-- c99f979ad34f155fbeeea69b88bdc7458d89a21c by Derek Mauro <dmauro@google.com>: Remove a floating point division by zero test. This isn't testing behavior related to the library, and MSVC warns about it in opt mode. PiperOrigin-RevId: 285220804 -- 68b015491f0dbf1ab547994673281abd1f34cd4b by Gennadiy Rozental <rogeeff@google.com>: This CL introduces following changes to the class FlagImpl: * We eliminate the CommandLineFlagLocks struct. Instead callback guard and callback function are combined into a single CallbackData struct, while primary data lock is stored separately. * CallbackData member of class FlagImpl is initially set to be nullptr and is only allocated and initialized when a flag's callback is being set. For most flags we do not pay for the extra space and extra absl::Mutex now. * Primary data guard is stored in data_guard_ data member. This is a properly aligned character buffer of necessary size. During initialization of the flag we construct absl::Mutex in this space using placement new call. * We now avoid extra value copy after successful attempt to parse value out of string. Instead we swap flag's current value with tentative value we just produced. PiperOrigin-RevId: 285132636 -- ed45d118fb818969eb13094cf7827c885dfc562c by Tom Manshreck <shreck@google.com>: Change null-term* (and nul-term*) to NUL-term* in comments PiperOrigin-RevId: 285036610 -- 729619017944db895ce8d6d29c1995aa2e5628a5 by Derek Mauro <dmauro@google.com>: Use the Posix implementation of thread identity on MinGW. Some versions of MinGW suffer from thread_local bugs. PiperOrigin-RevId: 285022920 -- 39a25493503c76885bc3254c28f66a251c5b5bb0 by Greg Falcon <gfalcon@google.com>: Implementation detail change. Add further ABSL_NAMESPACE_BEGIN and _END annotation macros to files in Abseil. PiperOrigin-RevId: 285012012 GitOrigin-RevId: c99f979ad34f155fbeeea69b88bdc7458d89a21c Change-Id: I4c85d3704e45d11a9ac50d562f39640a6adbedc1
		
			
				
	
	
		
			247 lines
		
	
	
	
		
			7.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			247 lines
		
	
	
	
		
