-- c99f979ad34f155fbeeea69b88bdc7458d89a21c by Derek Mauro <dmauro@google.com>: Remove a floating point division by zero test. This isn't testing behavior related to the library, and MSVC warns about it in opt mode. PiperOrigin-RevId: 285220804 -- 68b015491f0dbf1ab547994673281abd1f34cd4b by Gennadiy Rozental <rogeeff@google.com>: This CL introduces following changes to the class FlagImpl: * We eliminate the CommandLineFlagLocks struct. Instead callback guard and callback function are combined into a single CallbackData struct, while primary data lock is stored separately. * CallbackData member of class FlagImpl is initially set to be nullptr and is only allocated and initialized when a flag's callback is being set. For most flags we do not pay for the extra space and extra absl::Mutex now. * Primary data guard is stored in data_guard_ data member. This is a properly aligned character buffer of necessary size. During initialization of the flag we construct absl::Mutex in this space using placement new call. * We now avoid extra value copy after successful attempt to parse value out of string. Instead we swap flag's current value with tentative value we just produced. PiperOrigin-RevId: 285132636 -- ed45d118fb818969eb13094cf7827c885dfc562c by Tom Manshreck <shreck@google.com>: Change null-term* (and nul-term*) to NUL-term* in comments PiperOrigin-RevId: 285036610 -- 729619017944db895ce8d6d29c1995aa2e5628a5 by Derek Mauro <dmauro@google.com>: Use the Posix implementation of thread identity on MinGW. Some versions of MinGW suffer from thread_local bugs. PiperOrigin-RevId: 285022920 -- 39a25493503c76885bc3254c28f66a251c5b5bb0 by Greg Falcon <gfalcon@google.com>: Implementation detail change. Add further ABSL_NAMESPACE_BEGIN and _END annotation macros to files in Abseil. PiperOrigin-RevId: 285012012 GitOrigin-RevId: c99f979ad34f155fbeeea69b88bdc7458d89a21c Change-Id: I4c85d3704e45d11a9ac50d562f39640a6adbedc1
		
			
				
	
	
		
			713 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			713 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//
 | 
						|
// Copyright 2017 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      https://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
//
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// span.h
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// This header file defines a `Span<T>` type for holding a view of an existing
 | 
						|
// array of data. The `Span` object, much like the `absl::string_view` object,
 | 
						|
// does not own such data itself. A span provides a lightweight way to pass
 | 
						|
// around view of such data.
 | 
						|
//
 | 
						|
// Additionally, this header file defines `MakeSpan()` and `MakeConstSpan()`
 | 
						|
// factory functions, for clearly creating spans of type `Span<T>` or read-only
 | 
						|
// `Span<const T>` when such types may be difficult to identify due to issues
 | 
						|
// with implicit conversion.
 | 
						|
//
 | 
						|
// The C++ standards committee currently has a proposal for a `std::span` type,
 | 
						|
// (http://wg21.link/p0122), which is not yet part of the standard (though may
 | 
						|
// become part of C++20). As of August 2017, the differences between
 | 
						|
// `absl::Span` and this proposal are:
 | 
						|
//    * `absl::Span` uses `size_t` for `size_type`
 | 
						|
//    * `absl::Span` has no `operator()`
 | 
						|
//    * `absl::Span` has no constructors for `std::unique_ptr` or
 | 
						|
//      `std::shared_ptr`
 | 
						|
//    * `absl::Span` has the factory functions `MakeSpan()` and
 | 
						|
//      `MakeConstSpan()`
 | 
						|
//    * `absl::Span` has `front()` and `back()` methods
 | 
						|
//    * bounds-checked access to `absl::Span` is accomplished with `at()`
 | 
						|
//    * `absl::Span` has compiler-provided move and copy constructors and
 | 
						|
//      assignment. This is due to them being specified as `constexpr`, but that
 | 
						|
//      implies const in C++11.
 | 
						|
//    * `absl::Span` has no `element_type` or `index_type` typedefs
 | 
						|
//    * A read-only `absl::Span<const T>` can be implicitly constructed from an
 | 
						|
//      initializer list.
 | 
						|
//    * `absl::Span` has no `bytes()`, `size_bytes()`, `as_bytes()`, or
 | 
						|
//      `as_mutable_bytes()` methods
 | 
						|
//    * `absl::Span` has no static extent template parameter, nor constructors
 | 
						|
//      which exist only because of the static extent parameter.
 | 
						|
//    * `absl::Span` has an explicit mutable-reference constructor
 | 
						|
//
 | 
						|
// For more information, see the class comments below.
