2600 lines
		
	
	
	
		
			92 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2600 lines
		
	
	
	
		
			92 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2018 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| // A btree implementation of the STL set and map interfaces. A btree is smaller
 | |
| // and generally also faster than STL set/map (refer to the benchmarks below).
 | |
| // The red-black tree implementation of STL set/map has an overhead of 3
 | |
| // pointers (left, right and parent) plus the node color information for each
 | |
| // stored value. So a set<int32_t> consumes 40 bytes for each value stored in
 | |
| // 64-bit mode. This btree implementation stores multiple values on fixed
 | |
| // size nodes (usually 256 bytes) and doesn't store child pointers for leaf
 | |
| // nodes. The result is that a btree_set<int32_t> may use much less memory per
 | |
| // stored value. For the random insertion benchmark in btree_bench.cc, a
 | |
| // btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value.
 | |
| //
 | |
| // The packing of multiple values on to each node of a btree has another effect
 | |
| // besides better space utilization: better cache locality due to fewer cache
 | |
| // lines being accessed. Better cache locality translates into faster
 | |
| // operations.
 | |
| //
 | |
| // CAVEATS
 | |
| //
 | |
| // Insertions and deletions on a btree can cause splitting, merging or
 | |
| // rebalancing of btree nodes. And even without these operations, insertions
 | |
| // and deletions on a btree will move values around within a node. In both
 | |
| // cases, the result is that insertions and deletions can invalidate iterators
 | |
| // pointing to values other than the one being inserted/deleted. Therefore, this
 | |
| // container does not provide pointer stability. This is notably different from
 | |
| // STL set/map which takes care to not invalidate iterators on insert/erase
 | |
| // except, of course, for iterators pointing to the value being erased.  A
 | |
| // partial workaround when erasing is available: erase() returns an iterator
 | |
| // pointing to the item just after the one that was erased (or end() if none
 | |
| // exists).
 | |
| 
 | |
| #ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_
 | |
| #define ABSL_CONTAINER_INTERNAL_BTREE_H_
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <cstring>
 | |
| #include <functional>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <new>
 | |
| #include <string>
 | |
| #include <type_traits>
 | |
| #include <utility>
 | |
| 
 | |
| #include "absl/base/macros.h"
 | |
| #include "absl/container/internal/common.h"
 | |
| #include "absl/container/internal/compressed_tuple.h"
 | |
| #include "absl/container/internal/container_memory.h"
 | |
| #include "absl/container/internal/layout.h"
 | |
| #include "absl/memory/memory.h"
 | |
| #include "absl/meta/type_traits.h"
 | |
| #include "absl/strings/cord.h"
 | |
| #include "absl/strings/string_view.h"
 | |
| #include "absl/types/compare.h"
 | |
| #include "absl/utility/utility.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| namespace container_internal {
 | |
| 
 | |
| // A helper class that indicates if the Compare parameter is a key-compare-to
 | |
| // comparator.
 | |
| template <typename Compare, typename T>
 | |
| using btree_is_key_compare_to =
 | |
|     std::is_convertible<absl::result_of_t<Compare(const T &, const T &)>,
 | |
|                         absl::weak_ordering>;
 | |
| 
 | |
| struct StringBtreeDefaultLess {
 | |
|   using is_transparent = void;
 | |
| 
 | |
|   StringBtreeDefaultLess() = default;
 | |
| 
 | |
|   // Compatibility constructor.
 | |
|   StringBtreeDefaultLess(std::less<std::string>) {}  // NOLINT
 | |
|   StringBtreeDefaultLess(std::less<string_view>) {}  // NOLINT
 | |
| 
 | |
|   absl::weak_ordering operator()(absl::string_view lhs,
 | |
|                                  absl::string_view rhs) const {
 | |
|     return compare_internal::compare_result_as_ordering(lhs.compare(rhs));
 | |
|   }
 | |
|   StringBtreeDefaultLess(std::less<absl::Cord>) {}  // NOLINT
 | |
|   absl::weak_ordering operator()(const absl::Cord &lhs,
 | |
|                                  const absl::Cord &rhs) const {
 | |
|     return compare_internal::compare_result_as_ordering(lhs.Compare(rhs));
 | |
|   }
 | |
|   absl::weak_ordering operator()(const absl::Cord &lhs,
 | |
|                                  absl::string_view rhs) const {
 | |
|     return compare_internal::compare_result_as_ordering(lhs.Compare(rhs));
 | |
|   }
 | |
|   absl::weak_ordering operator()(absl::string_view lhs,
 | |
|                                  const absl::Cord &rhs) const {
 | |
|     return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs));
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StringBtreeDefaultGreater {
 | |
|   using is_transparent = void;
 | |
| 
 | |
|   StringBtreeDefaultGreater() = default;
 | |
| 
 | |
|   StringBtreeDefaultGreater(std::greater<std::string>) {}  // NOLINT
 | |
|   StringBtreeDefaultGreater(std::greater<string_view>) {}  // NOLINT
 | |
| 
 | |
|   absl::weak_ordering operator()(absl::string_view lhs,
 | |
|                                  absl::string_view rhs) const {
 | |
|     return compare_internal::compare_result_as_ordering(rhs.compare(lhs));
 | |
|   }
 | |
|   StringBtreeDefaultGreater(std::greater<absl::Cord>) {}  // NOLINT
 | |
|   absl::weak_ordering operator()(const absl::Cord &lhs,
 | |
|                                  const absl::Cord &rhs) const {
 | |
|     return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
 | |
|   }
 | |
|   absl::weak_ordering operator()(const absl::Cord &lhs,
 | |
|                                  absl::string_view rhs) const {
 | |
|     return compare_internal::compare_result_as_ordering(-lhs.Compare(rhs));
 | |
|   }
 | |
|   absl::weak_ordering operator()(absl::string_view lhs,
 | |
|                                  const absl::Cord &rhs) const {
 | |
|     return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
 | |
|   }
 | |
| };
 | |
| 
 | |
| // A helper class to convert a boolean comparison into a three-way "compare-to"
 | |
| // comparison that returns a negative value to indicate less-than, zero to
 | |
| // indicate equality and a positive value to indicate greater-than. This helper
 | |
| // class is specialized for less<std::string>, greater<std::string>,
 | |
| // less<string_view>, greater<string_view>, less<absl::Cord>, and
 | |
| // greater<absl::Cord>.
 | |
| //
 | |
| // key_compare_to_adapter is provided so that btree users
 | |
| // automatically get the more efficient compare-to code when using common
 | |
| // google string types with common comparison functors.
 | |
| // These string-like specializations also turn on heterogeneous lookup by
 | |
| // default.
 | |
| template <typename Compare>
 | |
| struct key_compare_to_adapter {
 | |
|   using type = Compare;
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct key_compare_to_adapter<std::less<std::string>> {
 | |
|   using type = StringBtreeDefaultLess;
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct key_compare_to_adapter<std::greater<std::string>> {
 | |
|   using type = StringBtreeDefaultGreater;
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct key_compare_to_adapter<std::less<absl::string_view>> {
 | |
|   using type = StringBtreeDefaultLess;
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct key_compare_to_adapter<std::greater<absl::string_view>> {
 | |
|   using type = StringBtreeDefaultGreater;
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct key_compare_to_adapter<std::less<absl::Cord>> {
 | |
|   using type = StringBtreeDefaultLess;
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct key_compare_to_adapter<std::greater<absl::Cord>> {
 | |
|   using type = StringBtreeDefaultGreater;
 | |
| };
 | |
| 
 | |
| template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
 | |
|           bool Multi, typename SlotPolicy>
 | |
| struct common_params {
 | |
|   // If Compare is a common comparator for a string-like type, then we adapt it
 | |
|   // to use heterogeneous lookup and to be a key-compare-to comparator.
 | |
|   using key_compare = typename key_compare_to_adapter<Compare>::type;
 | |
|   // A type which indicates if we have a key-compare-to functor or a plain old
 | |
|   // key-compare functor.
 | |
|   using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>;
 | |
| 
 | |
|   using allocator_type = Alloc;
 | |
|   using key_type = Key;
 | |
|   using size_type = std::make_signed<size_t>::type;
 | |
|   using difference_type = ptrdiff_t;
 | |
| 
 | |
|   // True if this is a multiset or multimap.
 | |
|   using is_multi_container = std::integral_constant<bool, Multi>;
 | |
| 
 | |
|   using slot_policy = SlotPolicy;
 | |
|   using slot_type = typename slot_policy::slot_type;
 | |
|   using value_type = typename slot_policy::value_type;
 | |
|   using init_type = typename slot_policy::mutable_value_type;
 | |
|   using pointer = value_type *;
 | |
|   using const_pointer = const value_type *;
 | |
|   using reference = value_type &;
 | |
|   using const_reference = const value_type &;
 | |
| 
 | |
|   enum {
 | |
|     kTargetNodeSize = TargetNodeSize,
 | |
| 
 | |
|     // Upper bound for the available space for values. This is largest for leaf
 | |
|     // nodes, which have overhead of at least a pointer + 4 bytes (for storing
 | |
|     // 3 field_types and an enum).
 | |
|     kNodeValueSpace =
 | |
|         TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4),
 | |
|   };
 | |
| 
 | |
|   // This is an integral type large enough to hold as many
 | |
|   // ValueSize-values as will fit a node of TargetNodeSize bytes.
 | |
|   using node_count_type =
 | |
|       absl::conditional_t<(kNodeValueSpace / sizeof(value_type) >
 | |
|                            (std::numeric_limits<uint8_t>::max)()),
 | |
|                           uint16_t, uint8_t>;  // NOLINT
 | |
| 
 | |
|   // The following methods are necessary for passing this struct as PolicyTraits
 | |
|   // for node_handle and/or are used within btree.
 | |
|   static value_type &element(slot_type *slot) {
 | |
|     return slot_policy::element(slot);
 | |
|   }
 | |
|   static const value_type &element(const slot_type *slot) {
 | |
|     return slot_policy::element(slot);
 | |
|   }
 | |
|   template <class... Args>
 | |
|   static void construct(Alloc *alloc, slot_type *slot, Args &&... args) {
 | |
|     slot_policy::construct(alloc, slot, std::forward<Args>(args)...);
 | |
|   }
 | |
|   static void construct(Alloc *alloc, slot_type *slot, slot_type *other) {
 | |
|     slot_policy::construct(alloc, slot, other);
 | |
|   }
 | |
|   static void destroy(Alloc *alloc, slot_type *slot) {
 | |
|     slot_policy::destroy(alloc, slot);
 | |
|   }
 | |
|   static void transfer(Alloc *alloc, slot_type *new_slot, slot_type *old_slot) {
 | |
|     construct(alloc, new_slot, old_slot);
 | |
|     destroy(alloc, old_slot);
 | |
|   }
 | |
|   static void swap(Alloc *alloc, slot_type *a, slot_type *b) {
 | |
|     slot_policy::swap(alloc, a, b);
 | |
|   }
 | |
|   static void move(Alloc *alloc, slot_type *src, slot_type *dest) {
 | |
|     slot_policy::move(alloc, src, dest);
 | |
|   }
 | |
|   static void move(Alloc *alloc, slot_type *first, slot_type *last,
 | |
|                    slot_type *result) {
 | |
|     slot_policy::move(alloc, first, last, result);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // A parameters structure for holding the type parameters for a btree_map.
 | |
| // Compare and Alloc should be nothrow copy-constructible.
 | |
| template <typename Key, typename Data, typename Compare, typename Alloc,
 | |
|           int TargetNodeSize, bool Multi>
 | |
| struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
 | |
|                                   map_slot_policy<Key, Data>> {
 | |
|   using super_type = typename map_params::common_params;
 | |
|   using mapped_type = Data;
 | |
|   // This type allows us to move keys when it is safe to do so. It is safe
 | |
|   // for maps in which value_type and mutable_value_type are layout compatible.
 | |
|   using slot_policy = typename super_type::slot_policy;
 | |
|   using slot_type = typename super_type::slot_type;
 | |
|   using value_type = typename super_type::value_type;
 | |
|   using init_type = typename super_type::init_type;
 | |
| 
 | |
|   using key_compare = typename super_type::key_compare;
 | |
|   // Inherit from key_compare for empty base class optimization.
 | |
|   struct value_compare : private key_compare {
 | |
|     value_compare() = default;
 | |
|     explicit value_compare(const key_compare &cmp) : key_compare(cmp) {}
 | |
| 
 | |
|     template <typename T, typename U>
 | |
|     auto operator()(const T &left, const U &right) const
 | |
|         -> decltype(std::declval<key_compare>()(left.first, right.first)) {
 | |
|       return key_compare::operator()(left.first, right.first);
 | |
|     }
 | |
|   };
 | |
|   using is_map_container = std::true_type;
 | |
| 
 | |
|   static const Key &key(const value_type &value) { return value.first; }
 | |
|   static const Key &key(const init_type &init) { return init.first; }
 | |
|   static const Key &key(const slot_type *s) { return slot_policy::key(s); }
 | |
|   static mapped_type &value(value_type *value) { return value->second; }
 | |
| };
 | |
| 
 | |
| // This type implements the necessary functions from the
 | |
| // absl::container_internal::slot_type interface.
