snix/tvix/eval/src/compiler/mod.rs
Aspen Smith 201173afac fix(tvix): Represent strings as byte arrays
C++ nix uses C-style zero-terminated char pointers to represent strings
internally - however, up to this point, tvix has used Rust `String` and
`str` for string values. Since those are required to be valid utf-8, we
haven't been able to properly represent all the string values that Nix
supports.

To fix that, this change converts the internal representation of the
NixString struct from `Box<str>` to `BString`, from the `bstr` crate -
this is a wrapper around a `Vec<u8>` with extra functions for treating
that byte vector as a "morally string-like" value, which is basically
exactly what we need.

Since this changes a pretty fundamental assumption about a pretty core
type, there are a *lot* of changes in a lot of places to make this work,
but I've tried to keep the general philosophy and intent of most of the
code in most places intact. Most notably, there's nothing that's been
done to make the derivation stuff in //tvix/glue work with non-utf8
strings everywhere, instead opting to just convert to String/str when
passing things into that - there *might* be something to be done there,
but I don't know what the rules should be and I don't want to figure
them out in this change.

To deal with OS-native paths in a way that also works in WASM for
tvixbolt, this also adds a dependency on the "os_str_bytes" crate.

Fixes: b/189
Fixes: b/337
Change-Id: I5e6eb29c62f47dd91af954f5e12bfc3d186f5526
Reviewed-on: https://cl.tvl.fyi/c/depot/+/10200
Reviewed-by: tazjin <tazjin@tvl.su>
Reviewed-by: flokli <flokli@flokli.de>
Reviewed-by: sterni <sternenseemann@systemli.org>
Autosubmit: aspen <root@gws.fyi>
Tested-by: BuildkiteCI
2024-01-31 14:51:49 +00:00

1667 lines
63 KiB
Rust

//! This module implements a compiler for compiling the rnix AST
//! representation to Tvix bytecode.
//!
//! A note on `unwrap()`: This module contains a lot of calls to
//! `unwrap()` or `expect(...)` on data structures returned by `rnix`.
//! The reason for this is that rnix uses the same data structures to
//! represent broken and correct ASTs, so all typed AST variants have
//! the ability to represent an incorrect node.
//!
//! However, at the time that the AST is passed to the compiler we
//! have verified that `rnix` considers the code to be correct, so all
//! variants are fulfilled. In cases where the invariant is guaranteed
//! by the code in this module, `debug_assert!` has been used to catch
//! mistakes early during development.
mod bindings;
mod import;
mod optimiser;
mod scope;
use codemap::Span;
use rnix::ast::{self, AstToken};
use smol_str::SmolStr;
use std::collections::{BTreeMap, HashMap};
use std::path::{Path, PathBuf};
use std::rc::{Rc, Weak};
use std::sync::Arc;
use crate::chunk::Chunk;
use crate::errors::{CatchableErrorKind, Error, ErrorKind, EvalResult};
use crate::observer::CompilerObserver;
use crate::opcode::{CodeIdx, ConstantIdx, Count, JumpOffset, OpCode, UpvalueIdx};
use crate::spans::LightSpan;
use crate::spans::ToSpan;
use crate::value::{Closure, Formals, Lambda, NixAttrs, Thunk, Value};
use crate::warnings::{EvalWarning, WarningKind};
use crate::CoercionKind;
use crate::SourceCode;
use self::scope::{LocalIdx, LocalPosition, Scope, Upvalue, UpvalueKind};
/// Represents the result of compiling a piece of Nix code. If
/// compilation was successful, the resulting bytecode can be passed
/// to the VM.
pub struct CompilationOutput {
pub lambda: Rc<Lambda>,
pub warnings: Vec<EvalWarning>,
pub errors: Vec<Error>,
// This field must outlive the rc::Weak reference which breaks the
// builtins -> import -> builtins reference cycle. For this
// reason, it must be passed to the VM.
pub globals: Rc<GlobalsMap>,
}
/// Represents the lambda currently being compiled.
struct LambdaCtx {
lambda: Lambda,
scope: Scope,
captures_with_stack: bool,
unthunk: bool,
}
impl LambdaCtx {
fn new() -> Self {
LambdaCtx {
lambda: Lambda::default(),
scope: Default::default(),
captures_with_stack: false,
unthunk: false,
}
}
fn inherit(&self) -> Self {
LambdaCtx {
lambda: Lambda::default(),
scope: self.scope.inherit(),
captures_with_stack: false,
unthunk: false,
}
}
}
/// When compiling functions with an argument attribute set destructuring pattern,
/// we need to do multiple passes over the declared formal arguments when setting
/// up their local bindings (similarly to `let … in` expressions and recursive
/// attribute sets. For this purpose, this struct is used to represent the two
/// kinds of formal arguments:
///
/// - `TrackedFormal::NoDefault` is always required and causes an evaluation error
/// if the corresponding attribute is missing in a function call.
/// - `TrackedFormal::WithDefault` may be missing in the passed attribute set—
/// in which case a `default_expr` will be evaluated and placed in the formal
/// argument's local variable slot.
enum TrackedFormal {
NoDefault {
local_idx: LocalIdx,
pattern_entry: ast::PatEntry,
},
WithDefault {
local_idx: LocalIdx,
/// Extra phantom local used for coordinating runtime dispatching not observable to
/// the language user. Detailed description in `compile_param_pattern()`.
finalise_request_idx: LocalIdx,
default_expr: ast::Expr,
pattern_entry: ast::PatEntry,
},
}
impl TrackedFormal {
fn pattern_entry(&self) -> &ast::PatEntry {
match self {
TrackedFormal::NoDefault { pattern_entry, .. } => pattern_entry,
TrackedFormal::WithDefault { pattern_entry, .. } => pattern_entry,
}
}
fn local_idx(&self) -> LocalIdx {
match self {
TrackedFormal::NoDefault { local_idx, .. } => *local_idx,
TrackedFormal::WithDefault { local_idx, .. } => *local_idx,
}
}
}
/// The map of globally available functions and other values that
/// should implicitly be resolvable in the global scope.
pub(crate) type GlobalsMap = HashMap<&'static str, Value>;
/// Set of builtins that (if they exist) should be made available in
/// the global scope, meaning that they can be accessed not just
/// through `builtins.<name>`, but directly as `<name>`. This is not
/// configurable, it is based on what Nix 2.3 exposed.
const GLOBAL_BUILTINS: &[&str] = &[
"abort",
"baseNameOf",
"derivation",
"derivationStrict",
"dirOf",
"fetchGit",
"fetchMercurial",
"fetchTarball",
"fromTOML",
"import",
"isNull",
"map",
"placeholder",
"removeAttrs",
"scopedImport",
"throw",
"toString",
"__curPos",
];
pub struct Compiler<'observer> {
contexts: Vec<LambdaCtx>,
warnings: Vec<EvalWarning>,
errors: Vec<Error>,
root_dir: PathBuf,
/// Carries all known global tokens; the full set of which is
/// created when the compiler is invoked.
