... notably, this includes Abseil's own StatusOr type, which conflicted with our implementation (that was taken from TensorFlow). Change-Id: Ie7d6764b64055caaeb8dc7b6b9d066291e6b538f
		
			
				
	
	
		
			221 lines
		
	
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			221 lines
		
	
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| // HERMETIC NOTE: The randen_hwaes target must not introduce duplicate
 | |
| // symbols from arbitrary system and other headers, since it may be built
 | |
| // with different flags from other targets, using different levels of
 | |
| // optimization, potentially introducing ODR violations.
 | |
| 
 | |
| #include "absl/random/internal/randen_detect.h"
 | |
| 
 | |
| #include <cstdint>
 | |
| #include <cstring>
 | |
| 
 | |
| #include "absl/random/internal/platform.h"
 | |
| 
 | |
| #if defined(ABSL_ARCH_X86_64)
 | |
| #define ABSL_INTERNAL_USE_X86_CPUID
 | |
| #elif defined(ABSL_ARCH_PPC) || defined(ABSL_ARCH_ARM) || \
 | |
|     defined(ABSL_ARCH_AARCH64)
 | |
| #if defined(__ANDROID__)
 | |
| #define ABSL_INTERNAL_USE_ANDROID_GETAUXVAL
 | |
| #define ABSL_INTERNAL_USE_GETAUXVAL
 | |
| #elif defined(__linux__)
 | |
| #define ABSL_INTERNAL_USE_LINUX_GETAUXVAL
 | |
| #define ABSL_INTERNAL_USE_GETAUXVAL
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #if defined(ABSL_INTERNAL_USE_X86_CPUID)
 | |
| #if defined(_WIN32) || defined(_WIN64)
 | |
| #include <intrin.h>  // NOLINT(build/include_order)
 | |
| #pragma intrinsic(__cpuid)
 | |
| #else
 | |
| // MSVC-equivalent __cpuid intrinsic function.
 | |
| static void __cpuid(int cpu_info[4], int info_type) {
 | |
|   __asm__ volatile("cpuid \n\t"
 | |
|                    : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]),
 | |
|                      "=d"(cpu_info[3])
 | |
|                    : "a"(info_type), "c"(0));
 | |
| }
 | |
| #endif
 | |
| #endif  // ABSL_INTERNAL_USE_X86_CPUID
 | |
| 
 | |
| // On linux, just use the c-library getauxval call.
 | |
| #if defined(ABSL_INTERNAL_USE_LINUX_GETAUXVAL)
 | |
| 
 | |
| extern "C" unsigned long getauxval(unsigned long type);  // NOLINT(runtime/int)
 | |
| 
 | |
| static uint32_t GetAuxval(uint32_t hwcap_type) {
 | |
|   return static_cast<uint32_t>(getauxval(hwcap_type));
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| // On android, probe the system's C library for getauxval().
 | |
| // This is the same technique used by the android NDK cpu features library
 | |
| // as well as the google open-source cpu_features library.
 | |
| //
 | |
| // TODO(absl-team): Consider implementing a fallback of directly reading
 | |
| // /proc/self/auxval.
 | |
| #if defined(ABSL_INTERNAL_USE_ANDROID_GETAUXVAL)
 | |
| #include <dlfcn.h>
 | |
| 
 | |
| static uint32_t GetAuxval(uint32_t hwcap_type) {
 | |
|   // NOLINTNEXTLINE(runtime/int)
 | |
|   typedef unsigned long (*getauxval_func_t)(unsigned long);
 | |
| 
 | |
|   dlerror();  // Cleaning error state before calling dlopen.
 | |
|   void* libc_handle = dlopen("libc.so", RTLD_NOW);
 | |
|   if (!libc_handle) {
 | |
|     return 0;
 | |
|   }
 | |
|   uint32_t result = 0;
 | |
|   void* sym = dlsym(libc_handle, "getauxval");
 | |
|   if (sym) {
 | |
|     getauxval_func_t func;
 | |
|     memcpy(&func, &sym, sizeof(func));
 | |
|     result = static_cast<uint32_t>((*func)(hwcap_type));
 | |
|   }
 | |
|   dlclose(libc_handle);
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| namespace random_internal {
 | |
| 
 | |
| // The default return at the end of the function might be unreachable depending
 | |
| // on the configuration. Ignore that warning.
 | |
| #if defined(__clang__)
 | |
| #pragma clang diagnostic push
 | |
| #pragma clang diagnostic ignored "-Wunreachable-code-return"
 | |
| #endif
 | |
| 
 | |
| // CPUSupportsRandenHwAes returns whether the CPU is a microarchitecture
 | |
| // which supports the crpyto/aes instructions or extensions necessary to use the
 | |
| // accelerated RandenHwAes implementation.
 | |
| //
 | |
| // 1. For x86 it is sufficient to use the CPUID instruction to detect whether
 | |
| //    the cpu supports AES instructions. Done.
 | |
| //
 | |
| // Fon non-x86 it is much more complicated.
 | |
| //
 | |
| // 2. When ABSL_INTERNAL_USE_GETAUXVAL is defined, use getauxval() (either
 | |
| //    the direct c-library version, or the android probing version which loads
 | |