 | |
| template <typename Key>
 | |
| struct set_slot_policy {
 | |
|   using slot_type = Key;
 | |
|   using value_type = Key;
 | |
|   using mutable_value_type = Key;
 | |
| 
 | |
|   static value_type &element(slot_type *slot) { return *slot; }
 | |
|   static const value_type &element(const slot_type *slot) { return *slot; }
 | |
| 
 | |
|   template <typename Alloc, class... Args>
 | |
|   static void construct(Alloc *alloc, slot_type *slot, Args &&... args) {
 | |
|     absl::allocator_traits<Alloc>::construct(*alloc, slot,
 | |
|                                              std::forward<Args>(args)...);
 | |
|   }
 | |
| 
 | |
|   template <typename Alloc>
 | |
|   static void construct(Alloc *alloc, slot_type *slot, slot_type *other) {
 | |
|     absl::allocator_traits<Alloc>::construct(*alloc, slot, std::move(*other));
 | |
|   }
 | |
| 
 | |
|   template <typename Alloc>
 | |
|   static void destroy(Alloc *alloc, slot_type *slot) {
 | |
|     absl::allocator_traits<Alloc>::destroy(*alloc, slot);
 | |
|   }
 | |
| 
 | |
|   template <typename Alloc>
 | |
|   static void swap(Alloc * /*alloc*/, slot_type *a, slot_type *b) {
 | |
|     using std::swap;
 | |
|     swap(*a, *b);
 | |
|   }
 | |
| 
 | |
|   template <typename Alloc>
 | |
|   static void move(Alloc * /*alloc*/, slot_type *src, slot_type *dest) {
 | |
|     *dest = std::move(*src);
 | |
|   }
 | |
| 
 | |
|   template <typename Alloc>
 | |
|   static void move(Alloc *alloc, slot_type *first, slot_type *last,
 | |
|                    slot_type *result) {
 | |
|     for (slot_type *src = first, *dest = result; src != last; ++src, ++dest)
 | |
|       move(alloc, src, dest);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // A parameters structure for holding the type parameters for a btree_set.
 | |
| // Compare and Alloc should be nothrow copy-constructible.
 | |
| template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
 | |
|           bool Multi>
 | |
| struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
 | |
|                                   set_slot_policy<Key>> {
 | |
|   using value_type = Key;
 | |
|   using slot_type = typename set_params::common_params::slot_type;
 | |
|   using value_compare = typename set_params::common_params::key_compare;
 | |
|   using is_map_container = std::false_type;
 | |
| 
 | |
|   static const Key &key(const value_type &value) { return value; }
 | |
|   static const Key &key(const slot_type *slot) { return *slot; }
 | |
| };
 | |
| 
 | |
| // An adapter class that converts a lower-bound compare into an upper-bound
 | |
| // compare. Note: there is no need to make a version of this adapter specialized
 | |
| // for key-compare-to functors because the upper-bound (the first value greater
 | |
| // than the input) is never an exact match.
 | |
| template <typename Compare>
 | |
| struct upper_bound_adapter {
 | |
|   explicit upper_bound_adapter(const Compare &c) : comp(c) {}
 | |
|   template <typename K1, typename K2>
 | |
|   bool operator()(const K1 &a, const K2 &b) const {
 | |
|     // Returns true when a is not greater than b.
 | |
|     return !compare_internal::compare_result_as_less_than(comp(b, a));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   Compare comp;
 | |
| };
 | |
| 
 | |
| enum class MatchKind : uint8_t { kEq, kNe };
 | |
| 
 | |
| template <typename V, bool IsCompareTo>
 | |
| struct SearchResult {
 | |
|   V value;
 | |
|   MatchKind match;
 | |
| 
 | |
|   static constexpr bool HasMatch() { return true; }
 | |
|   bool IsEq() const { return match == MatchKind::kEq; }
 | |
| };
 | |
| 
 | |
| // When we don't use CompareTo, `match` is not present.
 | |
| // This ensures that callers can't use it accidentally when it provides no
 | |
| // useful information.
 | |
| template <typename V>
 | |
| struct SearchResult<V, false> {
 | |
|   V value;
 | |
| 
 | |
|   static constexpr bool HasMatch() { return false; }
 | |
|   static constexpr bool IsEq() { return false; }
 | |
| };
 | |
| 
 | |
| // A node in the btree holding. The same node type is used for both internal
 | |
| // and leaf nodes in the btree, though the nodes are allocated in such a way
 | |
| // that the children array is only valid in internal nodes.
 | |
| template <typename Params>
 | |
| class btree_node {
 | |
|   using is_key_compare_to = typename Params::is_key_compare_to;
 | |
|   using is_multi_container = typename Params::is_multi_container;
 | |
|   using field_type = typename Params::node_count_type;
 | |
|   using allocator_type = typename Params::allocator_type;
 | |
|   using slot_type = typename Params::slot_type;
 | |
| 
 | |
|  public:
 | |
|   using params_type = Params;
 | |
|   using key_type = typename Params::key_type;
 | |
|   using value_type = typename Params::value_type;
 | |
|   using pointer = typename Params::pointer;
 | |
|   using const_pointer = typename Params::const_pointer;
 | |
|   using reference = typename Params::reference;
 | |
|   using const_reference = typename Params::const_reference;
 | |
|   using key_compare = typename Params::key_compare;
 | |
|   using size_type = typename Params::size_type;
 | |
|   using difference_type = typename Params::difference_type;
 | |
| 
 | |
|   // Btree decides whether to use linear node search as follows:
 | |
|   //   - If the key is arithmetic and the comparator is std::less or
 | |
|   //     std::greater, choose linear.
 | |
|   //   - Otherwise, choose binary.
 | |
|   // TODO(ezb): Might make sense to add condition(s) based on node-size.
 | |
|   using use_linear_search = std::integral_constant<
 | |
|       bool,
 | |
|                 std::is_arithmetic<key_type>::value &&
 | |
|                     (std::is_same<std::less<key_type>, key_compare>::value ||
 | |
|                      std::is_same<std::greater<key_type>, key_compare>::value)>;
 | |
| 
 | |
|   // This class is organized by gtl::Layout as if it had the following
 | |
|   // structure:
 | |
|   //   // A pointer to the node's parent.
 | |
|   //   btree_node *parent;
 | |
|   //
 | |
|   //   // The position of the node in the node's parent.
 | |
|   //   field_type position;
 | |
|   //   // The index of the first populated value in `values`.
 | |
|   //   // TODO(ezb): right now, `start` is always 0. Update insertion/merge
 | |
|   //   // logic to allow for floating storage within nodes.
 | |
|   //   field_type start;
 | |
|   //   // The index after the last populated value in `values`. Currently, this
 | |
|   //   // is the same as the count of values.
 | |
|   //   field_type finish;
 | |
|   //   // The maximum number of values the node can hold. This is an integer in
 | |
|   //   // [1, kNodeValues] for root leaf nodes, kNodeValues for non-root leaf
 | |
|   //   // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal
 | |
|   //   // nodes (even though there are still kNodeValues values in the node).
 | |
|   //   // TODO(ezb): make max_count use only 4 bits and record log2(capacity)
 | |
|   //   // to free extra bits for is_root, etc.
 | |
|   //   field_type max_count;
 | |
|   //
 | |
|   //   // The array of values. The capacity is `max_count` for leaf nodes and
 | |
|   //   // kNodeValues for internal nodes. Only the values in
 | |
|   //   // [start, finish) have been initialized and are valid.
 | |
|   //   slot_type values[max_count];
 | |
|   //
 | |
|   //   // The array of child pointers. The keys in children[i] are all less
 | |
|   //   // than key(i). The keys in children[i + 1] are all greater than key(i).
 | |
|   //   // There are 0 children for leaf nodes and kNodeValues + 1 children for
 | |
|   //   // internal nodes.
 | |
|   //   btree_node *children[kNodeValues + 1];
 | |
|   //
 | |
|   // This class is only constructed by EmptyNodeType. Normally, pointers to the
 | |
|   // layout above are allocated, cast to btree_node*, and de-allocated within
 | |
|   // the btree implementation.
 | |
|   ~btree_node() = default;
 | |
|   btree_node(btree_node const &) = delete;
 | |
|   btree_node &operator=(btree_node const &) = delete;
 | |
| 
 | |
|   // Public for EmptyNodeType.
 | |
|   constexpr static size_type Alignment() {
 | |
|     static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(),
 | |
|                   "Alignment of all nodes must be equal.");
 | |
|     return InternalLayout().Alignment();
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   btree_node() = default;
 | |
| 
 | |
|  private:
 | |
|   using layout_type = absl::container_internal::Layout<btree_node *, field_type,
 | |
|                                                        slot_type, btree_node *>;
 | |
|   constexpr static size_type SizeWithNValues(size_type n) {
 | |
|     return layout_type(/*parent*/ 1,
 | |
|                        /*position, start, finish, max_count*/ 4,
 | |
|                        /*values*/ n,
 | |
|                        /*children*/ 0)
 | |
|         .AllocSize();
 | |
|   }
 | |
|   // A lower bound for the overhead of fields other than values in a leaf node.
 | |
|   constexpr static size_type MinimumOverhead() {
 | |
|     return SizeWithNValues(1) - sizeof(value_type);
 | |
|   }
 | |
| 
 | |
|   // Compute how many values we can fit onto a leaf node taking into account
 | |
|   // padding.
 | |
|   constexpr static size_type NodeTargetValues(const int begin, const int end) {
 | |
|     return begin == end ? begin
 | |
|                         : SizeWithNValues((begin + end) / 2 + 1) >
 | |
|                                   params_type::kTargetNodeSize
 | |
|                               ? NodeTargetValues(begin, (begin + end) / 2)
 | |
|                               : NodeTargetValues((begin + end) / 2 + 1, end);
 | |
|   }
 | |
| 
 | |
|   enum {
 | |
|     kTargetNodeSize = params_type::kTargetNodeSize,
 | |
|     kNodeTargetValues = NodeTargetValues(0, params_type::kTargetNodeSize),
 | |
| 
 | |
|     // We need a minimum of 3 values per internal node in order to perform
 | |
|     // splitting (1 value for the two nodes involved in the split and 1 value
 | |
|     // propagated to the parent as the delimiter for the split).
 | |
|     kNodeValues = kNodeTargetValues >= 3 ? kNodeTargetValues : 3,
 | |
| 
 | |
|     // The node is internal (i.e. is not a leaf node) if and only if `max_count`
 | |
|     // has this value.
 | |
|     kInternalNodeMaxCount = 0,
 | |
|   };
 | |
| 
 | |
|   // Leaves can have less than kNodeValues values.
 | |
|   constexpr static layout_type LeafLayout(const int max_values = kNodeValues) {
 | |
|     return layout_type(/*parent*/ 1,
 | |
|                        /*position, start, finish, max_count*/ 4,
 | |
|                        /*values*/ max_values,
 | |
|                        /*children*/ 0);
 | |
|   }
 | |
|   constexpr static layout_type InternalLayout() {
 | |
|     return layout_type(/*parent*/ 1,
 | |
|                        /*position, start, finish, max_count*/ 4,
 | |
|                        /*values*/ kNodeValues,
 | |
|                        /*children*/ kNodeValues + 1);
 | |
|   }
 | |
|   constexpr static size_type LeafSize(const int max_values = kNodeValues) {
 | |
|     return LeafLayout(max_values).AllocSize();
 | |
|   }
 | |
|   constexpr static size_type InternalSize() {
 | |
|     return InternalLayout().AllocSize();
 | |
|   }
 | |
| 
 | |
|   // N is the index of the type in the Layout definition.
 | |
|   // ElementType<N> is the Nth type in the Layout definition.
 | |
|   template <size_type N>
 | |
|   inline typename layout_type::template ElementType<N> *GetField() {
 | |
|     // We assert that we don't read from values that aren't there.
 | |
|     assert(N < 3 || !leaf());
 | |
|     return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this));
 | |
|   }
 | |
|   template <size_type N>
 | |
|   inline const typename layout_type::template ElementType<N> *GetField() const {
 | |
|     assert(N < 3 || !leaf());
 | |
|     return InternalLayout().template Pointer<N>(
 | |
|         reinterpret_cast<const char *>(this));
 | |
|   }
 | |
|   void set_parent(btree_node *p) { *GetField<0>() = p; }
 | |
|   field_type &mutable_finish() { return GetField<1>()[2]; }
 | |
|   slot_type *slot(int i) { return &GetField<2>()[i]; }
 | |
|   slot_type *start_slot() { return slot(start()); }
 | |
|   slot_type *finish_slot() { return slot(finish()); }
 | |
|   const slot_type *slot(int i) const { return &GetField<2>()[i]; }
 | |
|   void set_position(field_type v) { GetField<1>()[0] = v; }
 | |
|   void set_start(field_type v) { GetField<1>()[1] = v; }
 | |
|   void set_finish(field_type v) { GetField<1>()[2] = v; }
 | |
|   // This method is only called by the node init methods.
 | |
|   void set_max_count(field_type v) { GetField<1>()[3] = v; }
 | |
| 
 | |
|  public:
 | |
|   // Whether this is a leaf node or not. This value doesn't change after the
 | |
|   // node is created.
 | |
|   bool leaf() const { return GetField<1>()[3] != kInternalNodeMaxCount; }
 | |
| 
 | |
|   // Getter for the position of this node in its parent.
 | |
|   field_type position() const { return GetField<1>()[0]; }
 | |
| 
 | |
|   // Getter for the offset of the first value in the `values` array.
 | |
|   field_type start() const {
 | |
|     // TODO(ezb): when floating storage is implemented, return GetField<1>()[1];
 | |
|     assert(GetField<1>()[1] == 0);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Getter for the offset after the last value in the `values` array.
 | |
|   field_type finish() const { return GetField<1>()[2]; }
 | |
| 
 | |
|   // Getters for the number of values stored in this node.
 | |
|   field_type count() const {
 | |
|     assert(finish() >= start());
 | |
|     return finish() - start();
 | |
|   }
 | |
|   field_type max_count() const {
 | |
|     // Internal nodes have max_count==kInternalNodeMaxCount.
 | |
|     // Leaf nodes have max_count in [1, kNodeValues].
 | |
|     const field_type max_count = GetField<1>()[3];
 | |
|     return max_count == field_type{kInternalNodeMaxCount}
 | |
|                ? field_type{kNodeValues}
 | |
|                : max_count;
 | |
|   }
 | |
| 
 | |
|   // Getter for the parent of this node.
 | |
|   btree_node *parent() const { return *GetField<0>(); }
 | |
|   // Getter for whether the node is the root of the tree. The parent of the
 | |
|   // root of the tree is the leftmost node in the tree which is guaranteed to
 | |
|   // be a leaf.
 | |
|   bool is_root() const { return parent()->leaf(); }
 | |
|   void make_root() {
 | |
|     assert(parent()->is_root());
 | |
|     set_parent(parent()->parent());
 | |
|   }
 | |
| 
 | |
|   // Getters for the key/value at position i in the node.