///
/// Each global has an associated token, which when encountered as
/// an identifier is resolved against the scope poisoning logic,
/// and a function that should emit code for the token.
globals: Rc<GlobalsMap>,
/// File reference in the codemap contains all known source code
/// and is used to track the spans from which instructions where
/// derived.
file: Arc<codemap::File>,
/// Carry an observer for the compilation process, which is called
/// whenever a chunk is emitted.
observer: &'observer mut dyn CompilerObserver,
/// Carry a count of nested scopes which have requested the
/// compiler not to emit anything. This used for compiling dead
/// code branches to catch errors & warnings in them.
dead_scope: usize,
}
impl Compiler<'_> {
pub(super) fn span_for<S: ToSpan>(&self, to_span: &S) -> Span {
to_span.span_for(&self.file)
}
}
/// Compiler construction
impl<'observer> Compiler<'observer> {
pub(crate) fn new(
location: Option<PathBuf>,
file: Arc<codemap::File>,
globals: Rc<GlobalsMap>,
observer: &'observer mut dyn CompilerObserver,
) -> EvalResult<Self> {
let mut root_dir = match location {
Some(dir) if cfg!(target_arch = "wasm32") || dir.is_absolute() => Ok(dir),
_ => {
let current_dir = std::env::current_dir().map_err(|e| {
Error::new(
ErrorKind::RelativePathResolution(format!(
"could not determine current directory: {}",
e
)),
file.span,
)
})?;
if let Some(dir) = location {
Ok(current_dir.join(dir))
} else {
Ok(current_dir)
}
}
}?;
// If the path passed from the caller points to a file, the
// filename itself needs to be truncated as this must point to a
// directory.
if root_dir.is_file() {
root_dir.pop();
}
#[cfg(not(target_arch = "wasm32"))]
debug_assert!(root_dir.is_absolute());
Ok(Self {
root_dir,
file,
observer,
globals,
contexts: vec![LambdaCtx::new()],
warnings: vec![],
errors: vec![],
dead_scope: 0,
})
}
}
// Helper functions for emitting code and metadata to the internal
// structures of the compiler.
impl Compiler<'_> {
fn context(&self) -> &LambdaCtx {
&self.contexts[self.contexts.len() - 1]
}
fn context_mut(&mut self) -> &mut LambdaCtx {
let idx = self.contexts.len() - 1;
&mut self.contexts[idx]
}
fn chunk(&mut self) -> &mut Chunk {
&mut self.context_mut().lambda.chunk
}
fn scope(&self) -> &Scope {
&self.context().scope
}
fn scope_mut(&mut self) -> &mut Scope {
&mut self.context_mut().scope
}
/// Push a single instruction to the current bytecode chunk and
/// track the source span from which it was compiled.
fn push_op<T: ToSpan>(&mut self, data: OpCode, node: &T) -> CodeIdx {
if self.dead_scope > 0 {
return CodeIdx(0);
}
let span = self.span_for(node);
self.chunk().push_op(data, span)
}
/// Emit a single constant to the current bytecode chunk and track
/// the source span from which it was compiled.
pub(super) fn emit_constant<T: ToSpan>(&mut self, value: Value, node: &T) {
if self.dead_scope > 0 {
return;
}
let idx = self.chunk().push_constant(value);
self.push_op(OpCode::OpConstant(idx), node);
}
}
// Actual code-emitting AST traversal methods.
impl Compiler<'_> {
fn compile(&mut self, slot: LocalIdx, expr: ast::Expr) {
let expr = optimiser::optimise_expr(self, slot, expr);
match &expr {
ast::Expr::Literal(literal) => self.compile_literal(literal),
ast::Expr::Path(path) => self.compile_path(slot, path),
ast::Expr::Str(s) => self.compile_str(slot, s),
ast::Expr::UnaryOp(op) => self.thunk(slot, op, move |c, s| c.compile_unary_op(s, op)),
ast::Expr::BinOp(binop) => {
self.thunk(slot, binop, move |c, s| c.compile_binop(s, binop))
}
ast::Expr::HasAttr(has_attr) => {
self.thunk(slot, has_attr, move |c, s| c.compile_has_attr(s, has_attr))
}
ast::Expr::List(list) => self.thunk(slot, list, move |c, s| c.compile_list(s, list)),
ast::Expr::AttrSet(attrs) => {
self.thunk(slot, attrs, move |c, s| c.compile_attr_set(s, attrs))
}
ast::Expr::Select(select) => {
self.thunk(slot, select, move |c, s| c.compile_select(s, select))
}
ast::Expr::Assert(assert) => {
self.thunk(slot, assert, move |c, s| c.compile_assert(s, assert))
}
ast::Expr::IfElse(if_else) => {
self.thunk(slot, if_else, move |c, s| c.compile_if_else(s, if_else))
}
ast::Expr::LetIn(let_in) => {
self.thunk(slot, let_in, move |c, s| c.compile_let_in(s, let_in))
}
ast::Expr::Ident(ident) => self.compile_ident(slot, ident),
ast::Expr::With(with) => self.thunk(slot, with, |c, s| c.compile_with(s, with)),
ast::Expr::Lambda(lambda) => self.thunk(slot, lambda, move |c, s| {
c.compile_lambda_or_thunk(false, s, lambda, |c, s| c.compile_lambda(s, lambda))
}),
ast::Expr::Apply(apply) => {
self.thunk(slot, apply, move |c, s| c.compile_apply(s, apply))
}
// Parenthesized expressions are simply unwrapped, leaving
// their value on the stack.
ast::Expr::Paren(paren) => self.compile(slot, paren.expr().unwrap()),
ast::Expr::LegacyLet(legacy_let) => self.thunk(slot, legacy_let, move |c, s| {
c.compile_legacy_let(s, legacy_let)
}),
ast::Expr::Root(_) => unreachable!("there cannot be more than one root"),
ast::Expr::Error(_) => unreachable!("compile is only called on validated trees"),
}
}
/// Compiles an expression, but does not emit any code for it as
/// it is considered dead. This will still catch errors and
/// warnings in that expression.
