const auto& p : probabilities) {
 | 
						||
    os << os.fill() << p;
 | 
						||
  }
 | 
						||
  return os;
 | 
						||
}
 | 
						||
 | 
						||
template <typename CharT, typename Traits, typename IntType>
 | 
						||
std::basic_istream<CharT, Traits>& operator>>(
 | 
						||
    std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)
 | 
						||
    discrete_distribution<IntType>& x) {    // NOLINT(runtime/references)
 | 
						||
  using param_type = typename discrete_distribution<IntType>::param_type;
 | 
						||
  auto saver = random_internal::make_istream_state_saver(is);
 | 
						||
 | 
						||
  size_t n;
 | 
						||
  std::vector<double> p;
 | 
						||
 | 
						||
  is >> n;
 | 
						||
  if (is.fail()) return is;
 | 
						||
  if (n > 0) {
 | 
						||
    p.reserve(n);
 | 
						||
    for (IntType i = 0; i < n && !is.fail(); ++i) {
 | 
						||
      auto tmp = random_internal::read_floating_point<double>(is);
 | 
						||
      if (is.fail()) return is;
 | 
						||
      p.push_back(tmp);
 | 
						||
    }
 | 
						||
  }
 | 
						||
  x.param(param_type(p.begin(), p.end()));
 | 
						||
  return is;
 | 
						||
}
 | 
						||
 | 
						||
ABSL_NAMESPACE_END
 | 
						||
}  // namespace absl
 | 
						||
 | 
						||
#endif  // ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
 |