 | |
|   const key_type &key(int i) const { return params_type::key(slot(i)); }
 | |
|   reference value(int i) { return params_type::element(slot(i)); }
 | |
|   const_reference value(int i) const { return params_type::element(slot(i)); }
 | |
| 
 | |
|   // Getters/setter for the child at position i in the node.
 | |
|   btree_node *child(int i) const { return GetField<3>()[i]; }
 | |
|   btree_node *start_child() const { return child(start()); }
 | |
|   btree_node *&mutable_child(int i) { return GetField<3>()[i]; }
 | |
|   void clear_child(int i) {
 | |
|     absl::container_internal::SanitizerPoisonObject(&mutable_child(i));
 | |
|   }
 | |
|   void set_child(int i, btree_node *c) {
 | |
|     absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i));
 | |
|     mutable_child(i) = c;
 | |
|     c->set_position(i);
 | |
|   }
 | |
|   void init_child(int i, btree_node *c) {
 | |
|     set_child(i, c);
 | |
|     c->set_parent(this);
 | |
|   }
 | |
| 
 | |
|   // Returns the position of the first value whose key is not less than k.
 | |
|   template <typename K>
 | |
|   SearchResult<int, is_key_compare_to::value> lower_bound(
 | |
|       const K &k, const key_compare &comp) const {
 | |
|     return use_linear_search::value ? linear_search(k, comp)
 | |
|                                     : binary_search(k, comp);
 | |
|   }
 | |
|   // Returns the position of the first value whose key is greater than k.
 | |
|   template <typename K>
 | |
|   int upper_bound(const K &k, const key_compare &comp) const {
 | |
|     auto upper_compare = upper_bound_adapter<key_compare>(comp);
 | |
|     return use_linear_search::value ? linear_search(k, upper_compare).value
 | |
|                                     : binary_search(k, upper_compare).value;
 | |
|   }
 | |
| 
 | |
|   template <typename K, typename Compare>
 | |
|   SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value>
 | |
|   linear_search(const K &k, const Compare &comp) const {
 | |
|     return linear_search_impl(k, start(), finish(), comp,
 | |
|                               btree_is_key_compare_to<Compare, key_type>());
 | |
|   }
 | |
| 
 | |
|   template <typename K, typename Compare>
 | |
|   SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value>
 | |
|   binary_search(const K &k, const Compare &comp) const {
 | |
|     return binary_search_impl(k, start(), finish(), comp,
 | |
|                               btree_is_key_compare_to<Compare, key_type>());
 | |
|   }
 | |
| 
 | |
|   // Returns the position of the first value whose key is not less than k using
 | |
|   // linear search performed using plain compare.
 | |
|   template <typename K, typename Compare>
 | |
|   SearchResult<int, false> linear_search_impl(
 | |
|       const K &k, int s, const int e, const Compare &comp,
 | |
|       std::false_type /* IsCompareTo */) const {
 | |
|     while (s < e) {
 | |
|       if (!comp(key(s), k)) {
 | |
|         break;
 | |
|       }
 | |
|       ++s;
 | |
|     }
 | |
|     return {s};
 | |
|   }
 | |
| 
 | |
|   // Returns the position of the first value whose key is not less than k using
 | |
|   // linear search performed using compare-to.
 | |
|   template <typename K, typename Compare>
 | |
|   SearchResult<int, true> linear_search_impl(
 | |
|       const K &k, int s, const int e, const Compare &comp,
 | |
|       std::true_type /* IsCompareTo */) const {
 | |
|     while (s < e) {
 | |
|       const absl::weak_ordering c = comp(key(s), k);
 | |
|       if (c == 0) {
 | |
|         return {s, MatchKind::kEq};
 | |
|       } else if (c > 0) {
 | |
|         break;
 | |
|       }
 | |
|       ++s;
 | |
|     }
 | |
|     return {s, MatchKind::kNe};
 | |
|   }
 | |
| 
 | |
|   // Returns the position of the first value whose key is not less than k using
 | |
|   // binary search performed using plain compare.
 | |
|   template <typename K, typename Compare>
 | |
|   SearchResult<int, false> binary_search_impl(
 | |
|       const K &k, int s, int e, const Compare &comp,
 | |
|       std::false_type /* IsCompareTo */) const {
 | |
|     while (s != e) {
 | |
|       const int mid = (s + e) >> 1;
 | |
|       if (comp(key(mid), k)) {
 | |
|         s = mid + 1;
 | |
|       } else {
 | |
|         e = mid;
 | |
|       }
 | |
|     }
 | |
|     return {s};
 | |
|   }
 | |
| 
 | |
|   // Returns the position of the first value whose key is not less than k using
 | |
|   // binary search performed using compare-to.
 | |
|   template <typename K, typename CompareTo>
 | |
|   SearchResult<int, true> binary_search_impl(
 | |
|       const K &k, int s, int e, const CompareTo &comp,
 | |
|       std::true_type /* IsCompareTo */) const {
 | |
|     if (is_multi_container::value) {
 | |
|       MatchKind exact_match = MatchKind::kNe;
 | |
|       while (s != e) {
 | |
|         const int mid = (s + e) >> 1;
 | |
|         const absl::weak_ordering c = comp(key(mid), k);
 | |
|         if (c < 0) {
 | |
|           s = mid + 1;
 | |
|         } else {
 | |
|           e = mid;
 | |
|           if (c == 0) {
 | |
|             // Need to return the first value whose key is not less than k,
 | |
|             // which requires continuing the binary search if this is a
 | |
|             // multi-container.
 | |
|             exact_match = MatchKind::kEq;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       return {s, exact_match};
 | |
|     } else {  // Not a multi-container.
 | |
|       while (s != e) {
 | |
|         const int mid = (s + e) >> 1;
 | |
|         const absl::weak_ordering c = comp(key(mid), k);
 | |
|         if (c < 0) {
 | |
|           s = mid + 1;
 | |
|         } else if (c > 0) {
 | |
|           e = mid;
 | |
|         } else {
 | |
|           return {mid, MatchKind::kEq};
 | |
|         }
 | |
|       }
 | |
|       return {s, MatchKind::kNe};
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Emplaces a value at position i, shifting all existing values and
 | |
|   // children at positions >= i to the right by 1.
 | |
|   template <typename... Args>
 | |
|   void emplace_value(size_type i, allocator_type *alloc, Args &&... args);
 | |
| 
 | |
|   // Removes the value at position i, shifting all existing values and children
 | |
|   // at positions > i to the left by 1.
 | |
|   void remove_value(int i, allocator_type *alloc);
 | |
| 
 | |
|   // Removes the values at positions [i, i + to_erase), shifting all values
 | |
|   // after that range to the left by to_erase. Does not change children at all.
 | |
|   void remove_values_ignore_children(int i, int to_erase,
 | |
|                                      allocator_type *alloc);
 | |
| 
 | |
|   // Rebalances a node with its right sibling.
 | |
|   void rebalance_right_to_left(int to_move, btree_node *right,
 | |
|                                allocator_type *alloc);
 | |
|   void rebalance_left_to_right(int to_move, btree_node *right,
 | |
|                                allocator_type *alloc);
 | |
| 
 | |
|   // Splits a node, moving a portion of the node's values to its right sibling.
 | |
|   void split(int insert_position, btree_node *dest, allocator_type *alloc);
 | |
| 
 | |
|   // Merges a node with its right sibling, moving all of the values and the
 | |
|   // delimiting key in the parent node onto itself.
 | |
|   void merge(btree_node *src, allocator_type *alloc);
 | |
| 
 | |
|   // Node allocation/deletion routines.
 | |
|   void init_leaf(btree_node *parent, int max_count) {
 | |
|     set_parent(parent);
 | |
|     set_position(0);
 | |
|     set_start(0);
 | |
|     set_finish(0);
 | |
|     set_max_count(max_count);
 | |
|     absl::container_internal::SanitizerPoisonMemoryRegion(
 | |
|         start_slot(), max_count * sizeof(slot_type));
 | |
|   }
 | |
|   void init_internal(btree_node *parent) {
 | |
|     init_leaf(parent, kNodeValues);
 | |
|     // Set `max_count` to a sentinel value to indicate that this node is
 | |
|     // internal.
 | |
|     set_max_count(kInternalNodeMaxCount);
 | |
|     absl::container_internal::SanitizerPoisonMemoryRegion(
 | |
|         &mutable_child(start()), (kNodeValues + 1) * sizeof(btree_node *));
 | |
|   }
 | |
|   void destroy(allocator_type *alloc) {
 | |
|     for (int i = start(); i < finish(); ++i) {
 | |
|       value_destroy(i, alloc);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  public:
 | |
|   // Exposed only for tests.
 | |
|   static bool testonly_uses_linear_node_search() {
 | |
|     return use_linear_search::value;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <typename... Args>
 | |
|   void value_init(const size_type i, allocator_type *alloc, Args &&... args) {
 | |
|     absl::container_internal::SanitizerUnpoisonObject(slot(i));
 | |
|     params_type::construct(alloc, slot(i), std::forward<Args>(args)...);
 | |
|   }
 | |
|   void value_destroy(const size_type i, allocator_type *alloc) {
 | |
|     params_type::destroy(alloc, slot(i));
 | |
|     absl::container_internal::SanitizerPoisonObject(slot(i));
 | |
|   }
 | |
| 
 | |
|   // Transfers value from slot `src_i` in `src_node` to slot `dest_i` in `this`.
 | |
|   void transfer(const size_type dest_i, const size_type src_i,
 | |
|                 btree_node *src_node, allocator_type *alloc) {
 | |
|     absl::container_internal::SanitizerUnpoisonObject(slot(dest_i));
 | |
|     params_type::transfer(alloc, slot(dest_i), src_node->slot(src_i));
 | |
|     absl::container_internal::SanitizerPoisonObject(src_node->slot(src_i));
 | |
|   }
 | |
| 
 | |
|   // Transfers `n` values starting at value `src_i` in `src_node` into the
 | |
|   // values starting at value `dest_i` in `this`.
 | |
|   void transfer_n(const size_type n, const size_type dest_i,
 | |
|                   const size_type src_i, btree_node *src_node,
 | |
|                   allocator_type *alloc) {
 | |
|     absl::container_internal::SanitizerUnpoisonMemoryRegion(
 | |
|         slot(dest_i), n * sizeof(slot_type));
 | |
|     for (slot_type *src = src_node->slot(src_i), *end = src + n,
 | |
|                    *dest = slot(dest_i);
 | |
|          src != end; ++src, ++dest) {
 | |
|       params_type::transfer(alloc, dest, src);
 | |
|     }
 | |
|     // We take care to avoid poisoning transferred-to nodes in case of overlap.
 | |
|     const size_type overlap =
 | |
|         this == src_node ? (std::max)(src_i, dest_i + n) - src_i : 0;
 | |
|     assert(n >= overlap);
 | |
|     absl::container_internal::SanitizerPoisonMemoryRegion(
 | |
|         src_node->slot(src_i + overlap), (n - overlap) * sizeof(slot_type));
 | |
|   }
 | |
| 
 | |
|   // Same as above, except that we start at the end and work our way to the
 | |
|   // beginning.
 | |
|   void transfer_n_backward(const size_type n, const size_type dest_i,
 | |
|                            const size_type src_i, btree_node *src_node,
 | |
|                            allocator_type *alloc) {
 | |
|     absl::container_internal::SanitizerUnpoisonMemoryRegion(
 | |
|         slot(dest_i), n * sizeof(slot_type));
 | |
|     for (slot_type *src = src_node->slot(src_i + n - 1), *end = src - n,
 | |
|                    *dest = slot(dest_i + n - 1);
 | |
|          src != end; --src, --dest) {
 | |
|       params_type::transfer(alloc, dest, src);
 | |
|     }
 | |
|     // We take care to avoid poisoning transferred-to nodes in case of overlap.
 | |
|     assert(this != src_node || dest_i >= src_i);
 | |
|     const size_type num_to_poison =
 | |
|         this == src_node ? (std::min)(n, dest_i - src_i) : n;
 | |
|     absl::container_internal::SanitizerPoisonMemoryRegion(
 | |
|         src_node->slot(src_i), num_to_poison * sizeof(slot_type));
 | |
|   }
 | |
| 
 | |
|   template <typename P>
 | |
|   friend class btree;
 | |
|   template <typename N, typename R, typename P>
 | |
|   friend struct btree_iterator;
 | |
|   friend class BtreeNodePeer;
 | |
| };
 | |
| 
 | |
| template <typename Node, typename Reference, typename Pointer>
 | |
| struct btree_iterator {
 | |
|  private:
 | |
|   using key_type = typename Node::key_type;
 | |
|   using size_type = typename Node::size_type;
 | |
|   using params_type = typename Node::params_type;
 | |
| 
 | |
|   using node_type = Node;
 | |
|   using normal_node = typename std::remove_const<Node>::type;
 | |
|   using const_node = const Node;
 | |
|   using normal_pointer = typename params_type::pointer;
 | |
|   using normal_reference = typename params_type::reference;
 | |
|   using const_pointer = typename params_type::const_pointer;
 | |
|   using const_reference = typename params_type::const_reference;
 | |
|   using slot_type = typename params_type::slot_type;
 | |
| 
 | |
|   using iterator =
 | |
|       btree_iterator<normal_node, normal_reference, normal_pointer>;
 | |
|   using const_iterator =
 | |
|       btree_iterator<const_node, const_reference, const_pointer>;
 | |
| 
 | |
|  public:
 | |
|   // These aliases are public for std::iterator_traits.
 | |
|   using difference_type = typename Node::difference_type;
 | |
|   using value_type = typename params_type::value_type;
 | |
|   using pointer = Pointer;
 | |
|   using reference = Reference;
 | |
|   using iterator_category = std::bidirectional_iterator_tag;
 | |
| 
 | |
|   btree_iterator() : node(nullptr), position(-1) {}
 | |
|   explicit btree_iterator(Node *n) : node(n), position(n->start()) {}
 | |
|   btree_iterator(Node *n, int p) : node(n), position(p) {}
 | |
| 
 | |
|   // NOTE: this SFINAE allows for implicit conversions from iterator to
 | |
|   // const_iterator, but it specifically avoids defining copy constructors so
 | |
|   // that btree_iterator can be trivially copyable. This is for performance and
 | |
|   // binary size reasons.