///
/// A warning about the that code being dead is assumed to already be
/// emitted by the caller of this.
fn compile_dead_code(&mut self, slot: LocalIdx, node: ast::Expr) {
self.dead_scope += 1;
self.compile(slot, node);
self.dead_scope -= 1;
}
fn compile_literal(&mut self, node: &ast::Literal) {
let value = match node.kind() {
ast::LiteralKind::Float(f) => Value::Float(f.value().unwrap()),
ast::LiteralKind::Integer(i) => match i.value() {
Ok(v) => Value::Integer(v),
Err(err) => return self.emit_error(node, err.into()),
},
ast::LiteralKind::Uri(u) => {
self.emit_warning(node, WarningKind::DeprecatedLiteralURL);
Value::String(u.syntax().text().into())
}
};
self.emit_constant(value, node);
}
fn compile_path(&mut self, slot: LocalIdx, node: &ast::Path) {
// TODO(tazjin): placeholder implementation while waiting for
// https://github.com/nix-community/rnix-parser/pull/96
let raw_path = node.to_string();
let path = if raw_path.starts_with('/') {
Path::new(&raw_path).to_owned()
} else if raw_path.starts_with('~') {
// We assume that home paths start with ~/ or fail to parse
// TODO: this should be checked using a parse-fail test.
debug_assert!(raw_path.len() > 2 && raw_path.starts_with("~/"));
let home_relative_path = &raw_path[2..(raw_path.len())];
self.emit_constant(
Value::UnresolvedPath(Box::new(home_relative_path.into())),
node,
);
self.push_op(OpCode::OpResolveHomePath, node);
return;
} else if raw_path.starts_with('<') {
// TODO: decide what to do with findFile
if raw_path.len() == 2 {
return self.emit_constant(
Value::Catchable(CatchableErrorKind::NixPathResolution(
"Empty <> path not allowed".into(),
)),
node,
);
}
let path = &raw_path[1..(raw_path.len() - 1)];
// Make a thunk to resolve the path (without using `findFile`, at least for now?)
return self.thunk(slot, node, move |c, _| {
c.emit_constant(Value::UnresolvedPath(Box::new(path.into())), node);
c.push_op(OpCode::OpFindFile, node);
});
} else {
let mut buf = self.root_dir.clone();
buf.push(&raw_path);
buf
};
// TODO: Use https://github.com/rust-lang/rfcs/issues/2208
// once it is available
let value = Value::Path(Box::new(crate::value::canon_path(path)));
self.emit_constant(value, node);
}
/// Helper that compiles the given string parts strictly. The caller
/// (`compile_str`) needs to figure out if the result of compiling this
/// needs to be thunked or not.
fn compile_str_parts(
&mut self,
slot: LocalIdx,
parent_node: &ast::Str,
parts: Vec<ast::InterpolPart<String>>,
) {
// The string parts are produced in literal order, however
// they need to be reversed on the stack in order to
// efficiently create the real string in case of
// interpolation.
for part in parts.iter().rev() {
match part {
// Interpolated expressions are compiled as normal and
// dealt with by the VM before being assembled into
// the final string. We need to coerce them here,
// so OpInterpolate definitely has a string to consume.
ast::InterpolPart::Interpolation(ipol) => {
self.compile(slot, ipol.expr().unwrap());
// implicitly forces as well
self.push_op(
OpCode::OpCoerceToString(CoercionKind {
strong: false,
import_paths: true,
}),
ipol,
);
}
ast::InterpolPart::Literal(lit) => {
self.emit_constant(Value::String(lit.as_str().into()), parent_node);
}
}
}
if parts.len() != 1 {
self.push_op(OpCode::OpInterpolate(Count(parts.len())), parent_node);
}
}
fn compile_str(&mut self, slot: LocalIdx, node: &ast::Str) {
let parts = node.normalized_parts();
// We need to thunk string expressions if they are the result of
// interpolation. A string that only consists of a single part (`"${foo}"`)
// can't desugar to the enclosed expression (`foo`) because we need to
// coerce the result to a string value. This would require forcing the
// value of the inner expression, so we need to wrap it in another thunk.
if parts.len() != 1 || matches!(&parts[0], ast::InterpolPart::Interpolation(_)) {
self.thunk(slot, node, move |c, s| {
c.compile_str_parts(s, node, parts);
});
} else {
self.compile_str_parts(slot, node, parts);
}
}
fn compile_unary_op(&mut self, slot: LocalIdx, op: &ast::UnaryOp) {
self.compile(slot, op.expr().unwrap());
self.emit_force(op);
let opcode = match op.operator().unwrap() {
ast::UnaryOpKind::Invert => OpCode::OpInvert,
ast::UnaryOpKind::Negate => OpCode::OpNegate,
};
self.push_op(opcode, op);
}
fn compile_binop(&mut self, slot: LocalIdx, op: &ast::BinOp) {
use ast::BinOpKind;
// Short-circuiting and other strange operators, which are
// under the same node type as NODE_BIN_OP, but need to be
// handled separately (i.e. before compiling the expressions
// used for standard binary operators).
match op.operator().unwrap() {
BinOpKind::And => return self.compile_and(slot, op),
BinOpKind::Or => return self.compile_or(slot, op),
BinOpKind::Implication => return self.compile_implication(slot, op),
_ => {}
};
// For all other operators, the two values need to be left on
// the stack in the correct order before pushing the
// instruction for the operation itself.
self.compile(slot, op.lhs().unwrap());
self.emit_force(&op.lhs().unwrap());
self.compile(slot, op.rhs().unwrap());
self.emit_force(&op.rhs().unwrap());
match op.operator().unwrap() {
BinOpKind::Add => self.push_op(OpCode::OpAdd, op),
BinOpKind::Sub => self.push_op(OpCode::OpSub, op),
BinOpKind::Mul => self.push_op(OpCode::OpMul, op),
BinOpKind::Div => self.push_op(OpCode::OpDiv, op),
BinOpKind::Update => self.push_op(OpCode::OpAttrsUpdate, op),
BinOpKind::Equal => self.push_op(OpCode::OpEqual, op),
BinOpKind::Less => self.push_op(OpCode::OpLess, op),
BinOpKind::LessOrEq => self.push_op(OpCode::OpLessOrEq, op),
BinOpKind::More => self.push_op(OpCode::OpMore, op),
BinOpKind::MoreOrEq => self.push_op(OpCode::OpMoreOrEq, op),
BinOpKind::Concat => self.push_op(OpCode::OpConcat, op),
BinOpKind::NotEqual => {
self.push_op(OpCode::OpEqual, op);
self.push_op(OpCode::OpInvert, op)
}
// Handled by separate branch above.