 | 
						|
#ifndef ABSL_TYPES_SPAN_H_
 | 
						|
#define ABSL_TYPES_SPAN_H_
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <initializer_list>
 | 
						|
#include <iterator>
 | 
						|
#include <type_traits>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
#include "absl/base/internal/throw_delegate.h"
 | 
						|
#include "absl/base/macros.h"
 | 
						|
#include "absl/base/optimization.h"
 | 
						|
#include "absl/base/port.h"    // TODO(strel): remove this include
 | 
						|
#include "absl/meta/type_traits.h"
 | 
						|
#include "absl/types/internal/span.h"
 | 
						|
 | 
						|
namespace absl {
 | 
						|
ABSL_NAMESPACE_BEGIN
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
// Span
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// A `Span` is an "array view" type for holding a view of a contiguous data
 | 
						|
// array; the `Span` object does not and cannot own such data itself. A span
 | 
						|
// provides an easy way to provide overloads for anything operating on
 | 
						|
// contiguous sequences without needing to manage pointers and array lengths
 | 
						|
// manually.
 | 
						|
 | 
						|
// A span is conceptually a pointer (ptr) and a length (size) into an already
 | 
						|
// existing array of contiguous memory; the array it represents references the
 | 
						|
// elements "ptr[0] .. ptr[size-1]". Passing a properly-constructed `Span`
 | 
						|
// instead of raw pointers avoids many issues related to index out of bounds
 | 
						|
// errors.
 | 
						|
//
 | 
						|
// Spans may also be constructed from containers holding contiguous sequences.
 | 
						|
// Such containers must supply `data()` and `size() const` methods (e.g
 | 
						|
// `std::vector<T>`, `absl::InlinedVector<T, N>`). All implicit conversions to
 | 
						|
// `absl::Span` from such containers will create spans of type `const T`;
 | 
						|
// spans which can mutate their values (of type `T`) must use explicit
 | 
						|
// constructors.
 | 
						|
//
 | 
						|
// A `Span<T>` is somewhat analogous to an `absl::string_view`, but for an array
 | 
						|
// of elements of type `T`. A user of `Span` must ensure that the data being
 | 
						|
// pointed to outlives the `Span` itself.
 | 
						|
//
 | 
						|
// You can construct a `Span<T>` in several ways:
 | 
						|
//
 | 
						|
//   * Explicitly from a reference to a container type
 | 
						|
//   * Explicitly from a pointer and size
 | 
						|
//   * Implicitly from a container type (but only for spans of type `const T`)
 | 
						|
//   * Using the `MakeSpan()` or `MakeConstSpan()` factory functions.
 | 
						|
//
 | 
						|
// Examples:
 | 
						|
//
 | 
						|
//   // Construct a Span explicitly from a container:
 | 
						|
//   std::vector<int> v = {1, 2, 3, 4, 5};
 | 
						|
//   auto span = absl::Span<const int>(v);
 | 
						|
//
 | 
						|
//   // Construct a Span explicitly from a C-style array:
 | 
						|
//   int a[5] =  {1, 2, 3, 4, 5};
 | 
						|
//   auto span = absl::Span<const int>(a);
 | 
						|
//
 | 
						|
//   // Construct a Span implicitly from a container
 | 
						|
//   void MyRoutine(absl::Span<const int> a) {
 | 
						|
//     ...
 | 
						|
//   }
 | 
						|
//   std::vector v = {1,2,3,4,5};
 | 
						|
//   MyRoutine(v)                     // convert to Span<const T>
 | 
						|
//
 | 
						|
// Note that `Span` objects, in addition to requiring that the memory they
 | 
						|
// point to remains alive, must also ensure that such memory does not get
 | 
						|
// reallocated. Therefore, to avoid undefined behavior, containers with
 | 
						|
// associated span views should not invoke operations that may reallocate memory
 | 
						|
// (such as resizing) or invalidate iterators into the container.
 | 
						|
//
 | 
						|
// One common use for a `Span` is when passing arguments to a routine that can
 | 
						|
// accept a variety of array types (e.g. a `std::vector`, `absl::InlinedVector`,
 | 
						|
// a C-style array, etc.). Instead of creating overloads for each case, you
 | 
						|
// can simply specify a `Span` as the argument to such a routine.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   void MyRoutine(absl::Span<const int> a) {
 | 
						|
//     ...
 | 
						|
//   }
 | 
						|
//
 | 
						|
//   std::vector v = {1,2,3,4,5};
 | 
						|
//   MyRoutine(v);
 | 
						|
//
 | 
						|
//   absl::InlinedVector<int, 4> my_inline_vector;
 | 
						|
//   MyRoutine(my_inline_vector);
 | 
						|
//
 | 
						|
//   // Explicit constructor from pointer,size
 | 
						|
//   int* my_array = new int[10];
 | 
						|
//   MyRoutine(absl::Span<const int>(my_array, 10));
 | 
						|
template <typename T>
 | 
						|
class Span {
 | 
						|
 private:
 | 
						|
  // Used to determine whether a Span can be constructed from a container of
 | 
						|
  // type C.