| //    libc), and read the hardware capability bits.
 | |
| //    This is based on the technique used by boringssl uses to detect
 | |
| //    cpu capabilities, and should allow us to enable crypto in the android
 | |
| //    builds where it is supported.
 | |
| //
 | |
| // 3. Use the default for the compiler architecture.
 | |
| //
 | |
| 
 | |
| bool CPUSupportsRandenHwAes() {
 | |
| #if defined(ABSL_INTERNAL_USE_X86_CPUID)
 | |
|   // 1. For x86: Use CPUID to detect the required AES instruction set.
 | |
|   int regs[4];
 | |
|   __cpuid(reinterpret_cast<int*>(regs), 1);
 | |
|   return regs[2] & (1 << 25);  // AES
 | |
| 
 | |
| #elif defined(ABSL_INTERNAL_USE_GETAUXVAL)
 | |
|   // 2. Use getauxval() to read the hardware bits and determine
 | |
|   // cpu capabilities.
 | |
| 
 | |
| #define AT_HWCAP 16
 | |
| #define AT_HWCAP2 26
 | |
| #if defined(ABSL_ARCH_PPC)
 | |
|   // For Power / PPC: Expect that the cpu supports VCRYPTO
 | |
|   // See https://members.openpowerfoundation.org/document/dl/576
 | |
|   // VCRYPTO should be present in POWER8 >= 2.07.
 | |
|   // Uses Linux kernel constants from arch/powerpc/include/uapi/asm/cputable.h
 | |
|   static const uint32_t kVCRYPTO = 0x02000000;
 | |
|   const uint32_t hwcap = GetAuxval(AT_HWCAP2);
 | |
|   return (hwcap & kVCRYPTO) != 0;
 | |
| 
 | |
| #elif defined(ABSL_ARCH_ARM)
 | |
|   // For ARM: Require crypto+neon
 | |
|   // http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0500f/CIHBIBBA.html
 | |
|   // Uses Linux kernel constants from arch/arm64/include/asm/hwcap.h
 | |
|   static const uint32_t kNEON = 1 << 12;
 | |
|   uint32_t hwcap = GetAuxval(AT_HWCAP);
 | |
|   if ((hwcap & kNEON) == 0) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // And use it again to detect AES.
 | |
|   static const uint32_t kAES = 1 << 0;
 | |
|   const uint32_t hwcap2 = GetAuxval(AT_HWCAP2);
 | |
|   return (hwcap2 & kAES) != 0;
 | |
| 
 | |
| #elif defined(ABSL_ARCH_AARCH64)
 | |
|   // For AARCH64: Require crypto+neon
 | |
|   // http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0500f/CIHBIBBA.html
 | |
|   static const uint32_t kNEON = 1 << 1;
 | |
|   static const uint32_t kAES = 1 << 3;
 | |
|   const uint32_t hwcap = GetAuxval(AT_HWCAP);
 | |
|   return ((hwcap & kNEON) != 0) && ((hwcap & kAES) != 0);
 | |
| #endif
 | |
| 
 | |
| #else  // ABSL_INTERNAL_USE_GETAUXVAL
 | |
|   // 3. By default, assume that the compiler default.
 | |
|   return ABSL_HAVE_ACCELERATED_AES ? true : false;
 | |
| 
 | |
| #endif
 | |
|   // NOTE: There are some other techniques that may be worth trying:
 | |
|   //
 | |
|   // * Use an environment variable: ABSL_RANDOM_USE_HWAES
 | |
|   //
 | |
|   // * Rely on compiler-generated target-based dispatch.
 | |
|   // Using x86/gcc it might look something like this:
 | |
|   //
 | |
|   // int __attribute__((target("aes"))) HasAes() { return 1; }
 | |
|   // int __attribute__((target("default"))) HasAes() { return 0; }
 | |
|   //
 | |
|   // This does not work on all architecture/compiler combinations.
 | |
|   //
 | |
|   // * On Linux consider reading /proc/cpuinfo and/or /proc/self/auxv.
 | |
|   // These files have lines which are easy to parse; for ARM/AARCH64 it is quite
 | |
|   // easy to find the Features: line and extract aes / neon. Likewise for
 | |
|   // PPC.
 | |
|   //
 | |
|   // * Fork a process and test for SIGILL:
 | |
|   //
 | |
|   // * Many architectures have instructions to read the ISA. Unfortunately
 | |
|   //   most of those require that the code is running in ring 0 /
 | |
|   //   protected-mode.
 | |
|   //
 | |
|   //   There are several examples. e.g. Valgrind detects PPC ISA 2.07:
 | |
|   //   https://github.com/lu-zero/valgrind/blob/master/none/tests/ppc64/test_isa_2_07_part1.c
 | |
|   //
 | |
|   //   MRS <Xt>, ID_AA64ISAR0_EL1 ; Read ID_AA64ISAR0_EL1 into Xt
 | |
|   //
 | |
|   //   uint64_t val;
 | |
|   //   __asm __volatile("mrs %0, id_aa64isar0_el1" :"=&r" (val));
 | |
|   //
 | |
|   // * Use a CPUID-style heuristic database.
 | |
|   //
 | |
|   // * On Apple (__APPLE__), AES is available on Arm v8.
 | |
|   //   https://stackoverflow.com/questions/45637888/how-to-determine-armv8-features-at-runtime-on-ios
 | |
| }
 | |
| 
 | |
| #if defined(__clang__)
 | |
| #pragma clang diagnostic pop
 | |
| #endif
 | |
| 
 | |
| }  // namespace random_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 |