BinOpKind::And | BinOpKind::Implication | BinOpKind::Or => {
unreachable!()
}
};
}
fn compile_and(&mut self, slot: LocalIdx, node: &ast::BinOp) {
debug_assert!(
matches!(node.operator(), Some(ast::BinOpKind::And)),
"compile_and called with wrong operator kind: {:?}",
node.operator(),
);
// Leave left-hand side value on the stack.
self.compile(slot, node.lhs().unwrap());
self.emit_force(&node.lhs().unwrap());
let throw_idx = self.push_op(OpCode::OpJumpIfCatchable(JumpOffset(0)), node);
// If this value is false, jump over the right-hand side - the
// whole expression is false.
let end_idx = self.push_op(OpCode::OpJumpIfFalse(JumpOffset(0)), node);
// Otherwise, remove the previous value and leave the
// right-hand side on the stack. Its result is now the value
// of the whole expression.
self.push_op(OpCode::OpPop, node);
self.compile(slot, node.rhs().unwrap());
self.emit_force(&node.rhs().unwrap());
self.patch_jump(end_idx);
self.push_op(OpCode::OpAssertBool, node);
self.patch_jump(throw_idx);
}
fn compile_or(&mut self, slot: LocalIdx, node: &ast::BinOp) {
debug_assert!(
matches!(node.operator(), Some(ast::BinOpKind::Or)),
"compile_or called with wrong operator kind: {:?}",
node.operator(),
);
// Leave left-hand side value on the stack
self.compile(slot, node.lhs().unwrap());
self.emit_force(&node.lhs().unwrap());
let throw_idx = self.push_op(OpCode::OpJumpIfCatchable(JumpOffset(0)), node);
// Opposite of above: If this value is **true**, we can
// short-circuit the right-hand side.
let end_idx = self.push_op(OpCode::OpJumpIfTrue(JumpOffset(0)), node);
self.push_op(OpCode::OpPop, node);
self.compile(slot, node.rhs().unwrap());
self.emit_force(&node.rhs().unwrap());
self.patch_jump(end_idx);
self.push_op(OpCode::OpAssertBool, node);
self.patch_jump(throw_idx);
}
fn compile_implication(&mut self, slot: LocalIdx, node: &ast::BinOp) {
debug_assert!(
matches!(node.operator(), Some(ast::BinOpKind::Implication)),
"compile_implication called with wrong operator kind: {:?}",
node.operator(),
);
// Leave left-hand side value on the stack and invert it.
self.compile(slot, node.lhs().unwrap());
self.emit_force(&node.lhs().unwrap());
let throw_idx = self.push_op(OpCode::OpJumpIfCatchable(JumpOffset(0)), node);
self.push_op(OpCode::OpInvert, node);
// Exactly as `||` (because `a -> b` = `!a || b`).
let end_idx = self.push_op(OpCode::OpJumpIfTrue(JumpOffset(0)), node);
self.push_op(OpCode::OpPop, node);
self.compile(slot, node.rhs().unwrap());
self.emit_force(&node.rhs().unwrap());
self.patch_jump(end_idx);
self.push_op(OpCode::OpAssertBool, node);
self.patch_jump(throw_idx);
}
/// Compile list literals into equivalent bytecode. List
/// construction is fairly simple, consisting of pushing code for
/// each literal element and an instruction with the element
/// count.
///
/// The VM, after evaluating the code for each element, simply
/// constructs the list from the given number of elements.
fn compile_list(&mut self, slot: LocalIdx, node: &ast::List) {
let mut count = 0;
// Open a temporary scope to correctly account for stack items
// that exist during the construction.
self.scope_mut().begin_scope();
for item in node.items() {
// Start tracing new stack slots from the second list
// element onwards. The first list element is located in
// the stack slot of the list itself.
let item_slot = match count {
0 => slot,
_ => {
let item_span = self.span_for(&item);
self.scope_mut().declare_phantom(item_span, false)
}
};
count += 1;
self.compile(item_slot, item);
self.scope_mut().mark_initialised(item_slot);
}
if count == 0 {
self.unthunk();
}
self.push_op(OpCode::OpList(Count(count)), node);
self.scope_mut().end_scope();
}
fn compile_attr(&mut self, slot: LocalIdx, node: &ast::Attr) {
match node {
ast::Attr::Dynamic(dynamic) => {
self.compile(slot, dynamic.expr().unwrap());
self.emit_force(&dynamic.expr().unwrap());
}
ast::Attr::Str(s) => {
self.compile_str(slot, s);
self.emit_force(s);
}
ast::Attr::Ident(ident) => self.emit_literal_ident(ident),
}
}
fn compile_has_attr(&mut self, slot: LocalIdx, node: &ast::HasAttr) {
// Put the attribute set on the stack.
self.compile(slot, node.expr().unwrap());
self.emit_force(node);
// Push all path fragments with an operation for fetching the
// next nested element, for all fragments except the last one.
for (count, fragment) in node.attrpath().unwrap().attrs().enumerate() {
if count > 0 {
self.push_op(OpCode::OpAttrsTrySelect, &fragment);
self.emit_force(&fragment);
}
self.compile_attr(slot, &fragment);
}
// After the last fragment, emit the actual instruction that
// leaves a boolean on the stack.
self.push_op(OpCode::OpHasAttr, node);
}
/// When compiling select or select_or expressions, an optimisation is
/// possible of compiling the set emitted a constant attribute set by
/// immediately replacing it with the actual value.
///
/// We take care not to emit an error here, as that would interfere with
/// thunking behaviour (there can be perfectly valid Nix code that accesses
/// a statically known attribute set that is lacking a key, because that
/// thunk is never evaluated). If anything is missing, just inform the
/// caller that the optimisation did not take place and move on. We may want
/// to emit warnings here in the future.
fn optimise_select(&mut self, path: &ast::Attrpath) -> bool {
// If compiling the set emitted a constant attribute set, the
// associated constant can immediately be replaced with the
// actual value.
//
// We take care not to emit an error here, as that would
// interfere with thunking behaviour (there can be perfectly
// valid Nix code that accesses a statically known attribute
// set that is lacking a key, because that thunk is never
// evaluated). If anything is missing, just move on. We may
// want to emit warnings here in the future.
if let Some(OpCode::OpConstant(ConstantIdx(idx))) = self.chunk().code.last().cloned() {
let constant = &mut self.chunk().constants[idx];
if let Value::Attrs(attrs) = constant {
let mut path_iter = path.attrs();
// Only do this optimisation if there is a *single*
// element in the attribute path. It is extremely
// unlikely that we'd have a static nested set.
if let (Some(attr), None) = (path_iter.next(), path_iter.next()) {
// Only do this optimisation for statically known attrs.
if let Some(ident) = expr_static_attr_str(&attr) {
if let Some(selected_value) = attrs.select(ident.as_bytes()) {
*constant = selected_value.clone();
// If this worked, we can unthunk the current thunk.
self.unthunk();
return true;
}
}
}
}
}
false
}
fn compile_select(&mut self, slot: LocalIdx, node: &ast::Select) {
let set = node.expr().unwrap();
let path = node.attrpath().unwrap();
if node.or_token().is_some() {
return self.compile_select_or(slot, set, path, node.default_expr().unwrap());
}
// Push the set onto the stack
self.compile(slot, set.clone());
if self.optimise_select(&path) {
return;
}
// Compile each key fragment and emit access instructions.
//
// TODO: multi-select instruction to avoid re-pushing attrs on
// nested selects.
for fragment in path.attrs() {
// Force the current set value.
self.emit_force(&set);
self.compile_attr(slot, &fragment);
self.push_op(OpCode::OpAttrsSelect, &fragment);
}
}
/// Compile an `or` expression into a chunk of conditional jumps.