 | 
						|
  template <typename C>
 | 
						|
  using EnableIfConvertibleFrom =
 | 
						|
      typename std::enable_if<span_internal::HasData<T, C>::value &&
 | 
						|
                              span_internal::HasSize<C>::value>::type;
 | 
						|
 | 
						|
  // Used to SFINAE-enable a function when the slice elements are const.
 | 
						|
  template <typename U>
 | 
						|
  using EnableIfConstView =
 | 
						|
      typename std::enable_if<std::is_const<T>::value, U>::type;
 | 
						|
 | 
						|
  // Used to SFINAE-enable a function when the slice elements are mutable.
 | 
						|
  template <typename U>
 | 
						|
  using EnableIfMutableView =
 | 
						|
      typename std::enable_if<!std::is_const<T>::value, U>::type;
 | 
						|
 | 
						|
 public:
 | 
						|
  using value_type = absl::remove_cv_t<T>;
 | 
						|
  using pointer = T*;
 | 
						|
  using const_pointer = const T*;
 | 
						|
  using reference = T&;
 | 
						|
  using const_reference = const T&;
 | 
						|
  using iterator = pointer;
 | 
						|
  using const_iterator = const_pointer;
 | 
						|
  using reverse_iterator = std::reverse_iterator<iterator>;
 | 
						|
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
 | 
						|
  using size_type = size_t;
 | 
						|
  using difference_type = ptrdiff_t;
 | 
						|
 | 
						|
  static const size_type npos = ~(size_type(0));
 | 
						|
 | 
						|
  constexpr Span() noexcept : Span(nullptr, 0) {}
 | 
						|
  constexpr Span(pointer array, size_type length) noexcept
 | 
						|
      : ptr_(array), len_(length) {}
 | 
						|
 | 
						|
  // Implicit conversion constructors
 | 
						|
  template <size_t N>
 | 
						|
  constexpr Span(T (&a)[N]) noexcept  // NOLINT(runtime/explicit)
 | 
						|
      : Span(a, N) {}
 | 
						|
 | 
						|
  // Explicit reference constructor for a mutable `Span<T>` type. Can be
 | 
						|
  // replaced with MakeSpan() to infer the type parameter.
 | 
						|
  template <typename V, typename = EnableIfConvertibleFrom<V>,
 | 
						|
            typename = EnableIfMutableView<V>>
 | 
						|
  explicit Span(V& v) noexcept  // NOLINT(runtime/references)
 | 
						|
      : Span(span_internal::GetData(v), v.size()) {}
 | 
						|
 | 
						|
  // Implicit reference constructor for a read-only `Span<const T>` type
 | 
						|
  template <typename V, typename = EnableIfConvertibleFrom<V>,
 | 
						|
            typename = EnableIfConstView<V>>
 | 
						|
  constexpr Span(const V& v) noexcept  // NOLINT(runtime/explicit)
 | 
						|
      : Span(span_internal::GetData(v), v.size()) {}
 | 
						|
 | 
						|
  // Implicit constructor from an initializer list, making it possible to pass a
 | 
						|
  // brace-enclosed initializer list to a function expecting a `Span`. Such
 | 
						|
  // spans constructed from an initializer list must be of type `Span<const T>`.
 | 
						|
  //
 | 
						|
  //   void Process(absl::Span<const int> x);
 | 
						|
  //   Process({1, 2, 3});
 | 
						|
  //
 | 
						|
  // Note that as always the array referenced by the span must outlive the span.
 | 
						|
  // Since an initializer list constructor acts as if it is fed a temporary
 | 
						|
  // array (cf. C++ standard [dcl.init.list]/5), it's safe to use this
 | 
						|
  // constructor only when the `std::initializer_list` itself outlives the span.
 | 
						|
  // In order to meet this requirement it's sufficient to ensure that neither
 | 
						|
  // the span nor a copy of it is used outside of the expression in which it's
 | 
						|
  // created:
 | 
						|
  //
 | 
						|
  //   // Assume that this function uses the array directly, not retaining any
 | 
						|
  //   // copy of the span or pointer to any of its elements.
 | 
						|
  //   void Process(absl::Span<const int> ints);
 | 
						|
  //
 | 
						|
  //   // Okay: the std::initializer_list<int> will reference a temporary array
 | 
						|
  //   // that isn't destroyed until after the call to Process returns.
 | 
						|
  //   Process({ 17, 19 });
 | 
						|
  //
 | 
						|
  //   // Not okay: the storage used by the std::initializer_list<int> is not
 | 
						|
  //   // allowed to be referenced after the first line.