			7.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | ||
| //
 | ||
| // Licensed under the Apache License, Version 2.0 (the "License");
 | ||
| // you may not use this file except in compliance with the License.
 | ||
| // You may obtain a copy of the License at
 | ||
| //
 | ||
| //      https://www.apache.org/licenses/LICENSE-2.0
 | ||
| //
 | ||
| // Unless required by applicable law or agreed to in writing, software
 | ||
| // distributed under the License is distributed on an "AS IS" BASIS,
 | ||
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | ||
| // See the License for the specific language governing permissions and
 | ||
| // limitations under the License.
 | ||
| 
 | ||
| #ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
 | ||
| #define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
 | ||
| 
 | ||
| #include <cassert>
 | ||
| #include <cmath>
 | ||
| #include <istream>
 | ||
| #include <limits>
 | ||
| #include <numeric>
 | ||
| #include <type_traits>
 | ||
| #include <utility>
 | ||
| #include <vector>
 | ||
| 
 | ||
| #include "absl/random/bernoulli_distribution.h"
 | ||
| #include "absl/random/internal/iostream_state_saver.h"
 | ||
| #include "absl/random/uniform_int_distribution.h"
 | ||
| 
 | ||
| namespace absl {
 | ||
| ABSL_NAMESPACE_BEGIN
 | ||
| 
 | ||
| // absl::discrete_distribution
 | ||
| //
 | ||
| // A discrete distribution produces random integers i, where 0 <= i < n
 | ||
| // distributed according to the discrete probability function:
 | ||
| //
 | ||
| //     P(i|p0,...,pn−1)=pi
 | ||
| //
 | ||
| // This class is an implementation of discrete_distribution (see
 | ||
| // [rand.dist.samp.discrete]).
 | ||
| //
 | ||
| // The algorithm used is Walker's Aliasing algorithm, described in Knuth, Vol 2.
 | ||
| // absl::discrete_distribution takes O(N) time to precompute the probabilities
 | ||
| // (where N is the number of possible outcomes in the distribution) at
 | ||
| // construction, and then takes O(1) time for each variate generation.  Many
 | ||
| // other implementations also take O(N) time to construct an ordered sequence of
 | ||
| // partial sums, plus O(log N) time per variate to binary search.
 | ||
| //
 | ||
| template <typename IntType = int>
 | ||
| class discrete_distribution {
 | ||
|  public:
 | ||
|   using result_type = IntType;
 | ||
| 
 | ||
|   class param_type {
 | ||
|    public:
 | ||
|     using distribution_type = discrete_distribution;
 | ||
| 
 | ||
|     param_type() { init(); }
 | ||
| 
 | ||
|     template <typename InputIterator>
 | ||
|     explicit param_type(InputIterator begin, InputIterator end)
 | ||
|         : p_(begin, end) {
 | ||
|       init();
 | ||
|     }
 | ||
| 
 | ||
|     explicit param_type(std::initializer_list<double> weights) : p_(weights) {
 | ||
|       init();
 | ||
|     }
 | ||
| 
 | ||
|     template <class UnaryOperation>
 | ||
|     explicit param_type(size_t nw, double xmin, double xmax,
 | ||
|                         UnaryOperation fw) {
 | ||
|       if (nw > 0) {
 | ||
|         p_.reserve(nw);
 | ||
|         double delta = (xmax - xmin) / static_cast<double>(nw);
 | ||
|         assert(delta > 0);
 | ||
|         double t = delta * 0.5;
 | ||
|         for (size_t i = 0; i < nw; ++i) {
 | ||
|           p_.push_back(fw(xmin + i * delta + t));
 | ||
|         }
 | ||
|       }
 | ||
|       init();
 | ||
|     }
 | ||
| 
 | ||
|     const std::vector<double>& probabilities() const { return p_; }
 | ||
|     size_t n() const { return p_.size() - 1; }
 | ||
| 
 | ||
|     friend bool operator==(const param_type& a, const param_type& b) {
 | ||
|       return a.probabilities() == b.probabilities();
 | ||
|     }
 | ||
| 
 | ||
|     friend bool operator!=(const param_type& a, const param_type& b) {
 | ||
|       return !(a == b);
 | ||
|     }
 | ||
| 
 | ||
|    private:
 | ||
|     friend class discrete_distribution;
 | ||
| 
 | ||
|     void init();
 | ||
| 
 | ||
|     std::vector<double> p_;                     // normalized probabilities
 | ||
|     std::vector<std::pair<double, size_t>> q_;  // (acceptance, alternate) pairs
 | ||
| 
 | ||
|     static_assert(std::is_integral<result_type>::value,
 | ||
|                   "Class-template absl::discrete_distribution<> must be "
 | ||
|                   "parameterized using an integral type.");
 | ||
|   };
 | ||
| 
 | ||
|   discrete_distribution() : param_() {}
 | ||
| 
 | ||
|   explicit discrete_distribution(const param_type& p) : param_(p) {}
 | ||
| 
 | ||
|   template <typename InputIterator>
 | ||
|   explicit discrete_distribution(InputIterator begin, InputIterator end)
 | ||
|       : param_(begin, end) {}
 | ||
| 
 | ||
|   explicit discrete_distribution(std::initializer_list<double> weights)
 | ||
|       : param_(weights) {}
 | ||
| 
 | ||
|   template <class UnaryOperation>
 | ||
|   explicit discrete_distribution(size_t nw, double xmin, double xmax,
 | ||