///
/// If at any point during attribute set traversal a key is
/// missing, the `OpAttrOrNotFound` instruction will leave a
/// special sentinel value on the stack.
///
/// After each access, a conditional jump evaluates the top of the
/// stack and short-circuits to the default value if it sees the
/// sentinel.
///
/// Code like `{ a.b = 1; }.a.c or 42` yields this bytecode and
/// runtime stack:
///
/// ```notrust
/// Bytecode Runtime stack
/// ┌────────────────────────────┐ ┌─────────────────────────┐
/// │ ... │ │ ... │
/// │ 5 OP_ATTRS(1) │ → │ 5 [ { a.b = 1; } ] │
/// │ 6 OP_CONSTANT("a") │ → │ 6 [ { a.b = 1; } "a" ] │
/// │ 7 OP_ATTR_OR_NOT_FOUND │ → │ 7 [ { b = 1; } ] │
/// │ 8 JUMP_IF_NOT_FOUND(13) │ → │ 8 [ { b = 1; } ] │
/// │ 9 OP_CONSTANT("C") │ → │ 9 [ { b = 1; } "c" ] │
/// │ 10 OP_ATTR_OR_NOT_FOUND │ → │ 10 [ NOT_FOUND ] │
/// │ 11 JUMP_IF_NOT_FOUND(13) │ → │ 11 [ ] │
/// │ 12 JUMP(14) │ │ .. jumped over │
/// │ 13 CONSTANT(42) │ → │ 12 [ 42 ] │
/// │ 14 ... │ │ .. .... │
/// └────────────────────────────┘ └─────────────────────────┘
/// ```
fn compile_select_or(
&mut self,
slot: LocalIdx,
set: ast::Expr,
path: ast::Attrpath,
default: ast::Expr,
) {
self.compile(slot, set);
if self.optimise_select(&path) {
return;
}
let mut jumps = vec![];
for fragment in path.attrs() {
self.emit_force(&fragment);
self.compile_attr(slot, &fragment.clone());
self.push_op(OpCode::OpAttrsTrySelect, &fragment);
jumps.push(self.push_op(OpCode::OpJumpIfNotFound(JumpOffset(0)), &fragment));
}
let final_jump = self.push_op(OpCode::OpJump(JumpOffset(0)), &path);
for jump in jumps {
self.patch_jump(jump);
}
// Compile the default value expression and patch the final
// jump to point *beyond* it.
self.compile(slot, default);
self.patch_jump(final_jump);
}
/// Compile `assert` expressions using jumping instructions in the VM.
///
/// ```notrust
/// ┌─────────────────────┐
/// │ 0 [ conditional ] │
/// │ 1 JUMP_IF_FALSE →┼─┐
/// │ 2 [ main body ] │ │ Jump to else body if
/// ┌┼─3─← JUMP │ │ condition is false.
/// Jump over else body ││ 4 OP_ASSERT_FAIL ←┼─┘
/// if condition is true.└┼─5─→ ... │
/// └─────────────────────┘
/// ```
fn compile_assert(&mut self, slot: LocalIdx, node: &ast::Assert) {
// Compile the assertion condition to leave its value on the stack.
self.compile(slot, node.condition().unwrap());
self.emit_force(&node.condition().unwrap());
let throw_idx = self.push_op(OpCode::OpJumpIfCatchable(JumpOffset(0)), node);
let then_idx = self.push_op(OpCode::OpJumpIfFalse(JumpOffset(0)), node);
self.push_op(OpCode::OpPop, node);
self.compile(slot, node.body().unwrap());
let else_idx = self.push_op(OpCode::OpJump(JumpOffset(0)), node);
self.patch_jump(then_idx);
self.push_op(OpCode::OpPop, node);
self.push_op(OpCode::OpAssertFail, &node.condition().unwrap());
self.patch_jump(else_idx);
self.patch_jump(throw_idx);
}
/// Compile conditional expressions using jumping instructions in the VM.
///
/// ```notrust
/// ┌────────────────────┐
/// │ 0 [ conditional ] │
/// │ 1 JUMP_IF_FALSE →┼─┐
/// │ 2 [ main body ] │ │ Jump to else body if
/// ┌┼─3─← JUMP │ │ condition is false.
/// Jump over else body ││ 4 [ else body ]←┼─┘
/// if condition is true.└┼─5─→ ... │
/// └────────────────────┘
/// ```
fn compile_if_else(&mut self, slot: LocalIdx, node: &ast::IfElse) {
self.compile(slot, node.condition().unwrap());
self.emit_force(&node.condition().unwrap());
let throw_idx = self.push_op(
OpCode::OpJumpIfCatchable(JumpOffset(0)),
&node.condition().unwrap(),
);
let then_idx = self.push_op(
OpCode::OpJumpIfFalse(JumpOffset(0)),
&node.condition().unwrap(),
);
self.push_op(OpCode::OpPop, node); // discard condition value
self.compile(slot, node.body().unwrap());
let else_idx = self.push_op(OpCode::OpJump(JumpOffset(0)), node);
self.patch_jump(then_idx); // patch jump *to* else_body
self.push_op(OpCode::OpPop, node); // discard condition value
self.compile(slot, node.else_body().unwrap());
self.patch_jump(else_idx); // patch jump *over* else body
self.patch_jump(throw_idx); // patch jump *over* else body
}
/// Compile `with` expressions by emitting instructions that
/// pop/remove the indices of attribute sets that are implicitly
/// in scope through `with` on the "with-stack".
fn compile_with(&mut self, slot: LocalIdx, node: &ast::With) {
self.scope_mut().begin_scope();
// TODO: Detect if the namespace is just an identifier, and
// resolve that directly (thus avoiding duplication on the
// stack).
self.compile(slot, node.namespace().unwrap());
let span = self.span_for(&node.namespace().unwrap());
// The attribute set from which `with` inherits values
// occupies a slot on the stack, but this stack slot is not
// directly accessible. As it must be accounted for to
// calculate correct offsets, what we call a "phantom" local
// is declared here.
let local_idx = self.scope_mut().declare_phantom(span, true);
let with_idx = self.scope().stack_index(local_idx);
self.scope_mut().push_with();
self.push_op(OpCode::OpPushWith(with_idx), &node.namespace().unwrap());
self.compile(slot, node.body().unwrap());
self.push_op(OpCode::OpPopWith, node);
self.scope_mut().pop_with();
self.cleanup_scope(node);
}
/// Compiles pattern function arguments, such as `{ a, b }: ...`.
///
/// These patterns are treated as a special case of locals binding
/// where the attribute set itself is placed on the first stack
/// slot of the call frame (either as a phantom, or named in case
/// of an `@` binding), and the function call sets up the rest of
/// the stack as if the parameters were rewritten into a `let`
/// binding.