 | 
						|
  //   absl::Span<const int> ints = { 17, 19 };
 | 
						|
  //   Process(ints);
 | 
						|
  //
 | 
						|
  //   // Not okay for the same reason as above: even when the elements of the
 | 
						|
  //   // initializer list expression are not temporaries the underlying array
 | 
						|
  //   // is, so the initializer list must still outlive the span.
 | 
						|
  //   const int foo = 17;
 | 
						|
  //   absl::Span<const int> ints = { foo };
 | 
						|
  //   Process(ints);
 | 
						|
  //
 | 
						|
  template <typename LazyT = T,
 | 
						|
            typename = EnableIfConstView<LazyT>>
 | 
						|
  Span(
 | 
						|
      std::initializer_list<value_type> v) noexcept  // NOLINT(runtime/explicit)
 | 
						|
      : Span(v.begin(), v.size()) {}
 | 
						|
 | 
						|
  // Accessors
 | 
						|
 | 
						|
  // Span::data()
 | 
						|
  //
 | 
						|
  // Returns a pointer to the span's underlying array of data (which is held
 | 
						|
  // outside the span).
 | 
						|
  constexpr pointer data() const noexcept { return ptr_; }
 | 
						|
 | 
						|
  // Span::size()
 | 
						|
  //
 | 
						|
  // Returns the size of this span.
 | 
						|
  constexpr size_type size() const noexcept { return len_; }
 | 
						|
 | 
						|
  // Span::length()
 | 
						|
  //
 | 
						|
  // Returns the length (size) of this span.
 | 
						|
  constexpr size_type length() const noexcept { return size(); }
 | 
						|
 | 
						|
  // Span::empty()
 | 
						|
  //
 | 
						|
  // Returns a boolean indicating whether or not this span is considered empty.
 | 
						|
  constexpr bool empty() const noexcept { return size() == 0; }
 | 
						|
 | 
						|
  // Span::operator[]
 | 
						|
  //
 | 
						|
  // Returns a reference to the i'th element of this span.
 | 
						|
  constexpr reference operator[](size_type i) const noexcept {
 | 
						|
    // MSVC 2015 accepts this as constexpr, but not ptr_[i]
 | 
						|
    return *(data() + i);
 | 
						|
  }
 | 
						|
 | 
						|
  // Span::at()
 | 
						|
  //
 | 
						|
  // Returns a reference to the i'th element of this span.
 | 
						|
  constexpr reference at(size_type i) const {
 | 
						|
    return ABSL_PREDICT_TRUE(i < size())  //
 | 
						|
               ? *(data() + i)
 | 
						|
               : (base_internal::ThrowStdOutOfRange(
 | 
						|
                      "Span::at failed bounds check"),
 | 
						|
                  *(data() + i));
 | 
						|
  }
 | 
						|
 | 
						|
  // Span::front()
 | 
						|
  //
 | 
						|
  // Returns a reference to the first element of this span.
 | 
						|
  constexpr reference front() const noexcept {
 | 
						|
    return ABSL_ASSERT(size() > 0), *data();
 | 
						|
  }
 | 
						|
 | 
						|
  // Span::back()
 | 
						|
  //
 | 
						|
  // Returns a reference to the last element of this span.
 | 
						|
  constexpr reference back() const noexcept {
 | 
						|
    return ABSL_ASSERT(size() > 0), *(data() + size() - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Span::begin()
 | 
						|
  //
 | 
						|
  // Returns an iterator to the first element of this span.
 | 
						|
  constexpr iterator begin() const noexcept { return data(); }
 | 
						|
 | 
						|
  // Span::cbegin()
 | 
						|
  //
 | 
						|
  // Returns a const iterator to the first element of this span.
 | 
						|
  constexpr const_iterator cbegin() const noexcept { return begin(); }
 | 
						|
 | 
						|
  // Span::end()
 | 
						|
  //
 | 
						|
  // Returns an iterator to the last element of this span.
 | 
						|
  constexpr iterator end() const noexcept { return data() + size(); }
 | 
						|
 | 
						|
  // Span::cend()
 | 
						|
  //
 | 
						|
  // Returns a const iterator to the last element of this span.
 | 
						|
  constexpr const_iterator cend() const noexcept { return end(); }
 | 
						|
 | 
						|
  // Span::rbegin()
 | 
						|
  //
 | 
						|
  // Returns a reverse iterator starting at the last element of this span.
 | 
						|
  constexpr reverse_iterator rbegin() const noexcept {
 | 
						|
    return reverse_iterator(end());
 | 
						|
  }
 | 
						|
 | 
						|
  // Span::crbegin()
 | 
						|
  //
 | 
						|
  // Returns a reverse const iterator starting at the last element of this span.