 | |
|   template <typename N, typename R, typename P,
 | |
|             absl::enable_if_t<
 | |
|                 std::is_same<btree_iterator<N, R, P>, iterator>::value &&
 | |
|                     std::is_same<btree_iterator, const_iterator>::value,
 | |
|                 int> = 0>
 | |
|   btree_iterator(const btree_iterator<N, R, P> &other)  // NOLINT
 | |
|       : node(other.node), position(other.position) {}
 | |
| 
 | |
|  private:
 | |
|   // This SFINAE allows explicit conversions from const_iterator to
 | |
|   // iterator, but also avoids defining a copy constructor.
 | |
|   // NOTE: the const_cast is safe because this constructor is only called by
 | |
|   // non-const methods and the container owns the nodes.
 | |
|   template <typename N, typename R, typename P,
 | |
|             absl::enable_if_t<
 | |
|                 std::is_same<btree_iterator<N, R, P>, const_iterator>::value &&
 | |
|                     std::is_same<btree_iterator, iterator>::value,
 | |
|                 int> = 0>
 | |
|   explicit btree_iterator(const btree_iterator<N, R, P> &other)
 | |
|       : node(const_cast<node_type *>(other.node)), position(other.position) {}
 | |
| 
 | |
|   // Increment/decrement the iterator.
 | |
|   void increment() {
 | |
|     if (node->leaf() && ++position < node->finish()) {
 | |
|       return;
 | |
|     }
 | |
|     increment_slow();
 | |
|   }
 | |
|   void increment_slow();
 | |
| 
 | |
|   void decrement() {
 | |
|     if (node->leaf() && --position >= node->start()) {
 | |
|       return;
 | |
|     }
 | |
|     decrement_slow();
 | |
|   }
 | |
|   void decrement_slow();
 | |
| 
 | |
|  public:
 | |
|   bool operator==(const iterator &other) const {
 | |
|     return node == other.node && position == other.position;
 | |
|   }
 | |
|   bool operator==(const const_iterator &other) const {
 | |
|     return node == other.node && position == other.position;
 | |
|   }
 | |
|   bool operator!=(const iterator &other) const {
 | |
|     return node != other.node || position != other.position;
 | |
|   }
 | |
|   bool operator!=(const const_iterator &other) const {
 | |
|     return node != other.node || position != other.position;
 | |
|   }
 | |
| 
 | |
|   // Accessors for the key/value the iterator is pointing at.
 | |
|   reference operator*() const {
 | |
|     ABSL_HARDENING_ASSERT(node != nullptr);
 | |
|     ABSL_HARDENING_ASSERT(node->start() <= position);
 | |
|     ABSL_HARDENING_ASSERT(node->finish() > position);
 | |
|     return node->value(position);
 | |
|   }
 | |
|   pointer operator->() const { return &operator*(); }
 | |
| 
 | |
|   btree_iterator &operator++() {
 | |
|     increment();
 | |
|     return *this;
 | |
|   }
 | |
|   btree_iterator &operator--() {
 | |
|     decrement();
 | |
|     return *this;
 | |
|   }
 | |
|   btree_iterator operator++(int) {
 | |
|     btree_iterator tmp = *this;
 | |
|     ++*this;
 | |
|     return tmp;
 | |
|   }
 | |
|   btree_iterator operator--(int) {
 | |
|     btree_iterator tmp = *this;
 | |
|     --*this;
 | |
|     return tmp;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <typename Params>
 | |
|   friend class btree;
 | |
|   template <typename Tree>
 | |
|   friend class btree_container;
 | |
|   template <typename Tree>
 | |
|   friend class btree_set_container;
 | |
|   template <typename Tree>
 | |
|   friend class btree_map_container;
 | |
|   template <typename Tree>
 | |
|   friend class btree_multiset_container;
 | |
|   template <typename N, typename R, typename P>
 | |
|   friend struct btree_iterator;
 | |
|   template <typename TreeType, typename CheckerType>
 | |
|   friend class base_checker;
 | |
| 
 | |
|   const key_type &key() const { return node->key(position); }
 | |
|   slot_type *slot() { return node->slot(position); }
 | |
| 
 | |
|   // The node in the tree the iterator is pointing at.
 | |
|   Node *node;
 | |
|   // The position within the node of the tree the iterator is pointing at.
 | |
|   // NOTE: this is an int rather than a field_type because iterators can point
 | |
|   // to invalid positions (such as -1) in certain circumstances.
 | |
|   int position;
 | |
| };
 | |
| 
 | |
| template <typename Params>
 | |
| class btree {
 | |
|   using node_type = btree_node<Params>;
 | |
|   using is_key_compare_to = typename Params::is_key_compare_to;
 | |
| 
 | |
|   // We use a static empty node for the root/leftmost/rightmost of empty btrees
 | |
|   // in order to avoid branching in begin()/end().
 | |
|   struct alignas(node_type::Alignment()) EmptyNodeType : node_type {
 | |
|     using field_type = typename node_type::field_type;
 | |
|     node_type *parent;
 | |
|     field_type position = 0;
 | |
|     field_type start = 0;
 | |
|     field_type finish = 0;
 | |
|     // max_count must be != kInternalNodeMaxCount (so that this node is regarded
 | |
|     // as a leaf node). max_count() is never called when the tree is empty.
 | |
|     field_type max_count = node_type::kInternalNodeMaxCount + 1;
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
|     // MSVC has constexpr code generations bugs here.
 | |
|     EmptyNodeType() : parent(this) {}
 | |
| #else
 | |
|     constexpr EmptyNodeType(node_type *p) : parent(p) {}
 | |
| #endif
 | |
|   };
 | |
| 
 | |
|   static node_type *EmptyNode() {
 | |
| #ifdef _MSC_VER
 | |
|     static EmptyNodeType *empty_node = new EmptyNodeType;
 | |
|     // This assert fails on some other construction methods.
 | |
|     assert(empty_node->parent == empty_node);
 | |
|     return empty_node;
 | |
| #else
 | |
|     static constexpr EmptyNodeType empty_node(
 | |
|         const_cast<EmptyNodeType *>(&empty_node));
 | |
|     return const_cast<EmptyNodeType *>(&empty_node);
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   enum {
 | |
|     kNodeValues = node_type::kNodeValues,
 | |
|     kMinNodeValues = kNodeValues / 2,
 | |
|   };
 | |
| 
 | |
|   struct node_stats {
 | |
|     using size_type = typename Params::size_type;
 | |
| 
 | |
|     node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {}
 | |
| 
 | |
|     node_stats &operator+=(const node_stats &other) {
 | |
|       leaf_nodes += other.leaf_nodes;
 | |
|       internal_nodes += other.internal_nodes;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     size_type leaf_nodes;
 | |
|     size_type internal_nodes;
 | |
|   };
 | |
| 
 | |
|  public:
 | |
|   using key_type = typename Params::key_type;
 | |
|   using value_type = typename Params::value_type;
 | |
|   using size_type = typename Params::size_type;
 | |
|   using difference_type = typename Params::difference_type;
 | |
|   using key_compare = typename Params::key_compare;
 | |
|   using value_compare = typename Params::value_compare;
 | |
|   using allocator_type = typename Params::allocator_type;
 | |
|   using reference = typename Params::reference;
 | |
|   using const_reference = typename Params::const_reference;
 | |
|   using pointer = typename Params::pointer;
 | |
|   using const_pointer = typename Params::const_pointer;
 | |
|   using iterator = btree_iterator<node_type, reference, pointer>;
 | |
|   using const_iterator = typename iterator::const_iterator;
 | |
|   using reverse_iterator = std::reverse_iterator<iterator>;
 | |
|   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
 | |
|   using node_handle_type = node_handle<Params, Params, allocator_type>;
 | |
| 
 | |
|   // Internal types made public for use by btree_container types.
 | |
|   using params_type = Params;
 | |
|   using slot_type = typename Params::slot_type;
 | |
| 
 | |
|  private:
 | |
|   // For use in copy_or_move_values_in_order.
 | |
|   const value_type &maybe_move_from_iterator(const_iterator it) { return *it; }
 | |
|   value_type &&maybe_move_from_iterator(iterator it) { return std::move(*it); }
 | |
| 
 | |
|   // Copies or moves (depending on the template parameter) the values in
 | |
|   // other into this btree in their order in other. This btree must be empty
 | |
|   // before this method is called. This method is used in copy construction,
 | |
|   // copy assignment, and move assignment.
 | |
|   template <typename Btree>
 | |
|   void copy_or_move_values_in_order(Btree *other);
 | |
| 
 | |
|   // Validates that various assumptions/requirements are true at compile time.
 | |
|   constexpr static bool static_assert_validation();
 | |
| 
 | |
|  public:
 | |
|   btree(const key_compare &comp, const allocator_type &alloc);
 | |
| 
 | |
|   btree(const btree &other);
 | |
|   btree(btree &&other) noexcept
 | |
|       : root_(std::move(other.root_)),
 | |
|         rightmost_(absl::exchange(other.rightmost_, EmptyNode())),
 | |
|         size_(absl::exchange(other.size_, 0)) {
 | |
|     other.mutable_root() = EmptyNode();
 | |
|   }
 | |
| 
 | |
|   ~btree() {
 | |
|     // Put static_asserts in destructor to avoid triggering them before the type
 | |
|     // is complete.
 | |
|     static_assert(static_assert_validation(), "This call must be elided.");
 | |
|     clear();
 | |
|   }
 | |
| 
 | |
|   // Assign the contents of other to *this.
 | |
|   btree &operator=(const btree &other);
 | |
|   btree &operator=(btree &&other) noexcept;
 | |
| 
 | |
|   iterator begin() { return iterator(leftmost()); }
 | |
|   const_iterator begin() const { return const_iterator(leftmost()); }
 | |
|   iterator end() { return iterator(rightmost_, rightmost_->finish()); }
 | |
|   const_iterator end() const {
 | |
|     return const_iterator(rightmost_, rightmost_->finish());
 | |
|   }
 | |
|   reverse_iterator rbegin() { return reverse_iterator(end()); }
 | |
|   const_reverse_iterator rbegin() const {
 | |
|     return const_reverse_iterator(end());
 | |
|   }
 | |
|   reverse_iterator rend() { return reverse_iterator(begin()); }
 | |
|   const_reverse_iterator rend() const {
 | |
|     return const_reverse_iterator(begin());
 | |
|   }
 | |
| 
 | |
|   // Finds the first element whose key is not less than key.
 | |
|   template <typename K>
 | |
|   iterator lower_bound(const K &key) {
 | |
|     return internal_end(internal_lower_bound(key));
 | |
|   }
 | |
|   template <typename K>
 | |
|   const_iterator lower_bound(const K &key) const {
 | |
|     return internal_end(internal_lower_bound(key));
 | |
|   }
 | |
| 
 | |
|   // Finds the first element whose key is greater than key.
 | |
|   template <typename K>
 | |
|   iterator upper_bound(const K &key) {
 | |
|     return internal_end(internal_upper_bound(key));
 | |
|   }
 | |
|   template <typename K>
 | |
|   const_iterator upper_bound(const K &key) const {
 | |
|     return internal_end(internal_upper_bound(key));
 | |
|   }
 | |
| 
 | |
|   // Finds the range of values which compare equal to key. The first member of
 | |
|   // the returned pair is equal to lower_bound(key). The second member pair of
 | |
|   // the pair is equal to upper_bound(key).
 | |
|   template <typename K>
 | |
|   std::pair<iterator, iterator> equal_range(const K &key) {
 | |
|     return {lower_bound(key), upper_bound(key)};
 | |
|   }
 | |
|   template <typename K>
 | |
|   std::pair<const_iterator, const_iterator> equal_range(const K &key) const {
 | |
|     return {lower_bound(key), upper_bound(key)};
 | |
|   }
 | |
| 
 | |
|   // Inserts a value into the btree only if it does not already exist. The
 | |
|   // boolean return value indicates whether insertion succeeded or failed.
 | |
|   // Requirement: if `key` already exists in the btree, does not consume `args`.
 | |
|   // Requirement: `key` is never referenced after consuming `args`.
 | |
|   template <typename... Args>
 | |
|   std::pair<iterator, bool> insert_unique(const key_type &key, Args &&... args);
 | |
| 
 | |
|   // Inserts with hint. Checks to see if the value should be placed immediately
 | |
|   // before `position` in the tree. If so, then the insertion will take
 | |
|   // amortized constant time. If not, the insertion will take amortized
 | |
|   // logarithmic time as if a call to insert_unique() were made.
 | |
|   // Requirement: if `key` already exists in the btree, does not consume `args`.
 | |
|   // Requirement: `key` is never referenced after consuming `args`.
 | |
|   template <typename... Args>
 | |
|   std::pair<iterator, bool> insert_hint_unique(iterator position,
 | |
|                                                const key_type &key,
 | |
|                                                Args &&... args);
 | |
| 
 | |
|   // Insert a range of values into the btree.
 | |
|   template <typename InputIterator>
 | |
|   void insert_iterator_unique(InputIterator b, InputIterator e);
 | |
| 
 | |
|   // Inserts a value into the btree.
 | |
|   template <typename ValueType>
 | |
|   iterator insert_multi(const key_type &key, ValueType &&v);
 | |
| 
 | |
|   // Inserts a value into the btree.
 | |
|   template <typename ValueType>
 | |
|   iterator insert_multi(ValueType &&v) {
 | |
|     return insert_multi(params_type::key(v), std::forward<ValueType>(v));
 | |
|   }
 | |
| 
 | |
|   // Insert with hint. Check to see if the value should be placed immediately
 | |
|   // before position in the tree. If it does, then the insertion will take
 | |
|   // amortized constant time. If not, the insertion will take amortized
 | |
|   // logarithmic time as if a call to insert_multi(v) were made.