///
/// For example:
///
/// ```nix
/// ({ a, b ? 2, c ? a * b, ... }@args: <body>) { a = 10; }
/// ```
///
/// would be compiled similarly to a binding such as
///
/// ```nix
/// let args = { a = 10; };
/// in let a = args.a;
/// b = args.a or 2;
/// c = args.c or a * b;
/// in <body>
/// ```
///
/// However, there are two properties of pattern function arguments that can
/// not be compiled by desugaring in this way:
///
/// 1. Bindings have to fail if too many arguments are provided. This is
/// done by emitting a special instruction that checks the set of keys
/// from a constant containing the expected keys.
/// 2. Formal arguments with a default expression are (as an optimization and
/// because it is simpler) not wrapped in another thunk, instead compiled
/// and accessed separately. This means that the default expression may
/// never make it into the local's stack slot if the argument is provided
/// by the caller. We need to take this into account and skip any
/// operations specific to the expression like thunk finalisation in such
/// cases.
fn compile_param_pattern(&mut self, pattern: &ast::Pattern) -> (Formals, CodeIdx) {
let span = self.span_for(pattern);
let (set_idx, pat_bind_name) = match pattern.pat_bind() {
Some(name) => {
let pat_bind_name = name.ident().unwrap().to_string();
(
self.declare_local(&name, pat_bind_name.clone()),
Some(pat_bind_name),
)
}
None => (self.scope_mut().declare_phantom(span, true), None),
};
// At call time, the attribute set is already at the top of the stack.
self.scope_mut().mark_initialised(set_idx);
self.emit_force(pattern);
let throw_idx = self.push_op(OpCode::OpJumpIfCatchable(JumpOffset(0)), pattern);
// Evaluation fails on a type error, even if the argument(s) are unused.
self.push_op(OpCode::OpAssertAttrs, pattern);
let ellipsis = pattern.ellipsis_token().is_some();
if !ellipsis {
self.push_op(OpCode::OpValidateClosedFormals, pattern);
}
// Similar to `let ... in ...`, we now do multiple passes over
// the bindings to first declare them, then populate them, and
// then finalise any necessary recursion into the scope.
let mut entries: Vec<TrackedFormal> = vec![];
let mut arguments = BTreeMap::default();
for entry in pattern.pat_entries() {
let ident = entry.ident().unwrap();
let idx = self.declare_local(&ident, ident.to_string());
arguments.insert(ident.into(), entry.default().is_some());
if let Some(default_expr) = entry.default() {
entries.push(TrackedFormal::WithDefault {
local_idx: idx,
// This phantom is used to track at runtime (!) whether we need to
// finalise the local's stack slot or not. The relevant instructions are
// emitted in the second pass where the mechanism is explained as well.
finalise_request_idx: {
let span = self.span_for(&default_expr);
self.scope_mut().declare_phantom(span, false)
},
default_expr,
pattern_entry: entry,
});
} else {
entries.push(TrackedFormal::NoDefault {
local_idx: idx,
pattern_entry: entry,
});
}
}
// For each of the bindings, push the set on the stack and
// attempt to select from it.
let stack_idx = self.scope().stack_index(set_idx);
for tracked_formal in entries.iter() {
self.push_op(OpCode::OpGetLocal(stack_idx), pattern);
self.emit_literal_ident(&tracked_formal.pattern_entry().ident().unwrap());
let idx = tracked_formal.local_idx();
// Use the same mechanism as `compile_select_or` if a
// default value was provided, or simply select otherwise.
match tracked_formal {
TrackedFormal::WithDefault {
default_expr,
pattern_entry,
..
} => {
// The tricky bit about compiling a formal argument with a default value
// is that the default may be a thunk that may depend on the value of
// other formal arguments, i.e. may need to be finalised. This
// finalisation can only happen if we are actually using the default
// value—otherwise OpFinalise will crash on an already finalised (or
// non-thunk) value.
//
// Thus we use an additional local to track whether we wound up
// defaulting or not. `FinaliseRequest(false)` indicates that we should
// not finalise, as we did not default.
//
// We are being wasteful with VM stack space in case of default
// expressions that don't end up needing to be finalised. Unfortunately
// we only know better after compiling the default expression, so
// avoiding unnecessary locals would mean we'd need to modify the chunk
// after the fact.
self.push_op(OpCode::OpAttrsTrySelect, &pattern_entry.ident().unwrap());
let jump_to_default =
self.push_op(OpCode::OpJumpIfNotFound(JumpOffset(0)), default_expr);
self.emit_constant(Value::FinaliseRequest(false), default_expr);
let jump_over_default =
self.push_op(OpCode::OpJump(JumpOffset(0)), default_expr);
self.patch_jump(jump_to_default);
// Does not need to thunked since compile() already does so when necessary
self.compile(idx, default_expr.clone());
self.emit_constant(Value::FinaliseRequest(true), default_expr);
self.patch_jump(jump_over_default);
}
TrackedFormal::NoDefault { pattern_entry, .. } => {
self.push_op(OpCode::OpAttrsSelect, &pattern_entry.ident().unwrap());
}
}
self.scope_mut().mark_initialised(idx);
if let TrackedFormal::WithDefault {
finalise_request_idx,
..
} = tracked_formal
{
self.scope_mut().mark_initialised(*finalise_request_idx);
}
}
for tracked_formal in entries.iter() {
if self.scope()[tracked_formal.local_idx()].needs_finaliser {
let stack_idx = self.scope().stack_index(tracked_formal.local_idx());
match tracked_formal {
TrackedFormal::NoDefault { .. } =>
panic!("Tvix bug: local for pattern formal needs finaliser, but has no default expr"),
TrackedFormal::WithDefault { finalise_request_idx, .. } => {
let finalise_request_stack_idx = self.scope().stack_index(*finalise_request_idx);
// TODO(sterni): better spans
self.push_op(
OpCode::OpGetLocal(finalise_request_stack_idx),
pattern
);
let jump_over_finalise =
self.push_op(
OpCode::OpJumpIfNoFinaliseRequest(
JumpOffset(0)),
pattern
);
self.push_op(
OpCode::OpFinalise(stack_idx),
pattern,
);
self.patch_jump(jump_over_finalise);
// Get rid of finaliser request value on the stack
self.push_op(OpCode::OpPop, pattern);
}
}
}
}
(
(Formals {
arguments,
ellipsis,
span,
name: pat_bind_name,
}),
throw_idx,
)
}
fn compile_lambda(&mut self, slot: LocalIdx, node: &ast::Lambda) -> Option<CodeIdx> {
// Compile the function itself, recording its formal arguments (if any)
// for later use
let formals = match node.param().unwrap() {
ast::Param::Pattern(pat) => Some(self.compile_param_pattern(&pat)),
ast::Param::IdentParam(param) => {
let name = param
.ident()
.unwrap()
.ident_token()
.unwrap()
.text()
.to_string();
let idx = self.declare_local(&param, &name);
self.scope_mut().mark_initialised(idx);
None
}
};
self.compile(slot, node.body().unwrap());
if let Some((formals, throw_idx)) = formals {
self.context_mut().lambda.formals = Some(formals);
Some(throw_idx)
} else {
self.context_mut().lambda.formals = None;
None
}
}
fn thunk<N, F>(&mut self, outer_slot: LocalIdx, node: &N, content: F)
where
N: ToSpan,
F: FnOnce(&mut Compiler, LocalIdx),
{
self.compile_lambda_or_thunk(true, outer_slot, node, |comp, idx| {
content(comp, idx);
None
})
}
/// Mark the current thunk as redundant, i.e. possible to merge directly
/// into its parent lambda context without affecting runtime behaviour.