 | 
						|
  constexpr const_reverse_iterator crbegin() const noexcept { return rbegin(); }
 | 
						|
 | 
						|
  // Span::rend()
 | 
						|
  //
 | 
						|
  // Returns a reverse iterator starting at the first element of this span.
 | 
						|
  constexpr reverse_iterator rend() const noexcept {
 | 
						|
    return reverse_iterator(begin());
 | 
						|
  }
 | 
						|
 | 
						|
  // Span::crend()
 | 
						|
  //
 | 
						|
  // Returns a reverse iterator starting at the first element of this span.
 | 
						|
  constexpr const_reverse_iterator crend() const noexcept { return rend(); }
 | 
						|
 | 
						|
  // Span mutations
 | 
						|
 | 
						|
  // Span::remove_prefix()
 | 
						|
  //
 | 
						|
  // Removes the first `n` elements from the span.
 | 
						|
  void remove_prefix(size_type n) noexcept {
 | 
						|
    assert(size() >= n);
 | 
						|
    ptr_ += n;
 | 
						|
    len_ -= n;
 | 
						|
  }
 | 
						|
 | 
						|
  // Span::remove_suffix()
 | 
						|
  //
 | 
						|
  // Removes the last `n` elements from the span.
 | 
						|
  void remove_suffix(size_type n) noexcept {
 | 
						|
    assert(size() >= n);
 | 
						|
    len_ -= n;
 | 
						|
  }
 | 
						|
 | 
						|
  // Span::subspan()
 | 
						|
  //
 | 
						|
  // Returns a `Span` starting at element `pos` and of length `len`. Both `pos`
 | 
						|
  // and `len` are of type `size_type` and thus non-negative. Parameter `pos`
 | 
						|
  // must be <= size(). Any `len` value that points past the end of the span
 | 
						|
  // will be trimmed to at most size() - `pos`. A default `len` value of `npos`
 | 
						|
  // ensures the returned subspan continues until the end of the span.
 | 
						|
  //
 | 
						|
  // Examples:
 | 
						|
  //
 | 
						|
  //   std::vector<int> vec = {10, 11, 12, 13};
 | 
						|
  //   absl::MakeSpan(vec).subspan(1, 2);  // {11, 12}
 | 
						|
  //   absl::MakeSpan(vec).subspan(2, 8);  // {12, 13}
 | 
						|
  //   absl::MakeSpan(vec).subspan(1);     // {11, 12, 13}
 | 
						|
  //   absl::MakeSpan(vec).subspan(4);     // {}
 | 
						|
  //   absl::MakeSpan(vec).subspan(5);     // throws std::out_of_range
 | 
						|
  constexpr Span subspan(size_type pos = 0, size_type len = npos) const {
 | 
						|
    return (pos <= size())
 | 
						|
               ? Span(data() + pos, span_internal::Min(size() - pos, len))
 | 
						|
               : (base_internal::ThrowStdOutOfRange("pos > size()"), Span());
 | 
						|
  }
 | 
						|
 | 
						|
  // Span::first()
 | 
						|
  //
 | 
						|
  // Returns a `Span` containing first `len` elements. Parameter `len` is of
 | 
						|
  // type `size_type` and thus non-negative. `len` value must be <= size().
 | 
						|
  //
 | 
						|
  // Examples:
 | 
						|
  //
 | 
						|
  //   std::vector<int> vec = {10, 11, 12, 13};
 | 
						|
  //   absl::MakeSpan(vec).first(1);  // {10}
 | 
						|
  //   absl::MakeSpan(vec).first(3);  // {10, 11, 12}
 | 
						|
  //   absl::MakeSpan(vec).first(5);  // throws std::out_of_range
 | 
						|
  constexpr Span first(size_type len) const {
 | 
						|
    return (len <= size())
 | 
						|
               ? Span(data(), len)
 | 
						|
               : (base_internal::ThrowStdOutOfRange("len > size()"), Span());
 | 
						|
  }
 | 
						|
 | 
						|
  // Span::last()
 | 
						|
  //
 | 
						|
  // Returns a `Span` containing last `len` elements. Parameter `len` is of
 | 
						|
  // type `size_type` and thus non-negative. `len` value must be <= size().