 | |
|   template <typename ValueType>
 | |
|   iterator insert_hint_multi(iterator position, ValueType &&v);
 | |
| 
 | |
|   // Insert a range of values into the btree.
 | |
|   template <typename InputIterator>
 | |
|   void insert_iterator_multi(InputIterator b, InputIterator e);
 | |
| 
 | |
|   // Erase the specified iterator from the btree. The iterator must be valid
 | |
|   // (i.e. not equal to end()).  Return an iterator pointing to the node after
 | |
|   // the one that was erased (or end() if none exists).
 | |
|   // Requirement: does not read the value at `*iter`.
 | |
|   iterator erase(iterator iter);
 | |
| 
 | |
|   // Erases range. Returns the number of keys erased and an iterator pointing
 | |
|   // to the element after the last erased element.
 | |
|   std::pair<size_type, iterator> erase_range(iterator begin, iterator end);
 | |
| 
 | |
|   // Erases the specified key from the btree. Returns 1 if an element was
 | |
|   // erased and 0 otherwise.
 | |
|   template <typename K>
 | |
|   size_type erase_unique(const K &key);
 | |
| 
 | |
|   // Erases all of the entries matching the specified key from the
 | |
|   // btree. Returns the number of elements erased.
 | |
|   template <typename K>
 | |
|   size_type erase_multi(const K &key);
 | |
| 
 | |
|   // Finds the iterator corresponding to a key or returns end() if the key is
 | |
|   // not present.
 | |
|   template <typename K>
 | |
|   iterator find(const K &key) {
 | |
|     return internal_end(internal_find(key));
 | |
|   }
 | |
|   template <typename K>
 | |
|   const_iterator find(const K &key) const {
 | |
|     return internal_end(internal_find(key));
 | |
|   }
 | |
| 
 | |
|   // Returns a count of the number of times the key appears in the btree.
 | |
|   template <typename K>
 | |
|   size_type count_unique(const K &key) const {
 | |
|     const iterator begin = internal_find(key);
 | |
|     if (begin.node == nullptr) {
 | |
|       // The key doesn't exist in the tree.
 | |
|       return 0;
 | |
|     }
 | |
|     return 1;
 | |
|   }
 | |
|   // Returns a count of the number of times the key appears in the btree.
 | |
|   template <typename K>
 | |
|   size_type count_multi(const K &key) const {
 | |
|     const auto range = equal_range(key);
 | |
|     return std::distance(range.first, range.second);
 | |
|   }
 | |
| 
 | |
|   // Clear the btree, deleting all of the values it contains.
 | |
|   void clear();
 | |
| 
 | |
|   // Swaps the contents of `this` and `other`.
 | |
|   void swap(btree &other);
 | |
| 
 | |
|   const key_compare &key_comp() const noexcept {
 | |
|     return root_.template get<0>();
 | |
|   }
 | |
|   template <typename K1, typename K2>
 | |
|   bool compare_keys(const K1 &a, const K2 &b) const {
 | |
|     return compare_internal::compare_result_as_less_than(key_comp()(a, b));
 | |
|   }
 | |
| 
 | |
|   value_compare value_comp() const { return value_compare(key_comp()); }
 | |
| 
 | |
|   // Verifies the structure of the btree.
 | |
|   void verify() const;
 | |
| 
 | |
|   // Size routines.
 | |
|   size_type size() const { return size_; }
 | |
|   size_type max_size() const { return (std::numeric_limits<size_type>::max)(); }
 | |
|   bool empty() const { return size_ == 0; }
 | |
| 
 | |
|   // The height of the btree. An empty tree will have height 0.
 | |
|   size_type height() const {
 | |
|     size_type h = 0;
 | |
|     if (!empty()) {
 | |
|       // Count the length of the chain from the leftmost node up to the
 | |
|       // root. We actually count from the root back around to the level below
 | |
|       // the root, but the calculation is the same because of the circularity
 | |
|       // of that traversal.
 | |
|       const node_type *n = root();
 | |
|       do {
 | |
|         ++h;
 | |
|         n = n->parent();
 | |
|       } while (n != root());
 | |
|     }
 | |
|     return h;
 | |
|   }
 | |
| 
 | |
|   // The number of internal, leaf and total nodes used by the btree.
 | |
|   size_type leaf_nodes() const { return internal_stats(root()).leaf_nodes; }
 | |
|   size_type internal_nodes() const {
 | |
|     return internal_stats(root()).internal_nodes;
 | |
|   }
 | |
|   size_type nodes() const {
 | |
|     node_stats stats = internal_stats(root());
 | |
|     return stats.leaf_nodes + stats.internal_nodes;
 | |
|   }
 | |
| 
 | |
|   // The total number of bytes used by the btree.
 | |
|   size_type bytes_used() const {
 | |
|     node_stats stats = internal_stats(root());
 | |
|     if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) {
 | |
|       return sizeof(*this) + node_type::LeafSize(root()->max_count());
 | |
|     } else {
 | |
|       return sizeof(*this) + stats.leaf_nodes * node_type::LeafSize() +
 | |
|              stats.internal_nodes * node_type::InternalSize();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The average number of bytes used per value stored in the btree.
 | |
|   static double average_bytes_per_value() {
 | |
|     // Returns the number of bytes per value on a leaf node that is 75%
 | |
|     // full. Experimentally, this matches up nicely with the computed number of
 | |
|     // bytes per value in trees that had their values inserted in random order.
 | |
|     return node_type::LeafSize() / (kNodeValues * 0.75);
 | |
|   }
 | |
| 
 | |
|   // The fullness of the btree. Computed as the number of elements in the btree
 | |
|   // divided by the maximum number of elements a tree with the current number
 | |
|   // of nodes could hold. A value of 1 indicates perfect space
 | |
|   // utilization. Smaller values indicate space wastage.
 | |
|   // Returns 0 for empty trees.
 | |
|   double fullness() const {
 | |
|     if (empty()) return 0.0;
 | |
|     return static_cast<double>(size()) / (nodes() * kNodeValues);
 | |
|   }
 | |
|   // The overhead of the btree structure in bytes per node. Computed as the
 | |
|   // total number of bytes used by the btree minus the number of bytes used for
 | |
|   // storing elements divided by the number of elements.
 | |
|   // Returns 0 for empty trees.
 | |
|   double overhead() const {
 | |
|     if (empty()) return 0.0;
 | |
|     return (bytes_used() - size() * sizeof(value_type)) /
 | |
|            static_cast<double>(size());
 | |
|   }
 | |
| 
 | |
|   // The allocator used by the btree.
 | |
|   allocator_type get_allocator() const { return allocator(); }
 | |
| 
 | |
|  private:
 | |
|   // Internal accessor routines.
 | |
|   node_type *root() { return root_.template get<2>(); }
 | |
|   const node_type *root() const { return root_.template get<2>(); }
 | |
|   node_type *&mutable_root() noexcept { return root_.template get<2>(); }
 | |
|   key_compare *mutable_key_comp() noexcept { return &root_.template get<0>(); }
 | |
| 
 | |
|   // The leftmost node is stored as the parent of the root node.
 | |
|   node_type *leftmost() { return root()->parent(); }
 | |
|   const node_type *leftmost() const { return root()->parent(); }
 | |
| 
 | |
|   // Allocator routines.
 | |
|   allocator_type *mutable_allocator() noexcept {
 | |
|     return &root_.template get<1>();
 | |
|   }
 | |
|   const allocator_type &allocator() const noexcept {
 | |
|     return root_.template get<1>();
 | |
|   }
 | |
| 
 | |
|   // Allocates a correctly aligned node of at least size bytes using the
 | |
|   // allocator.
 | |
|   node_type *allocate(const size_type size) {
 | |
|     return reinterpret_cast<node_type *>(
 | |
|         absl::container_internal::Allocate<node_type::Alignment()>(
 | |
|             mutable_allocator(), size));
 | |
|   }
 | |
| 
 | |
|   // Node creation/deletion routines.
 | |
|   node_type *new_internal_node(node_type *parent) {
 | |
|     node_type *n = allocate(node_type::InternalSize());
 | |
|     n->init_internal(parent);
 | |
|     return n;
 | |
|   }
 | |
|   node_type *new_leaf_node(node_type *parent) {
 | |
|     node_type *n = allocate(node_type::LeafSize());
 | |
|     n->init_leaf(parent, kNodeValues);
 | |
|     return n;
 | |
|   }
 | |
|   node_type *new_leaf_root_node(const int max_count) {
 | |
|     node_type *n = allocate(node_type::LeafSize(max_count));
 | |
|     n->init_leaf(/*parent=*/n, max_count);
 | |
|     return n;
 | |
|   }
 | |
| 
 | |
|   // Deletion helper routines.
 | |
|   void erase_same_node(iterator begin, iterator end);
 | |
|   iterator erase_from_leaf_node(iterator begin, size_type to_erase);
 | |
|   iterator rebalance_after_delete(iterator iter);
 | |
| 
 | |
|   // Deallocates a node of a certain size in bytes using the allocator.
 | |
|   void deallocate(const size_type size, node_type *node) {
 | |
|     absl::container_internal::Deallocate<node_type::Alignment()>(
 | |
|         mutable_allocator(), node, size);
 | |
|   }
 | |
| 
 | |
|   void delete_internal_node(node_type *node) {
 | |
|     node->destroy(mutable_allocator());
 | |
|     deallocate(node_type::InternalSize(), node);
 | |
|   }
 | |
|   void delete_leaf_node(node_type *node) {
 | |
|     node->destroy(mutable_allocator());
 | |
|     deallocate(node_type::LeafSize(node->max_count()), node);
 | |
|   }
 | |
| 
 | |
|   // Rebalances or splits the node iter points to.
 | |
|   void rebalance_or_split(iterator *iter);
 | |
| 
 | |
|   // Merges the values of left, right and the delimiting key on their parent
 | |
|   // onto left, removing the delimiting key and deleting right.
 | |
|   void merge_nodes(node_type *left, node_type *right);
 | |
| 
 | |
|   // Tries to merge node with its left or right sibling, and failing that,
 | |
|   // rebalance with its left or right sibling. Returns true if a merge
 | |
|   // occurred, at which point it is no longer valid to access node. Returns
 | |
|   // false if no merging took place.
 | |
|   bool try_merge_or_rebalance(iterator *iter);
 | |
| 
 | |
|   // Tries to shrink the height of the tree by 1.
 | |
|   void try_shrink();
 | |
| 
 | |
|   iterator internal_end(iterator iter) {
 | |
|     return iter.node != nullptr ? iter : end();
 | |
|   }
 | |
|   const_iterator internal_end(const_iterator iter) const {
 | |
|     return iter.node != nullptr ? iter : end();
 | |
|   }
 | |
| 
 | |
|   // Emplaces a value into the btree immediately before iter. Requires that
 | |
|   // key(v) <= iter.key() and (--iter).key() <= key(v).
 | |
|   template <typename... Args>
 | |
|   iterator internal_emplace(iterator iter, Args &&... args);
 | |
| 
 | |
|   // Returns an iterator pointing to the first value >= the value "iter" is
 | |
|   // pointing at. Note that "iter" might be pointing to an invalid location such
 | |
|   // as iter.position == iter.node->finish(). This routine simply moves iter up
 | |
|   // in the tree to a valid location.
 | |
|   // Requires: iter.node is non-null.
 | |
|   template <typename IterType>
 | |
|   static IterType internal_last(IterType iter);
 | |
| 
 | |
|   // Returns an iterator pointing to the leaf position at which key would
 | |
|   // reside in the tree. We provide 2 versions of internal_locate. The first
 | |
|   // version uses a less-than comparator and is incapable of distinguishing when
 | |
|   // there is an exact match. The second version is for the key-compare-to
 | |
|   // specialization and distinguishes exact matches. The key-compare-to
 | |
|   // specialization allows the caller to avoid a subsequent comparison to
 | |
|   // determine if an exact match was made, which is important for keys with
 | |
|   // expensive comparison, such as strings.
 | |
|   template <typename K>
 | |
|   SearchResult<iterator, is_key_compare_to::value> internal_locate(
 | |
|       const K &key) const;
 | |
| 
 | |
|   template <typename K>
 | |
|   SearchResult<iterator, false> internal_locate_impl(
 | |
|       const K &key, std::false_type /* IsCompareTo */) const;
 | |
| 
 | |
|   template <typename K>
 | |
|   SearchResult<iterator, true> internal_locate_impl(
 | |
|       const K &key, std::true_type /* IsCompareTo */) const;
 | |
| 
 | |
|   // Internal routine which implements lower_bound().
 | |
|   template <typename K>
 | |
|   iterator internal_lower_bound(const K &key) const;
 | |
| 
 | |
|   // Internal routine which implements upper_bound().
 | |
|   template <typename K>
 | |
|   iterator internal_upper_bound(const K &key) const;
 | |
| 
 | |
|   // Internal routine which implements find().
 | |
|   template <typename K>
 | |
|   iterator internal_find(const K &key) const;
 | |
| 
 | |
|   // Deletes a node and all of its children.
 | |
|   void internal_clear(node_type *node);
 | |
| 
 | |
|   // Verifies the tree structure of node.
 | |
|   int internal_verify(const node_type *node, const key_type *lo,
 | |
|                       const key_type *hi) const;
 | |
| 
 | |
|   node_stats internal_stats(const node_type *node) const {
 | |
|     // The root can be a static empty node.
 | |
|     if (node == nullptr || (node == root() && empty())) {
 | |
|       return node_stats(0, 0);
 | |
|     }
 | |
|     if (node->leaf()) {
 | |
|       return node_stats(1, 0);
 | |
|     }
 | |
|     node_stats res(0, 1);
 | |
|     for (int i = node->start(); i <= node->finish(); ++i) {
 | |
|       res += internal_stats(node->child(i));
 | |
|     }
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|  public:
 | |
|   // Exposed only for tests.
 | |
|   static bool testonly_uses_linear_node_search() {
 | |
|     return node_type::testonly_uses_linear_node_search();
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // We use compressed tuple in order to save space because key_compare and
 | |
|   // allocator_type are usually empty.