fn unthunk(&mut self) {
self.context_mut().unthunk = true;
}
/// Compile an expression into a runtime closure or thunk
fn compile_lambda_or_thunk<N, F>(
&mut self,
is_suspended_thunk: bool,
outer_slot: LocalIdx,
node: &N,
content: F,
) where
N: ToSpan,
F: FnOnce(&mut Compiler, LocalIdx) -> Option<CodeIdx>,
{
let name = self.scope()[outer_slot].name();
self.new_context();
// Set the (optional) name of the current slot on the lambda that is
// being compiled.
self.context_mut().lambda.name = name;
let span = self.span_for(node);
let slot = self.scope_mut().declare_phantom(span, false);
self.scope_mut().begin_scope();
let throw_idx = content(self, slot);
self.cleanup_scope(node);
if let Some(throw_idx) = throw_idx {
self.patch_jump(throw_idx);
}
// TODO: determine and insert enclosing name, if available.
// Pop the lambda context back off, and emit the finished
// lambda as a constant.
let mut compiled = self.contexts.pop().unwrap();
// The compiler might have decided to unthunk, i.e. raise the compiled
// code to the parent context. In that case we do so and return right
// away.
if compiled.unthunk && is_suspended_thunk {
self.chunk().extend(compiled.lambda.chunk);
return;
}
// Emit an instruction to inform the VM that the chunk has ended.
compiled
.lambda
.chunk
.push_op(OpCode::OpReturn, self.span_for(node));
// Capturing the with stack counts as an upvalue, as it is
// emitted as an upvalue data instruction.
if compiled.captures_with_stack {
compiled.lambda.upvalue_count += 1;
}
let lambda = Rc::new(compiled.lambda);
if is_suspended_thunk {
self.observer.observe_compiled_thunk(&lambda);
} else {
self.observer.observe_compiled_lambda(&lambda);
}
// If no upvalues are captured, emit directly and move on.
if lambda.upvalue_count == 0 {
self.emit_constant(
if is_suspended_thunk {
Value::Thunk(Thunk::new_suspended(lambda, LightSpan::new_actual(span)))
} else {
Value::Closure(Rc::new(Closure::new(lambda)))
},
node,
);
return;
}
// Otherwise, we need to emit the variable number of
// operands that allow the runtime to close over the
// upvalues and leave a blueprint in the constant index from
// which the result can be constructed.
let blueprint_idx = self.chunk().push_constant(Value::Blueprint(lambda));
let code_idx = self.push_op(
if is_suspended_thunk {
OpCode::OpThunkSuspended(blueprint_idx)
} else {
OpCode::OpThunkClosure(blueprint_idx)
},
node,
);
self.emit_upvalue_data(
outer_slot,
node,
compiled.scope.upvalues,
compiled.captures_with_stack,
);
if !is_suspended_thunk && !self.scope()[outer_slot].needs_finaliser {
if !self.scope()[outer_slot].must_thunk {
// The closure has upvalues, but is not recursive. Therefore no thunk is required,
// which saves us the overhead of Rc<RefCell<>>
self.chunk()[code_idx] = OpCode::OpClosure(blueprint_idx);
} else {
// This case occurs when a closure has upvalue-references to itself but does not need a
// finaliser. Since no OpFinalise will be emitted later on we synthesize one here.
// It is needed here only to set [`Closure::is_finalised`] which is used for sanity checks.
#[cfg(debug_assertions)]
self.push_op(
OpCode::OpFinalise(self.scope().stack_index(outer_slot)),
&self.span_for(node),
);
}
}
}
fn compile_apply(&mut self, slot: LocalIdx, node: &ast::Apply) {
// To call a function, we leave its arguments on the stack,
// followed by the function expression itself, and then emit a
// call instruction. This way, the stack is perfectly laid out
// to enter the function call straight away.
self.compile(slot, node.argument().unwrap());
self.compile(slot, node.lambda().unwrap());
self.emit_force(&node.lambda().unwrap());
self.push_op(OpCode::OpCall, node);
}
/// Emit the data instructions that the runtime needs to correctly
/// assemble the upvalues struct.
fn emit_upvalue_data<T: ToSpan>(
&mut self,
slot: LocalIdx,
node: &T,
upvalues: Vec<Upvalue>,
capture_with: bool,
) {
for upvalue in upvalues {
match upvalue.kind {
UpvalueKind::Local(idx) => {
let target = &self.scope()[idx];
let stack_idx = self.scope().stack_index(idx);
// If the target is not yet initialised, we need to defer
// the local access
if !target.initialised {
self.push_op(OpCode::DataDeferredLocal(stack_idx), &upvalue.span);
self.scope_mut().mark_needs_finaliser(slot);
} else {
// a self-reference
if slot == idx {
self.scope_mut().mark_must_thunk(slot);
}
self.push_op(OpCode::DataStackIdx(stack_idx), &upvalue.span);
}
}
UpvalueKind::Upvalue(idx) => {
self.push_op(OpCode::DataUpvalueIdx(idx), &upvalue.span);
}
};
}
if capture_with {
// TODO(tazjin): probably better to emit span for the ident that caused this
self.push_op(OpCode::DataCaptureWith, node);
}
}
/// Emit the literal string value of an identifier. Required for
/// several operations related to attribute sets, where
/// identifiers are used as string keys.
fn emit_literal_ident(&mut self, ident: &ast::Ident) {
self.emit_constant(Value::String(ident.clone().into()), ident);
}
/// Patch the jump instruction at the given index, setting its
/// jump offset from the placeholder to the current code position.