 | 
						|
  //
 | 
						|
  // Examples:
 | 
						|
  //
 | 
						|
  //   std::vector<int> vec = {10, 11, 12, 13};
 | 
						|
  //   absl::MakeSpan(vec).last(1);  // {13}
 | 
						|
  //   absl::MakeSpan(vec).last(3);  // {11, 12, 13}
 | 
						|
  //   absl::MakeSpan(vec).last(5);  // throws std::out_of_range
 | 
						|
  constexpr Span last(size_type len) const {
 | 
						|
    return (len <= size())
 | 
						|
               ? Span(size() - len + data(), len)
 | 
						|
               : (base_internal::ThrowStdOutOfRange("len > size()"), Span());
 | 
						|
  }
 | 
						|
 | 
						|
  // Support for absl::Hash.
 | 
						|
  template <typename H>
 | 
						|
  friend H AbslHashValue(H h, Span v) {
 | 
						|
    return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()),
 | 
						|
                      v.size());
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  pointer ptr_;
 | 
						|
  size_type len_;
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
const typename Span<T>::size_type Span<T>::npos;
 | 
						|
 | 
						|
// Span relationals
 | 
						|
 | 
						|
// Equality is compared element-by-element, while ordering is lexicographical.
 | 
						|
// We provide three overloads for each operator to cover any combination on the
 | 
						|
// left or right hand side of mutable Span<T>, read-only Span<const T>, and
 | 
						|
// convertible-to-read-only Span<T>.
 | 
						|
// TODO(zhangxy): Due to MSVC overload resolution bug with partial ordering
 | 
						|
// template functions, 5 overloads per operator is needed as a workaround. We
 | 
						|
// should update them to 3 overloads per operator using non-deduced context like
 | 
						|
// string_view, i.e.
 | 
						|
// - (Span<T>, Span<T>)
 | 
						|
// - (Span<T>, non_deduced<Span<const T>>)
 | 
						|
// - (non_deduced<Span<const T>>, Span<T>)
 | 
						|
 | 
						|
// operator==
 | 
						|
template <typename T>
 | 
						|
bool operator==(Span<T> a, Span<T> b) {
 | 
						|
  return span_internal::EqualImpl<Span, const T>(a, b);
 | 
						|
}
 | 
						|
template <typename T>
 | 
						|
bool operator==(Span<const T> a, Span<T> b) {
 | 
						|
  return span_internal::EqualImpl<Span, const T>(a, b);
 | 
						|
}
 | 
						|
template <typename T>
 | 
						|
bool operator==(Span<T> a, Span<const T> b) {
 | 
						|
  return span_internal::EqualImpl<Span, const T>(a, b);
 | 
						|
}
 | 
						|
template <
 | 
						|
    typename T, typename U,
 | 
						|
    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
 | 
						|
bool operator==(const U& a, Span<T> b) {
 | 
						|
  return span_internal::EqualImpl<Span, const T>(a, b);
 | 
						|
}
 | 
						|
template <
 | 
						|
    typename T, typename U,
 | 
						|
    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
 | 
						|
bool operator==(Span<T> a, const U& b) {
 | 
						|
  return span_internal::EqualImpl<Span, const T>(a, b);
 | 
						|
}
 | 
						|
 | 
						|
// operator!=
 | 
						|
template <typename T>
 | 
						|
bool operator!=(Span<T> a, Span<T> b) {
 | 
						|
  return !(a == b);
 | 
						|
}
 | 
						|
template <typename T>
 | 
						|
bool operator!=(Span<const T> a, Span<T> b) {
 | 
						|
  return !(a == b);
 | 
						|
}
 | 
						|
template <typename T>
 | 
						|
bool operator!=(Span<T> a, Span<const T> b) {
 | 
						|
  return !(a == b);
 | 
						|
}
 | 
						|
template <
 | 
						|
    typename T, typename U,
 | 
						|
    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
 | 
						|
bool operator!=(const U& a, Span<T> b) {
 | 
						|
  return !(a == b);
 | 
						|
}
 | 
						|
template <
 | 
						|
    typename T, typename U,
 | 
						|
    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
 | 
						|
bool operator!=(Span<T> a, const U& b) {
 | 
						|
  return !(a == b);
 | 
						|
}
 | 
						|
 | 
						|
// operator<
 | 
						|
template <typename T>
 | 
						|
bool operator<(Span<T> a, Span<T> b) {
 | 
						|
  return span_internal::LessThanImpl<Span, const T>(a, b);
 | 
						|
}
 | 
						|
template <typename T>
 | 
						|
bool operator<(Span<const T> a, Span<T> b) {
 | 
						|
  return span_internal::LessThanImpl<Span, const T>(a, b);
 | 
						|
}
 | 
						|
template <typename T>
 | 
						|