 | |
|   absl::container_internal::CompressedTuple<key_compare, allocator_type,
 | |
|                                             node_type *>
 | |
|       root_;
 | |
| 
 | |
|   // A pointer to the rightmost node. Note that the leftmost node is stored as
 | |
|   // the root's parent.
 | |
|   node_type *rightmost_;
 | |
| 
 | |
|   // Number of values.
 | |
|   size_type size_;
 | |
| };
 | |
| 
 | |
| ////
 | |
| // btree_node methods
 | |
| template <typename P>
 | |
| template <typename... Args>
 | |
| inline void btree_node<P>::emplace_value(const size_type i,
 | |
|                                          allocator_type *alloc,
 | |
|                                          Args &&... args) {
 | |
|   assert(i >= start());
 | |
|   assert(i <= finish());
 | |
|   // Shift old values to create space for new value and then construct it in
 | |
|   // place.
 | |
|   if (i < finish()) {
 | |
|     transfer_n_backward(finish() - i, /*dest_i=*/i + 1, /*src_i=*/i, this,
 | |
|                         alloc);
 | |
|   }
 | |
|   value_init(i, alloc, std::forward<Args>(args)...);
 | |
|   set_finish(finish() + 1);
 | |
| 
 | |
|   if (!leaf() && finish() > i + 1) {
 | |
|     for (int j = finish(); j > i + 1; --j) {
 | |
|       set_child(j, child(j - 1));
 | |
|     }
 | |
|     clear_child(i + 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| inline void btree_node<P>::remove_value(const int i, allocator_type *alloc) {
 | |
|   if (!leaf() && finish() > i + 1) {
 | |
|     assert(child(i + 1)->count() == 0);
 | |
|     for (size_type j = i + 1; j < finish(); ++j) {
 | |
|       set_child(j, child(j + 1));
 | |
|     }
 | |
|     clear_child(finish());
 | |
|   }
 | |
| 
 | |
|   remove_values_ignore_children(i, /*to_erase=*/1, alloc);
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| inline void btree_node<P>::remove_values_ignore_children(
 | |
|     const int i, const int to_erase, allocator_type *alloc) {
 | |
|   params_type::move(alloc, slot(i + to_erase), finish_slot(), slot(i));
 | |
|   for (int j = finish() - to_erase; j < finish(); ++j) {
 | |
|     value_destroy(j, alloc);
 | |
|   }
 | |
|   set_finish(finish() - to_erase);
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| void btree_node<P>::rebalance_right_to_left(const int to_move,
 | |
|                                             btree_node *right,
 | |
|                                             allocator_type *alloc) {
 | |
|   assert(parent() == right->parent());
 | |
|   assert(position() + 1 == right->position());
 | |
|   assert(right->count() >= count());
 | |
|   assert(to_move >= 1);
 | |
|   assert(to_move <= right->count());
 | |
| 
 | |
|   // 1) Move the delimiting value in the parent to the left node.
 | |
|   transfer(finish(), position(), parent(), alloc);
 | |
| 
 | |
|   // 2) Move the (to_move - 1) values from the right node to the left node.
 | |
|   transfer_n(to_move - 1, finish() + 1, right->start(), right, alloc);
 | |
| 
 | |
|   // 3) Move the new delimiting value to the parent from the right node.
 | |
|   parent()->transfer(position(), right->start() + to_move - 1, right, alloc);
 | |
| 
 | |
|   // 4) Shift the values in the right node to their correct positions.
 | |
|   right->transfer_n(right->count() - to_move, right->start(),
 | |
|                     right->start() + to_move, right, alloc);
 | |
| 
 | |
|   if (!leaf()) {
 | |
|     // Move the child pointers from the right to the left node.
 | |
|     for (int i = 0; i < to_move; ++i) {
 | |
|       init_child(finish() + i + 1, right->child(i));
 | |
|     }
 | |
|     for (int i = right->start(); i <= right->finish() - to_move; ++i) {
 | |
|       assert(i + to_move <= right->max_count());
 | |
|       right->init_child(i, right->child(i + to_move));
 | |
|       right->clear_child(i + to_move);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fixup `finish` on the left and right nodes.
 | |
|   set_finish(finish() + to_move);
 | |
|   right->set_finish(right->finish() - to_move);
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| void btree_node<P>::rebalance_left_to_right(const int to_move,
 | |
|                                             btree_node *right,
 | |
|                                             allocator_type *alloc) {
 | |
|   assert(parent() == right->parent());
 | |
|   assert(position() + 1 == right->position());
 | |
|   assert(count() >= right->count());
 | |
|   assert(to_move >= 1);
 | |
|   assert(to_move <= count());
 | |
| 
 | |
|   // Values in the right node are shifted to the right to make room for the
 | |
|   // new to_move values. Then, the delimiting value in the parent and the
 | |
|   // other (to_move - 1) values in the left node are moved into the right node.
 | |
|   // Lastly, a new delimiting value is moved from the left node into the
 | |
|   // parent, and the remaining empty left node entries are destroyed.
 | |
| 
 | |
|   // 1) Shift existing values in the right node to their correct positions.
 | |
|   right->transfer_n_backward(right->count(), right->start() + to_move,
 | |
|                              right->start(), right, alloc);
 | |
| 
 | |
|   // 2) Move the delimiting value in the parent to the right node.
 | |
|   right->transfer(right->start() + to_move - 1, position(), parent(), alloc);
 | |
| 
 | |
|   // 3) Move the (to_move - 1) values from the left node to the right node.
 | |
|   right->transfer_n(to_move - 1, right->start(), finish() - (to_move - 1), this,
 | |
|                     alloc);
 | |
| 
 | |
|   // 4) Move the new delimiting value to the parent from the left node.
 | |
|   parent()->transfer(position(), finish() - to_move, this, alloc);
 | |
| 
 | |
|   if (!leaf()) {
 | |
|     // Move the child pointers from the left to the right node.
 | |
|     for (int i = right->finish(); i >= right->start(); --i) {
 | |
|       right->init_child(i + to_move, right->child(i));
 | |
|       right->clear_child(i);
 | |
|     }
 | |
|     for (int i = 1; i <= to_move; ++i) {
 | |
|       right->init_child(i - 1, child(finish() - to_move + i));
 | |
|       clear_child(finish() - to_move + i);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fixup the counts on the left and right nodes.
 | |
|   set_finish(finish() - to_move);
 | |
|   right->set_finish(right->finish() + to_move);
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| void btree_node<P>::split(const int insert_position, btree_node *dest,
 | |
|                           allocator_type *alloc) {
 | |
|   assert(dest->count() == 0);
 | |
|   assert(max_count() == kNodeValues);
 | |
| 
 | |
|   // We bias the split based on the position being inserted. If we're
 | |
|   // inserting at the beginning of the left node then bias the split to put
 | |
|   // more values on the right node. If we're inserting at the end of the
 | |
|   // right node then bias the split to put more values on the left node.
 | |
|   if (insert_position == start()) {
 | |
|     dest->set_finish(dest->start() + finish() - 1);
 | |
|   } else if (insert_position == kNodeValues) {
 | |
|     dest->set_finish(dest->start());
 | |
|   } else {
 | |
|     dest->set_finish(dest->start() + count() / 2);
 | |
|   }
 | |
|   set_finish(finish() - dest->count());
 | |
|   assert(count() >= 1);
 | |
| 
 | |
|   // Move values from the left sibling to the right sibling.
 | |
|   dest->transfer_n(dest->count(), dest->start(), finish(), this, alloc);
 | |
| 
 | |
|   // The split key is the largest value in the left sibling.
 | |
|   --mutable_finish();
 | |
|   parent()->emplace_value(position(), alloc, finish_slot());
 | |
|   value_destroy(finish(), alloc);
 | |
|   parent()->init_child(position() + 1, dest);
 | |
| 
 | |
|   if (!leaf()) {
 | |
|     for (int i = dest->start(), j = finish() + 1; i <= dest->finish();
 | |
|          ++i, ++j) {
 | |
|       assert(child(j) != nullptr);
 | |
|       dest->init_child(i, child(j));
 | |
|       clear_child(j);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
 | |
|   assert(parent() == src->parent());
 | |
|   assert(position() + 1 == src->position());
 | |
| 
 | |
|   // Move the delimiting value to the left node.
 | |
|   value_init(finish(), alloc, parent()->slot(position()));
 | |
| 
 | |
|   // Move the values from the right to the left node.
 | |
|   transfer_n(src->count(), finish() + 1, src->start(), src, alloc);
 | |
| 
 | |
|   if (!leaf()) {
 | |
|     // Move the child pointers from the right to the left node.
 | |
|     for (int i = src->start(), j = finish() + 1; i <= src->finish(); ++i, ++j) {
 | |
|       init_child(j, src->child(i));
 | |
|       src->clear_child(i);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fixup `finish` on the src and dest nodes.
 | |
|   set_finish(start() + 1 + count() + src->count());
 | |
|   src->set_finish(src->start());
 | |
| 
 | |
|   // Remove the value on the parent node.
 | |
|   parent()->remove_value(position(), alloc);
 | |
| }
 | |
| 
 | |
| ////
 | |
| // btree_iterator methods
 | |
| template <typename N, typename R, typename P>
 | |
| void btree_iterator<N, R, P>::increment_slow() {
 | |
|   if (node->leaf()) {
 | |
|     assert(position >= node->finish());
 | |
|     btree_iterator save(*this);
 | |
|     while (position == node->finish() && !node->is_root()) {
 | |
|       assert(node->parent()->child(node->position()) == node);
 | |
|       position = node->position();
 | |
|       node = node->parent();
 | |
|     }
 | |
|     // TODO(ezb): assert we aren't incrementing end() instead of handling.
 | |
|     if (position == node->finish()) {
 | |
|       *this = save;
 | |
|     }
 | |
|   } else {
 | |
|     assert(position < node->finish());
 | |
|     node = node->child(position + 1);
 | |
|     while (!node->leaf()) {
 | |
|       node = node->start_child();
 | |
|     }
 | |
|     position = node->start();
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename N, typename R, typename P>
 | |
| void btree_iterator<N, R, P>::decrement_slow() {
 | |
|   if (node->leaf()) {
 | |
|     assert(position <= -1);
 | |
|     btree_iterator save(*this);
 | |
|     while (position < node->start() && !node->is_root()) {
 | |
|       assert(node->parent()->child(node->position()) == node);
 | |
|       position = node->position() - 1;
 | |
|       node = node->parent();
 | |
|     }
 | |
|     // TODO(ezb): assert we aren't decrementing begin() instead of handling.
 | |
|     if (position < node->start()) {
 | |
|       *this = save;
 | |
|     }
 | |
|   } else {
 | |
|     assert(position >= node->start());
 | |
|     node = node->child(position);
 | |
|     while (!node->leaf()) {
 | |
|       node = node->child(node->finish());
 | |
|     }
 | |
|     position = node->finish() - 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| ////
 | |
| // btree methods
 | |
| template <typename P>
 | |
| template <typename Btree>
 | |
| void btree<P>::copy_or_move_values_in_order(Btree *other) {
 | |
|   static_assert(std::is_same<btree, Btree>::value ||
 | |
|                     std::is_same<const btree, Btree>::value,
 | |
|                 "Btree type must be same or const.");
 | |
|   assert(empty());
 | |
| 
 | |
|   // We can avoid key comparisons because we know the order of the
 | |
|   // values is the same order we'll store them in.
 | |
|   auto iter = other->begin();
 | |
|   if (iter == other->end()) return;
 | |
|   insert_multi(maybe_move_from_iterator(iter));
 | |
|   ++iter;
 | |
|   for (; iter != other->end(); ++iter) {
 | |
|     // If the btree is not empty, we can just insert the new value at the end
 | |
|     // of the tree.
 | |
|     internal_emplace(end(), maybe_move_from_iterator(iter));
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| constexpr bool btree<P>::static_assert_validation() {
 | |
|   static_assert(std::is_nothrow_copy_constructible<key_compare>::value,
 | |
|                 "Key comparison must be nothrow copy constructible");
 | |
|   static_assert(std::is_nothrow_copy_constructible<allocator_type>::value,
 | |
|                 "Allocator must be nothrow copy constructible");
 | |
|   static_assert(type_traits_internal::is_trivially_copyable<iterator>::value,
 | |
|                 "iterator not trivially copyable.");
 | |
| 
 | |
|   // Note: We assert that kTargetValues, which is computed from
 | |
|   // Params::kTargetNodeSize, must fit the node_type::field_type.
 | |
|   static_assert(
 | |
|       kNodeValues < (1 << (8 * sizeof(typename node_type::field_type))),
 | |
|       "target node size too large");
 | |
| 
 | |
|   // Verify that key_compare returns an absl::{weak,strong}_ordering or bool.
 | |
|   using compare_result_type =
 | |
|       absl::result_of_t<key_compare(key_type, key_type)>;
 | |
|   static_assert(
 | |
|       std::is_same<compare_result_type, bool>::value ||
 | |
|           std::is_convertible<compare_result_type, absl::weak_ordering>::value,
 | |
|       "key comparison function must return absl::{weak,strong}_ordering or "
 | |
|       "bool.");
 | |
| 
 | |
|   // Test the assumption made in setting kNodeValueSpace.
 | |
|   static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4,
 | |
|                 "node space assumption incorrect");
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| btree<P>::btree(const key_compare &comp, const allocator_type &alloc)
 | |
|     : root_(comp, alloc, EmptyNode()), rightmost_(EmptyNode()), size_(0) {}
 | |
| 
 | |
| template <typename P>
 | |
| btree<P>::btree(const btree &other)
 | |
|     : btree(other.key_comp(), other.allocator()) {
 | |
|   copy_or_move_values_in_order(&other);
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| template <typename... Args>
 | |
| auto btree<P>::insert_unique(const key_type &key, Args &&... args)
 | |
|     -> std::pair<iterator, bool> {
 | |
|   if (empty()) {
 | |
|     mutable_root() = rightmost_ = new_leaf_root_node(1);
 | |
|   }
 | |
| 
 | |
|   auto res = internal_locate(key);
 | |
|   iterator &iter = res.value;
 | |
| 
 | |
|   if (res.HasMatch()) {
 | |
|     if (res.IsEq()) {
 | |
|       // The key already exists in the tree, do nothing.