|                                  UnaryOperation fw)
 | ||
|       : param_(nw, xmin, xmax, std::move(fw)) {}
 | ||
| 
 | ||
|   void reset() {}
 | ||
| 
 | ||
|   // generating functions
 | ||
|   template <typename URBG>
 | ||
|   result_type operator()(URBG& g) {  // NOLINT(runtime/references)
 | ||
|     return (*this)(g, param_);
 | ||
|   }
 | ||
| 
 | ||
|   template <typename URBG>
 | ||
|   result_type operator()(URBG& g,  // NOLINT(runtime/references)
 | ||
|                          const param_type& p);
 | ||
| 
 | ||
|   const param_type& param() const { return param_; }
 | ||
|   void param(const param_type& p) { param_ = p; }
 | ||
| 
 | ||
|   result_type(min)() const { return 0; }
 | ||
|   result_type(max)() const {
 | ||
|     return static_cast<result_type>(param_.n());
 | ||
|   }  // inclusive
 | ||
| 
 | ||
|   // NOTE [rand.dist.sample.discrete] returns a std::vector<double> not a
 | ||
|   // const std::vector<double>&.
 | ||
|   const std::vector<double>& probabilities() const {
 | ||
|     return param_.probabilities();
 | ||
|   }
 | ||
| 
 | ||
|   friend bool operator==(const discrete_distribution& a,
 | ||
|                          const discrete_distribution& b) {
 | ||
|     return a.param_ == b.param_;
 | ||
|   }
 | ||
|   friend bool operator!=(const discrete_distribution& a,
 | ||
|                          const discrete_distribution& b) {
 | ||
|     return a.param_ != b.param_;
 | ||
|   }
 | ||
| 
 | ||
|  private:
 | ||
|   param_type param_;
 | ||
| };
 | ||
| 
 | ||
| // --------------------------------------------------------------------------
 | ||
| // Implementation details only below
 | ||
| // --------------------------------------------------------------------------
 | ||
| 
 | ||
| namespace random_internal {
 | ||
| 
 | ||
| // Using the vector `*probabilities`, whose values are the weights or
 | ||
| // probabilities of an element being selected, constructs the proportional
 | ||
| // probabilities used by the discrete distribution.  `*probabilities` will be
 | ||
| // scaled, if necessary, so that its entries sum to a value sufficiently close
 | ||
| // to 1.0.
 | ||
| std::vector<std::pair<double, size_t>> InitDiscreteDistribution(
 | ||
|     std::vector<double>* probabilities);
 | ||
| 
 | ||
| }  // namespace random_internal
 | ||
| 
 | ||
| template <typename IntType>
 | ||
| void discrete_distribution<IntType>::param_type::init() {
 | ||
|   if (p_.empty()) {
 | ||
|     p_.push_back(1.0);
 | ||
|     q_.emplace_back(1.0, 0);
 | ||
|   } else {
 | ||
|     assert(n() <= (std::numeric_limits<IntType>::max)());
 | ||
|     q_ = random_internal::InitDiscreteDistribution(&p_);
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| template <typename IntType>
 | ||
| template <typename URBG>
 | ||
| typename discrete_distribution<IntType>::result_type
 | ||
| discrete_distribution<IntType>::operator()(
 | ||
|     URBG& g,  // NOLINT(runtime/references)
 | ||
|     const param_type& p) {
 | ||
|   const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g);
 | ||
|   const auto& q = p.q_[idx];
 | ||
|   const bool selected = absl::bernoulli_distribution(q.first)(g);
 | ||
|   return selected ? idx : static_cast<result_type>(q.second);
 | ||
| }
 | ||
| 
 | ||
| template <typename CharT, typename Traits, typename IntType>
 | ||
| std::basic_ostream<CharT, Traits>& operator<<(
 | ||
|     std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
 | ||
|     const discrete_distribution<IntType>& x) {
 | ||
|   auto saver = random_internal::make_ostream_state_saver(os);
 | ||
|   const auto& probabilities = x.param().probabilities();
 | ||
|   os << probabilities.size();
 | ||
| 
 | ||
|   os.precision(random_internal::stream_precision_helper<double>::kPrecision);
 | ||
|   for (const auto& p : probabilities) {
 | ||
|     os << os.fill() << p;
 | ||
|   }
 | ||
|   return os;
 | ||
| }
 | ||
| 
 | ||
| template <typename CharT, typename Traits, typename IntType>
 | ||
| std::basic_istream<CharT, Traits>& operator>>(
 | ||
|     std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)
 | ||
|     discrete_distribution<IntType>& x) {    // NOLINT(runtime/references)
 | ||
|   using param_type = typename discrete_distribution<IntType>::param_type;
 | ||
|   auto saver = random_internal::make_istream_state_saver(is);
 | ||
| 
 | ||
|   size_t n;
 | ||
|   std::vector<double> p;
 | ||
| 
 | ||
|   is >> n;
 | ||
|   if (is.fail()) return is;
 | ||
|   if (n > 0) {
 | ||
|     p.reserve(n);
 | ||
|     for (IntType i = 0; i < n && !is.fail(); ++i) {
 | ||
|       auto tmp = random_internal::read_floating_point<double>(is);
 | ||
|       if (is.fail()) return is;
 | ||
|       p.push_back(tmp);
 | ||
|     }
 | ||
|   }
 | ||
|   x.param(param_type(p.begin(), p.end()));
 | ||
|   return is;
 | ||
| }
 | ||
| 
 | ||
| ABSL_NAMESPACE_END
 | ||
| }  // namespace absl
 | ||
| 
 | ||
| #endif  // ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
 |