bool operator<(Span<T> a, Span<const T> b) {
 | 
						|
  return span_internal::LessThanImpl<Span, const T>(a, b);
 | 
						|
}
 | 
						|
template <
 | 
						|
    typename T, typename U,
 | 
						|
    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
 | 
						|
bool operator<(const U& a, Span<T> b) {
 | 
						|
  return span_internal::LessThanImpl<Span, const T>(a, b);
 | 
						|
}
 | 
						|
template <
 | 
						|
    typename T, typename U,
 | 
						|
    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
 | 
						|
bool operator<(Span<T> a, const U& b) {
 | 
						|
  return span_internal::LessThanImpl<Span, const T>(a, b);
 | 
						|
}
 | 
						|
 | 
						|
// operator>
 | 
						|
template <typename T>
 | 
						|
bool operator>(Span<T> a, Span<T> b) {
 | 
						|
  return b < a;
 | 
						|
}
 | 
						|
template <typename T>
 | 
						|
bool operator>(Span<const T> a, Span<T> b) {
 | 
						|
  return b < a;
 | 
						|
}
 | 
						|
template <typename T>
 | 
						|
bool operator>(Span<T> a, Span<const T> b) {
 | 
						|
  return b < a;
 | 
						|
}
 | 
						|
template <
 | 
						|
    typename T, typename U,
 | 
						|
    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
 | 
						|
bool operator>(const U& a, Span<T> b) {
 | 
						|
  return b < a;
 | 
						|
}
 | 
						|
template <
 | 
						|
    typename T, typename U,
 | 
						|
    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
 | 
						|
bool operator>(Span<T> a, const U& b) {
 | 
						|
  return b < a;
 | 
						|
}
 | 
						|
 | 
						|
// operator<=
 | 
						|
template <typename T>
 | 
						|
bool operator<=(Span<T> a, Span<T> b) {
 | 
						|
  return !(b < a);
 | 
						|
}
 | 
						|
template <typename T>
 | 
						|
bool operator<=(Span<const T> a, Span<T> b) {
 | 
						|
  return !(b < a);
 | 
						|
}
 | 
						|
template <typename T>
 | 
						|
bool operator<=(Span<T> a, Span<const T> b) {
 | 
						|
  return !(b < a);
 | 
						|
}
 | 
						|
template <
 | 
						|
    typename T, typename U,
 | 
						|
    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
 | 
						|
bool operator<=(const U& a, Span<T> b) {
 | 
						|
  return !(b < a);
 | 
						|
}
 | 
						|
template <
 | 
						|
    typename T, typename U,
 | 
						|
    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
 | 
						|
bool operator<=(Span<T> a, const U& b) {
 | 
						|
  return !(b < a);
 | 
						|
}
 | 
						|
 | 
						|
// operator>=
 | 
						|
template <typename T>
 | 
						|
bool operator>=(Span<T> a, Span<T> b) {
 | 
						|
  return !(a < b);
 | 
						|
}
 | 
						|
template <typename T>
 | 
						|
bool operator>=(Span<const T> a, Span<T> b) {
 | 
						|
  return !(a < b);
 | 
						|
}
 | 
						|
template <typename T>
 | 
						|
bool operator>=(Span<T> a, Span<const T> b) {
 | 
						|
  return !(a < b);
 | 
						|
}
 | 
						|
template <
 | 
						|
    typename T, typename U,
 | 
						|
    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
 | 
						|
bool operator>=(const U& a, Span<T> b) {
 | 
						|
  return !(a < b);
 | 
						|
}
 | 
						|
template <
 | 
						|
    typename T, typename U,
 | 
						|
    typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
 | 
						|
bool operator>=(Span<T> a, const U& b) {
 | 
						|
  return !(a < b);
 | 
						|
}
 | 
						|
 | 
						|
// MakeSpan()
 | 
						|
//
 | 
						|
// Constructs a mutable `Span<T>`, deducing `T` automatically from either a
 | 
						|
// container or pointer+size.
 | 
						|
//
 | 
						|
// Because a read-only `Span<const T>` is implicitly constructed from container
 | 
						|
// types regardless of whether the container itself is a const container,
 | 
						|
// constructing mutable spans of type `Span<T>` from containers requires
 | 
						|
// explicit constructors. The container-accepting version of `MakeSpan()`
 | 
						|
// deduces the type of `T` by the constness of the pointer received from the
 | 
						|
// container's `data()` member. Similarly, the pointer-accepting version returns
 | 
						|
// a `Span<const T>` if `T` is `const`, and a `Span<T>` otherwise.
 | 
						|
//
 | 
						|
// Examples:
 | 
						|
//
 | 
						|
//   void MyRoutine(absl::Span<MyComplicatedType> a) {
 | 
						|
//     ...