 | |
|       return {iter, false};
 | |
|     }
 | |
|   } else {
 | |
|     iterator last = internal_last(iter);
 | |
|     if (last.node && !compare_keys(key, last.key())) {
 | |
|       // The key already exists in the tree, do nothing.
 | |
|       return {last, false};
 | |
|     }
 | |
|   }
 | |
|   return {internal_emplace(iter, std::forward<Args>(args)...), true};
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| template <typename... Args>
 | |
| inline auto btree<P>::insert_hint_unique(iterator position, const key_type &key,
 | |
|                                          Args &&... args)
 | |
|     -> std::pair<iterator, bool> {
 | |
|   if (!empty()) {
 | |
|     if (position == end() || compare_keys(key, position.key())) {
 | |
|       if (position == begin() || compare_keys(std::prev(position).key(), key)) {
 | |
|         // prev.key() < key < position.key()
 | |
|         return {internal_emplace(position, std::forward<Args>(args)...), true};
 | |
|       }
 | |
|     } else if (compare_keys(position.key(), key)) {
 | |
|       ++position;
 | |
|       if (position == end() || compare_keys(key, position.key())) {
 | |
|         // {original `position`}.key() < key < {current `position`}.key()
 | |
|         return {internal_emplace(position, std::forward<Args>(args)...), true};
 | |
|       }
 | |
|     } else {
 | |
|       // position.key() == key
 | |
|       return {position, false};
 | |
|     }
 | |
|   }
 | |
|   return insert_unique(key, std::forward<Args>(args)...);
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| template <typename InputIterator>
 | |
| void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e) {
 | |
|   for (; b != e; ++b) {
 | |
|     insert_hint_unique(end(), params_type::key(*b), *b);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| template <typename ValueType>
 | |
| auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator {
 | |
|   if (empty()) {
 | |
|     mutable_root() = rightmost_ = new_leaf_root_node(1);
 | |
|   }
 | |
| 
 | |
|   iterator iter = internal_upper_bound(key);
 | |
|   if (iter.node == nullptr) {
 | |
|     iter = end();
 | |
|   }
 | |
|   return internal_emplace(iter, std::forward<ValueType>(v));
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| template <typename ValueType>
 | |
| auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator {
 | |
|   if (!empty()) {
 | |
|     const key_type &key = params_type::key(v);
 | |
|     if (position == end() || !compare_keys(position.key(), key)) {
 | |
|       if (position == begin() ||
 | |
|           !compare_keys(key, std::prev(position).key())) {
 | |
|         // prev.key() <= key <= position.key()
 | |
|         return internal_emplace(position, std::forward<ValueType>(v));
 | |
|       }
 | |
|     } else {
 | |
|       ++position;
 | |
|       if (position == end() || !compare_keys(position.key(), key)) {
 | |
|         // {original `position`}.key() < key < {current `position`}.key()
 | |
|         return internal_emplace(position, std::forward<ValueType>(v));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return insert_multi(std::forward<ValueType>(v));
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| template <typename InputIterator>
 | |
| void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) {
 | |
|   for (; b != e; ++b) {
 | |
|     insert_hint_multi(end(), *b);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| auto btree<P>::operator=(const btree &other) -> btree & {
 | |
|   if (this != &other) {
 | |
|     clear();
 | |
| 
 | |
|     *mutable_key_comp() = other.key_comp();
 | |
|     if (absl::allocator_traits<
 | |
|             allocator_type>::propagate_on_container_copy_assignment::value) {
 | |
|       *mutable_allocator() = other.allocator();
 | |
|     }
 | |
| 
 | |
|     copy_or_move_values_in_order(&other);
 | |
|   }
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| auto btree<P>::operator=(btree &&other) noexcept -> btree & {
 | |
|   if (this != &other) {
 | |
|     clear();
 | |
| 
 | |
|     using std::swap;
 | |
|     if (absl::allocator_traits<
 | |
|             allocator_type>::propagate_on_container_copy_assignment::value) {
 | |
|       // Note: `root_` also contains the allocator and the key comparator.
 | |
|       swap(root_, other.root_);
 | |
|       swap(rightmost_, other.rightmost_);
 | |
|       swap(size_, other.size_);
 | |
|     } else {
 | |
|       if (allocator() == other.allocator()) {
 | |
|         swap(mutable_root(), other.mutable_root());
 | |
|         swap(*mutable_key_comp(), *other.mutable_key_comp());
 | |
|         swap(rightmost_, other.rightmost_);
 | |
|         swap(size_, other.size_);
 | |
|       } else {
 | |
|         // We aren't allowed to propagate the allocator and the allocator is
 | |
|         // different so we can't take over its memory. We must move each element
 | |
|         // individually. We need both `other` and `this` to have `other`s key
 | |
|         // comparator while moving the values so we can't swap the key
 | |
|         // comparators.
 | |
|         *mutable_key_comp() = other.key_comp();
 | |
|         copy_or_move_values_in_order(&other);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| auto btree<P>::erase(iterator iter) -> iterator {
 | |
|   bool internal_delete = false;
 | |
|   if (!iter.node->leaf()) {
 | |
|     // Deletion of a value on an internal node. First, move the largest value
 | |
|     // from our left child here, then delete that position (in remove_value()
 | |
|     // below). We can get to the largest value from our left child by
 | |
|     // decrementing iter.
 | |
|     iterator internal_iter(iter);
 | |
|     --iter;
 | |
|     assert(iter.node->leaf());
 | |
|     params_type::move(mutable_allocator(), iter.node->slot(iter.position),
 | |
|                       internal_iter.node->slot(internal_iter.position));
 | |
|     internal_delete = true;
 | |
|   }
 | |
| 
 | |
|   // Delete the key from the leaf.
 | |
|   iter.node->remove_value(iter.position, mutable_allocator());
 | |
|   --size_;
 | |
| 
 | |
|   // We want to return the next value after the one we just erased. If we
 | |
|   // erased from an internal node (internal_delete == true), then the next
 | |
|   // value is ++(++iter). If we erased from a leaf node (internal_delete ==
 | |
|   // false) then the next value is ++iter. Note that ++iter may point to an
 | |
|   // internal node and the value in the internal node may move to a leaf node
 | |
|   // (iter.node) when rebalancing is performed at the leaf level.
 | |
| 
 | |
|   iterator res = rebalance_after_delete(iter);
 | |
| 
 | |
|   // If we erased from an internal node, advance the iterator.
 | |
|   if (internal_delete) {
 | |
|     ++res;
 | |
|   }
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| auto btree<P>::rebalance_after_delete(iterator iter) -> iterator {
 | |
|   // Merge/rebalance as we walk back up the tree.
 | |
|   iterator res(iter);
 | |
|   bool first_iteration = true;
 | |
|   for (;;) {
 | |
|     if (iter.node == root()) {
 | |
|       try_shrink();
 | |
|       if (empty()) {
 | |
|         return end();
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     if (iter.node->count() >= kMinNodeValues) {
 | |
|       break;
 | |
|     }
 | |
|     bool merged = try_merge_or_rebalance(&iter);
 | |
|     // On the first iteration, we should update `res` with `iter` because `res`
 | |
|     // may have been invalidated.
 | |
|     if (first_iteration) {
 | |
|       res = iter;
 | |
|       first_iteration = false;
 | |
|     }
 | |
|     if (!merged) {
 | |
|       break;
 | |
|     }
 | |
|     iter.position = iter.node->position();
 | |
|     iter.node = iter.node->parent();
 | |
|   }
 | |
| 
 | |
|   // Adjust our return value. If we're pointing at the end of a node, advance
 | |
|   // the iterator.
 | |
|   if (res.position == res.node->finish()) {
 | |
|     res.position = res.node->finish() - 1;
 | |
|     ++res;
 | |
|   }
 | |
| 
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| auto btree<P>::erase_range(iterator begin, iterator end)
 | |
|     -> std::pair<size_type, iterator> {
 | |
|   difference_type count = std::distance(begin, end);
 | |
|   assert(count >= 0);
 | |
| 
 | |
|   if (count == 0) {
 | |
|     return {0, begin};
 | |
|   }
 | |
| 
 | |
|   if (count == size_) {
 | |
|     clear();
 | |
|     return {count, this->end()};
 | |
|   }
 | |
| 
 | |
|   if (begin.node == end.node) {
 | |
|     erase_same_node(begin, end);
 | |
|     size_ -= count;
 | |
|     return {count, rebalance_after_delete(begin)};
 | |
|   }
 | |
| 
 | |
|   const size_type target_size = size_ - count;
 | |
|   while (size_ > target_size) {
 | |
|     if (begin.node->leaf()) {
 | |
|       const size_type remaining_to_erase = size_ - target_size;
 | |
|       const size_type remaining_in_node = begin.node->finish() - begin.position;
 | |
|       begin = erase_from_leaf_node(
 | |
|           begin, (std::min)(remaining_to_erase, remaining_in_node));
 | |
|     } else {
 | |
|       begin = erase(begin);
 | |
|     }
 | |
|   }
 | |
|   return {count, begin};
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| void btree<P>::erase_same_node(iterator begin, iterator end) {
 | |
|   assert(begin.node == end.node);
 | |
|   assert(end.position > begin.position);
 | |
| 
 | |
|   node_type *node = begin.node;
 | |
|   size_type to_erase = end.position - begin.position;
 | |
|   if (!node->leaf()) {
 | |
|     // Delete all children between begin and end.
 | |
|     for (size_type i = 0; i < to_erase; ++i) {
 | |
|       internal_clear(node->child(begin.position + i + 1));
 | |
|     }
 | |
|     // Rotate children after end into new positions.
 | |
|     for (size_type i = begin.position + to_erase + 1; i <= node->finish();
 | |
|          ++i) {
 | |
|       node->set_child(i - to_erase, node->child(i));
 | |
|       node->clear_child(i);
 | |
|     }
 | |
|   }
 | |
|   node->remove_values_ignore_children(begin.position, to_erase,
 | |
|                                       mutable_allocator());
 | |
| 
 | |
|   // Do not need to update rightmost_, because
 | |
|   // * either end == this->end(), and therefore node == rightmost_, and still
 | |
|   //   exists
 | |
|   // * or end != this->end(), and therefore rightmost_ hasn't been erased, since
 | |
|   //   it wasn't covered in [begin, end)
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| auto btree<P>::erase_from_leaf_node(iterator begin, size_type to_erase)
 | |
|     -> iterator {
 | |
|   node_type *node = begin.node;
 | |
|   assert(node->leaf());
 | |
|   assert(node->finish() > begin.position);
 | |
|   assert(begin.position + to_erase <= node->finish());
 | |
| 
 | |
|   node->remove_values_ignore_children(begin.position, to_erase,
 | |
|                                       mutable_allocator());
 | |
| 
 | |
|   size_ -= to_erase;
 | |
| 
 | |
|   return rebalance_after_delete(begin);
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| template <typename K>
 | |
| auto btree<P>::erase_unique(const K &key) -> size_type {
 | |
|   const iterator iter = internal_find(key);
 | |
|   if (iter.node == nullptr) {
 | |
|     // The key doesn't exist in the tree, return nothing done.
 | |
|     return 0;
 | |
|   }
 | |
|   erase(iter);
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| template <typename K>
 | |
| auto btree<P>::erase_multi(const K &key) -> size_type {
 | |
|   const iterator begin = internal_lower_bound(key);
 | |
|   if (begin.node == nullptr) {
 | |
|     // The key doesn't exist in the tree, return nothing done.
 | |
|     return 0;
 | |
|   }
 | |
|   // Delete all of the keys between begin and upper_bound(key).
 | |
|   const iterator end = internal_end(internal_upper_bound(key));
 | |
|   return erase_range(begin, end).first;
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| void btree<P>::clear() {
 | |
|   if (!empty()) {
 | |
|     internal_clear(root());
 | |
|   }
 | |
|   mutable_root() = EmptyNode();
 | |
|   rightmost_ = EmptyNode();
 | |
|   size_ = 0;
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| void btree<P>::swap(btree &other) {
 | |
|   using std::swap;
 | |
|   if (absl::allocator_traits<
 | |
|           allocator_type>::propagate_on_container_swap::value) {
 | |
|     // Note: `root_` also contains the allocator and the key comparator.
 | |
|     swap(root_, other.root_);
 | |
|   } else {
 | |
|     // It's undefined behavior if the allocators are unequal here.
 | |
|     assert(allocator() == other.allocator());
 | |
|     swap(mutable_root(), other.mutable_root());
 | |
|     swap(*mutable_key_comp(), *other.mutable_key_comp());
 | |
|   }
 | |
|   swap(rightmost_, other.rightmost_);
 | |
|   swap(size_, other.size_);
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| void btree<P>::verify() const {
 | |
|   assert(root() != nullptr);
 | |
|   assert(leftmost() != nullptr);
 | |
|   assert(rightmost_ != nullptr);
 | |
|   assert(empty() || size() == internal_verify(root(), nullptr, nullptr));
 | |
|   assert(leftmost() == (++const_iterator(root(), -1)).node);
 | |
|   assert(rightmost_ == (--const_iterator(root(), root()->finish())).node);
 | |
|   assert(leftmost()->leaf());
 | |
|   assert(rightmost_->leaf());
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| void btree<P>::rebalance_or_split(iterator *iter) {
 | |
|   node_type *&node = iter->node;
 | |
|   int &insert_position = iter->position;
 | |
|   assert(node->count() == node->max_count());
 | |
|   assert(kNodeValues == node->max_count());
 | |
| 
 | |
|   // First try to make room on the node by rebalancing.
 | |
|   node_type *parent = node->parent();
 | |
|   if (node != root()) {
 | |
|     if (node->position() > parent->start()) {
 | |
|       // Try rebalancing with our left sibling.
 | |
|       node_type *left = parent->child(node->position() - 1);
 | |
|       assert(left->max_count() == kNodeValues);
 | |
|       if (left->count() < kNodeValues) {
 | |
|         // We bias rebalancing based on the position being inserted. If we're
 | |
|         // inserting at the end of the right node then we bias rebalancing to
 | |
|         // fill up the left node.