 | 
						|
//   };
 | 
						|
//   // my_vector is a container of non-const types
 | 
						|
//   std::vector<MyComplicatedType> my_vector;
 | 
						|
//
 | 
						|
//   // Constructing a Span implicitly attempts to create a Span of type
 | 
						|
//   // `Span<const T>`
 | 
						|
//   MyRoutine(my_vector);                // error, type mismatch
 | 
						|
//
 | 
						|
//   // Explicitly constructing the Span is verbose
 | 
						|
//   MyRoutine(absl::Span<MyComplicatedType>(my_vector));
 | 
						|
//
 | 
						|
//   // Use MakeSpan() to make an absl::Span<T>
 | 
						|
//   MyRoutine(absl::MakeSpan(my_vector));
 | 
						|
//
 | 
						|
//   // Construct a span from an array ptr+size
 | 
						|
//   absl::Span<T> my_span() {
 | 
						|
//     return absl::MakeSpan(&array[0], num_elements_);
 | 
						|
//   }
 | 
						|
//
 | 
						|
template <int&... ExplicitArgumentBarrier, typename T>
 | 
						|
constexpr Span<T> MakeSpan(T* ptr, size_t size) noexcept {
 | 
						|
  return Span<T>(ptr, size);
 | 
						|
}
 | 
						|
 | 
						|
template <int&... ExplicitArgumentBarrier, typename T>
 | 
						|
Span<T> MakeSpan(T* begin, T* end) noexcept {
 | 
						|
  return ABSL_ASSERT(begin <= end), Span<T>(begin, end - begin);
 | 
						|
}
 | 
						|
 | 
						|
template <int&... ExplicitArgumentBarrier, typename C>
 | 
						|
constexpr auto MakeSpan(C& c) noexcept  // NOLINT(runtime/references)
 | 
						|
    -> decltype(absl::MakeSpan(span_internal::GetData(c), c.size())) {
 | 
						|
  return MakeSpan(span_internal::GetData(c), c.size());
 | 
						|
}
 | 
						|
 | 
						|
template <int&... ExplicitArgumentBarrier, typename T, size_t N>
 | 
						|
constexpr Span<T> MakeSpan(T (&array)[N]) noexcept {
 | 
						|
  return Span<T>(array, N);
 | 
						|
}
 | 
						|
 | 
						|
// MakeConstSpan()
 | 
						|
//
 | 
						|
// Constructs a `Span<const T>` as with `MakeSpan`, deducing `T` automatically,
 | 
						|
// but always returning a `Span<const T>`.
 | 
						|
//
 | 
						|
// Examples:
 | 
						|
//
 | 
						|
//   void ProcessInts(absl::Span<const int> some_ints);
 | 
						|
//
 | 
						|
//   // Call with a pointer and size.
 | 
						|
//   int array[3] = { 0, 0, 0 };
 | 
						|
//   ProcessInts(absl::MakeConstSpan(&array[0], 3));
 | 
						|
//
 | 
						|
//   // Call with a [begin, end) pair.
 | 
						|
//   ProcessInts(absl::MakeConstSpan(&array[0], &array[3]));
 | 
						|
//
 | 
						|
//   // Call directly with an array.
 | 
						|
//   ProcessInts(absl::MakeConstSpan(array));
 | 
						|
//
 | 
						|
//   // Call with a contiguous container.
 | 
						|
//   std::vector<int> some_ints = ...;
 | 
						|
//   ProcessInts(absl::MakeConstSpan(some_ints));
 | 
						|
//   ProcessInts(absl::MakeConstSpan(std::vector<int>{ 0, 0, 0 }));
 | 
						|
//
 | 
						|
template <int&... ExplicitArgumentBarrier, typename T>
 | 
						|
constexpr Span<const T> MakeConstSpan(T* ptr, size_t size) noexcept {
 | 
						|
  return Span<const T>(ptr, size);
 | 
						|
}
 | 
						|
 | 
						|
template <int&... ExplicitArgumentBarrier, typename T>
 | 
						|
Span<const T> MakeConstSpan(T* begin, T* end) noexcept {
 | 
						|
  return ABSL_ASSERT(begin <= end), Span<const T>(begin, end - begin);
 | 
						|
}
 | 
						|
 | 
						|
template <int&... ExplicitArgumentBarrier, typename C>
 | 
						|
constexpr auto MakeConstSpan(const C& c) noexcept -> decltype(MakeSpan(c)) {
 | 
						|
  return MakeSpan(c);
 | 
						|
}
 | 
						|
 | 
						|
template <int&... ExplicitArgumentBarrier, typename T, size_t N>
 | 
						|
constexpr Span<const T> MakeConstSpan(const T (&array)[N]) noexcept {
 | 
						|
  return Span<const T>(array, N);
 | 
						|
}
 | 
						|
ABSL_NAMESPACE_END
 | 
						|
}  // namespace absl
 | 
						|
#endif  // ABSL_TYPES_SPAN_H_
 |