 | |
|         int to_move = (kNodeValues - left->count()) /
 | |
|                       (1 + (insert_position < kNodeValues));
 | |
|         to_move = (std::max)(1, to_move);
 | |
| 
 | |
|         if (insert_position - to_move >= node->start() ||
 | |
|             left->count() + to_move < kNodeValues) {
 | |
|           left->rebalance_right_to_left(to_move, node, mutable_allocator());
 | |
| 
 | |
|           assert(node->max_count() - node->count() == to_move);
 | |
|           insert_position = insert_position - to_move;
 | |
|           if (insert_position < node->start()) {
 | |
|             insert_position = insert_position + left->count() + 1;
 | |
|             node = left;
 | |
|           }
 | |
| 
 | |
|           assert(node->count() < node->max_count());
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (node->position() < parent->finish()) {
 | |
|       // Try rebalancing with our right sibling.
 | |
|       node_type *right = parent->child(node->position() + 1);
 | |
|       assert(right->max_count() == kNodeValues);
 | |
|       if (right->count() < kNodeValues) {
 | |
|         // We bias rebalancing based on the position being inserted. If we're
 | |
|         // inserting at the beginning of the left node then we bias rebalancing
 | |
|         // to fill up the right node.
 | |
|         int to_move = (kNodeValues - right->count()) /
 | |
|                       (1 + (insert_position > node->start()));
 | |
|         to_move = (std::max)(1, to_move);
 | |
| 
 | |
|         if (insert_position <= node->finish() - to_move ||
 | |
|             right->count() + to_move < kNodeValues) {
 | |
|           node->rebalance_left_to_right(to_move, right, mutable_allocator());
 | |
| 
 | |
|           if (insert_position > node->finish()) {
 | |
|             insert_position = insert_position - node->count() - 1;
 | |
|             node = right;
 | |
|           }
 | |
| 
 | |
|           assert(node->count() < node->max_count());
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Rebalancing failed, make sure there is room on the parent node for a new
 | |
|     // value.
 | |
|     assert(parent->max_count() == kNodeValues);
 | |
|     if (parent->count() == kNodeValues) {
 | |
|       iterator parent_iter(node->parent(), node->position());
 | |
|       rebalance_or_split(&parent_iter);
 | |
|     }
 | |
|   } else {
 | |
|     // Rebalancing not possible because this is the root node.
 | |
|     // Create a new root node and set the current root node as the child of the
 | |
|     // new root.
 | |
|     parent = new_internal_node(parent);
 | |
|     parent->init_child(parent->start(), root());
 | |
|     mutable_root() = parent;
 | |
|     // If the former root was a leaf node, then it's now the rightmost node.
 | |
|     assert(!parent->start_child()->leaf() ||
 | |
|            parent->start_child() == rightmost_);
 | |
|   }
 | |
| 
 | |
|   // Split the node.
 | |
|   node_type *split_node;
 | |
|   if (node->leaf()) {
 | |
|     split_node = new_leaf_node(parent);
 | |
|     node->split(insert_position, split_node, mutable_allocator());
 | |
|     if (rightmost_ == node) rightmost_ = split_node;
 | |
|   } else {
 | |
|     split_node = new_internal_node(parent);
 | |
|     node->split(insert_position, split_node, mutable_allocator());
 | |
|   }
 | |
| 
 | |
|   if (insert_position > node->finish()) {
 | |
|     insert_position = insert_position - node->count() - 1;
 | |
|     node = split_node;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| void btree<P>::merge_nodes(node_type *left, node_type *right) {
 | |
|   left->merge(right, mutable_allocator());
 | |
|   if (right->leaf()) {
 | |
|     if (rightmost_ == right) rightmost_ = left;
 | |
|     delete_leaf_node(right);
 | |
|   } else {
 | |
|     delete_internal_node(right);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| bool btree<P>::try_merge_or_rebalance(iterator *iter) {
 | |
|   node_type *parent = iter->node->parent();
 | |
|   if (iter->node->position() > parent->start()) {
 | |
|     // Try merging with our left sibling.
 | |
|     node_type *left = parent->child(iter->node->position() - 1);
 | |
|     assert(left->max_count() == kNodeValues);
 | |
|     if (1 + left->count() + iter->node->count() <= kNodeValues) {
 | |
|       iter->position += 1 + left->count();
 | |
|       merge_nodes(left, iter->node);
 | |
|       iter->node = left;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   if (iter->node->position() < parent->finish()) {
 | |
|     // Try merging with our right sibling.
 | |
|     node_type *right = parent->child(iter->node->position() + 1);
 | |
|     assert(right->max_count() == kNodeValues);
 | |
|     if (1 + iter->node->count() + right->count() <= kNodeValues) {
 | |
|       merge_nodes(iter->node, right);
 | |
|       return true;
 | |
|     }
 | |
|     // Try rebalancing with our right sibling. We don't perform rebalancing if
 | |
|     // we deleted the first element from iter->node and the node is not
 | |
|     // empty. This is a small optimization for the common pattern of deleting
 | |
|     // from the front of the tree.
 | |
|     if (right->count() > kMinNodeValues &&
 | |
|         (iter->node->count() == 0 || iter->position > iter->node->start())) {
 | |
|       int to_move = (right->count() - iter->node->count()) / 2;
 | |
|       to_move = (std::min)(to_move, right->count() - 1);
 | |
|       iter->node->rebalance_right_to_left(to_move, right, mutable_allocator());
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   if (iter->node->position() > parent->start()) {
 | |
|     // Try rebalancing with our left sibling. We don't perform rebalancing if
 | |
|     // we deleted the last element from iter->node and the node is not
 | |
|     // empty. This is a small optimization for the common pattern of deleting
 | |
|     // from the back of the tree.
 | |
|     node_type *left = parent->child(iter->node->position() - 1);
 | |
|     if (left->count() > kMinNodeValues &&
 | |
|         (iter->node->count() == 0 || iter->position < iter->node->finish())) {
 | |
|       int to_move = (left->count() - iter->node->count()) / 2;
 | |
|       to_move = (std::min)(to_move, left->count() - 1);
 | |
|       left->rebalance_left_to_right(to_move, iter->node, mutable_allocator());
 | |
|       iter->position += to_move;
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| void btree<P>::try_shrink() {
 | |
|   if (root()->count() > 0) {
 | |
|     return;
 | |
|   }
 | |
|   // Deleted the last item on the root node, shrink the height of the tree.
 | |
|   if (root()->leaf()) {
 | |
|     assert(size() == 0);
 | |
|     delete_leaf_node(root());
 | |
|     mutable_root() = rightmost_ = EmptyNode();
 | |
|   } else {
 | |
|     node_type *child = root()->start_child();
 | |
|     child->make_root();
 | |
|     delete_internal_node(root());
 | |
|     mutable_root() = child;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| template <typename IterType>
 | |
| inline IterType btree<P>::internal_last(IterType iter) {
 | |
|   assert(iter.node != nullptr);
 | |
|   while (iter.position == iter.node->finish()) {
 | |
|     iter.position = iter.node->position();
 | |
|     iter.node = iter.node->parent();
 | |
|     if (iter.node->leaf()) {
 | |
|       iter.node = nullptr;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return iter;
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| template <typename... Args>
 | |
| inline auto btree<P>::internal_emplace(iterator iter, Args &&... args)
 | |
|     -> iterator {
 | |
|   if (!iter.node->leaf()) {
 | |
|     // We can't insert on an internal node. Instead, we'll insert after the
 | |
|     // previous value which is guaranteed to be on a leaf node.
 | |
|     --iter;
 | |
|     ++iter.position;
 | |
|   }
 | |
|   const int max_count = iter.node->max_count();
 | |
|   allocator_type *alloc = mutable_allocator();
 | |
|   if (iter.node->count() == max_count) {
 | |
|     // Make room in the leaf for the new item.
 | |
|     if (max_count < kNodeValues) {
 | |
|       // Insertion into the root where the root is smaller than the full node
 | |
|       // size. Simply grow the size of the root node.
 | |
|       assert(iter.node == root());
 | |
|       iter.node =
 | |
|           new_leaf_root_node((std::min<int>)(kNodeValues, 2 * max_count));
 | |
|       // Transfer the values from the old root to the new root.
 | |
|       node_type *old_root = root();
 | |
|       node_type *new_root = iter.node;
 | |
|       new_root->transfer_n(old_root->count(), new_root->start(),
 | |
|                            old_root->start(), old_root, alloc);
 | |
|       new_root->set_finish(old_root->finish());
 | |
|       old_root->set_finish(old_root->start());
 | |
|       delete_leaf_node(old_root);
 | |
|       mutable_root() = rightmost_ = new_root;
 | |
|     } else {
 | |
|       rebalance_or_split(&iter);
 | |
|     }
 | |
|   }
 | |
|   iter.node->emplace_value(iter.position, alloc, std::forward<Args>(args)...);
 | |
|   ++size_;
 | |
|   return iter;
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| template <typename K>
 | |
| inline auto btree<P>::internal_locate(const K &key) const
 | |
|     -> SearchResult<iterator, is_key_compare_to::value> {
 | |
|   return internal_locate_impl(key, is_key_compare_to());
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| template <typename K>
 | |
| inline auto btree<P>::internal_locate_impl(
 | |
|     const K &key, std::false_type /* IsCompareTo */) const
 | |
|     -> SearchResult<iterator, false> {
 | |
|   iterator iter(const_cast<node_type *>(root()));
 | |
|   for (;;) {
 | |
|     iter.position = iter.node->lower_bound(key, key_comp()).value;
 | |
|     // NOTE: we don't need to walk all the way down the tree if the keys are
 | |
|     // equal, but determining equality would require doing an extra comparison
 | |
|     // on each node on the way down, and we will need to go all the way to the
 | |
|     // leaf node in the expected case.
 | |
|     if (iter.node->leaf()) {
 | |
|       break;
 | |
|     }
 | |
|     iter.node = iter.node->child(iter.position);
 | |
|   }
 | |
|   return {iter};
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| template <typename K>
 | |
| inline auto btree<P>::internal_locate_impl(
 | |
|     const K &key, std::true_type /* IsCompareTo */) const
 | |
|     -> SearchResult<iterator, true> {
 | |
|   iterator iter(const_cast<node_type *>(root()));
 | |
|   for (;;) {
 | |
|     SearchResult<int, true> res = iter.node->lower_bound(key, key_comp());
 | |
|     iter.position = res.value;
 | |
|     if (res.match == MatchKind::kEq) {
 | |
|       return {iter, MatchKind::kEq};
 | |
|     }
 | |
|     if (iter.node->leaf()) {
 | |
|       break;
 | |
|     }
 | |
|     iter.node = iter.node->child(iter.position);
 | |
|   }
 | |
|   return {iter, MatchKind::kNe};
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| template <typename K>
 | |
| auto btree<P>::internal_lower_bound(const K &key) const -> iterator {
 | |
|   iterator iter(const_cast<node_type *>(root()));
 | |
|   for (;;) {
 | |
|     iter.position = iter.node->lower_bound(key, key_comp()).value;
 | |
|     if (iter.node->leaf()) {
 | |
|       break;
 | |
|     }
 | |
|     iter.node = iter.node->child(iter.position);
 | |
|   }
 | |
|   return internal_last(iter);
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| template <typename K>
 | |
| auto btree<P>::internal_upper_bound(const K &key) const -> iterator {
 | |
|   iterator iter(const_cast<node_type *>(root()));
 | |
|   for (;;) {
 | |
|     iter.position = iter.node->upper_bound(key, key_comp());
 | |
|     if (iter.node->leaf()) {
 | |
|       break;
 | |
|     }
 | |
|     iter.node = iter.node->child(iter.position);
 | |
|   }
 | |
|   return internal_last(iter);
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| template <typename K>
 | |
| auto btree<P>::internal_find(const K &key) const -> iterator {
 | |
|   auto res = internal_locate(key);
 | |
|   if (res.HasMatch()) {
 | |
|     if (res.IsEq()) {
 | |
|       return res.value;
 | |
|     }
 | |
|   } else {
 | |
|     const iterator iter = internal_last(res.value);
 | |
|     if (iter.node != nullptr && !compare_keys(key, iter.key())) {
 | |
|       return iter;
 | |
|     }
 | |
|   }
 | |
|   return {nullptr, 0};
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| void btree<P>::internal_clear(node_type *node) {
 | |
|   if (!node->leaf()) {
 | |
|     for (int i = node->start(); i <= node->finish(); ++i) {
 | |
|       internal_clear(node->child(i));
 | |
|     }
 | |
|     delete_internal_node(node);
 | |
|   } else {
 | |
|     delete_leaf_node(node);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| int btree<P>::internal_verify(const node_type *node, const key_type *lo,
 | |
|                               const key_type *hi) const {
 | |
|   assert(node->count() > 0);
 | |
|   assert(node->count() <= node->max_count());
 | |
|   if (lo) {
 | |
|     assert(!compare_keys(node->key(node->start()), *lo));
 | |
|   }
 | |
|   if (hi) {
 | |
|     assert(!compare_keys(*hi, node->key(node->finish() - 1)));
 | |
|   }
 | |
|   for (int i = node->start() + 1; i < node->finish(); ++i) {
 | |
|     assert(!compare_keys(node->key(i), node->key(i - 1)));
 | |
|   }
 | |
|   int count = node->count();
 | |
|   if (!node->leaf()) {
 | |
|     for (int i = node->start(); i <= node->finish(); ++i) {
 | |
|       assert(node->child(i) != nullptr);
 | |
|       assert(node->child(i)->parent() == node);
 | |
|       assert(node->child(i)->position() == i);
 | |
|       count += internal_verify(node->child(i),
 | |
|                                i == node->start() ? lo : &node->key(i - 1),
 | |
|                                i == node->finish() ? hi : &node->key(i));
 | |
|     }
 | |
|   }
 | |
|   return count;
 | |
| }
 | |
| 
 | |
| }  // namespace container_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // ABSL_CONTAINER_INTERNAL_BTREE_H_
 |