///
/// This is required because the actual target offset of jumps is
/// not known at the time when the jump operation itself is
/// emitted.
fn patch_jump(&mut self, idx: CodeIdx) {
let offset = JumpOffset(self.chunk().code.len() - 1 - idx.0);
match &mut self.chunk().code[idx.0] {
OpCode::OpJump(n)
| OpCode::OpJumpIfFalse(n)
| OpCode::OpJumpIfTrue(n)
| OpCode::OpJumpIfCatchable(n)
| OpCode::OpJumpIfNotFound(n)
| OpCode::OpJumpIfNoFinaliseRequest(n) => {
*n = offset;
}
op => panic!("attempted to patch unsupported op: {:?}", op),
}
}
/// Decrease scope depth of the current function and emit
/// instructions to clean up the stack at runtime.
fn cleanup_scope<N: ToSpan>(&mut self, node: &N) {
// When ending a scope, all corresponding locals need to be
// removed, but the value of the body needs to remain on the
// stack. This is implemented by a separate instruction.
let (popcount, unused_spans) = self.scope_mut().end_scope();
for span in &unused_spans {
self.emit_warning(span, WarningKind::UnusedBinding);
}
if popcount > 0 {
self.push_op(OpCode::OpCloseScope(Count(popcount)), node);
}
}
/// Open a new lambda context within which to compile a function,
/// closure or thunk.
fn new_context(&mut self) {
self.contexts.push(self.context().inherit());
}
/// Declare a local variable known in the scope that is being
/// compiled by pushing it to the locals. This is used to
/// determine the stack offset of variables.
fn declare_local<S: Into<String>, N: ToSpan>(&mut self, node: &N, name: S) -> LocalIdx {
let name = name.into();
let depth = self.scope().scope_depth();
// Do this little dance to turn name:&'a str into the same
// string with &'static lifetime, as required by WarningKind
if let Some((global_ident, _)) = self.globals.get_key_value(name.as_str()) {
self.emit_warning(node, WarningKind::ShadowedGlobal(global_ident));
}
let span = self.span_for(node);
let (idx, shadowed) = self.scope_mut().declare_local(name, span);
if let Some(shadow_idx) = shadowed {
let other = &self.scope()[shadow_idx];
if other.depth == depth {
self.emit_error(node, ErrorKind::VariableAlreadyDefined(other.span));
}
}
idx
}
/// Determine whether the current lambda context has any ancestors
/// that use dynamic scope resolution, and mark contexts as
/// needing to capture their enclosing `with`-stack in their
/// upvalues.
fn has_dynamic_ancestor(&mut self) -> bool {
let mut ancestor_has_with = false;
for ctx in self.contexts.iter_mut() {
if ancestor_has_with {
// If the ancestor has an active with stack, mark this
// lambda context as needing to capture it.
ctx.captures_with_stack = true;
} else {
// otherwise, check this context and move on
ancestor_has_with = ctx.scope.has_with();
}
}
ancestor_has_with
}
fn emit_force<N: ToSpan>(&mut self, node: &N) {
self.push_op(OpCode::OpForce, node);
}
fn emit_warning<N: ToSpan>(&mut self, node: &N, kind: WarningKind) {
let span = self.span_for(node);
self.warnings.push(EvalWarning { kind, span })
}
fn emit_error<N: ToSpan>(&mut self, node: &N, kind: ErrorKind) {
let span = self.span_for(node);
self.errors.push(Error::new(kind, span))
}
}
/// Convert a non-dynamic string expression to a string if possible.
fn expr_static_str(node: &ast::Str) -> Option<SmolStr> {
let mut parts = node.normalized_parts();
if parts.len() != 1 {
return None;
}
if let Some(ast::InterpolPart::Literal(lit)) = parts.pop() {
return Some(SmolStr::new(lit));
}
None
}
/// Convert the provided `ast::Attr` into a statically known string if
/// possible.
fn expr_static_attr_str(node: &ast::Attr) -> Option<SmolStr> {
match node {
ast::Attr::Ident(ident) => Some(ident.ident_token().unwrap().text().into()),
ast::Attr::Str(s) => expr_static_str(s),
// The dynamic node type is just a wrapper. C++ Nix does not care
// about the dynamic wrapper when determining whether the node
// itself is dynamic, it depends solely on the expression inside
// (i.e. `let ${"a"} = 1; in a` is valid).
ast::Attr::Dynamic(ref dynamic) => match dynamic.expr().unwrap() {
ast::Expr::Str(s) => expr_static_str(&s),
_ => None,
},
}
}
/// Create a delayed source-only builtin compilation, for a builtin
/// which is written in Nix code.
///
/// **Important:** tvix *panics* if a builtin with invalid source code
/// is supplied. This is because there is no user-friendly way to
/// thread the errors out of this function right now.
fn compile_src_builtin(
name: &'static str,
code: &str,
source: &SourceCode,
weak: &Weak<GlobalsMap>,
) -> Value {
use std::fmt::Write;
let parsed = rnix::ast::Root::parse(code);
if !parsed.errors().is_empty() {
let mut out = format!("BUG: code for source-builtin '{}' had parser errors", name);
for error in parsed.errors() {
writeln!(out, "{}", error).unwrap();
}
panic!("{}", out);
}
let file = source.add_file(format!("<src-builtins/{}.nix>", name), code.to_string());
let weak = weak.clone();
Value::Thunk(Thunk::new_suspended_native(Box::new(move || {
let result = compile(
&parsed.tree().expr().unwrap(),
None,
file.clone(),
weak.upgrade().unwrap(),
&mut crate::observer::NoOpObserver {},
)
.map_err(|e| ErrorKind::NativeError {
gen_type: "derivation",
err: Box::new(e),
})?;
if !result.errors.is_empty() {
return Err(ErrorKind::ImportCompilerError {
path: format!("src-builtins/{}.nix", name).into(),
errors: result.errors,
});
}
Ok(Value::Thunk(Thunk::new_suspended(
result.lambda,
LightSpan::Actual { span: file.span },
)))
})))
}
/// Prepare the full set of globals available in evaluated code. These
/// are constructed from the set of builtins supplied by the caller,
/// which are made available globally under the `builtins` identifier.
///
/// A subset of builtins (specified by [`GLOBAL_BUILTINS`]) is
/// available globally *iff* they are set.
///
/// Optionally adds the `import` feature if desired by the caller.
pub fn prepare_globals(
builtins: Vec<(&'static str, Value)>,
src_builtins: Vec<(&'static str, &'static str)>,
source: SourceCode,
enable_import: bool,
) -> Rc<GlobalsMap> {
Rc::new_cyclic(Box::new(move |weak: &Weak<GlobalsMap>| {
// First step is to construct the builtins themselves as
// `NixAttrs`.
let mut builtins: GlobalsMap = HashMap::from_iter(builtins);
// At this point, optionally insert `import` if enabled. To
// "tie the knot" of `import` needing the full set of globals
// to instantiate its compiler, the `Weak` reference is passed
// here.
if enable_import {
let import = Value::Builtin(import::builtins_import(weak, source.clone()));
builtins.insert("import", import);
}
// Next, the actual map of globals which the compiler will use
// to resolve identifiers is constructed.
let mut globals: GlobalsMap = HashMap::new();
// builtins contain themselves (`builtins.builtins`), which we
// can resolve by manually constructing a suspended thunk that
// dereferences the same weak pointer as above.
let weak_globals = weak.clone();
builtins.insert(
"builtins",
Value::Thunk(Thunk::new_suspended_native(Box::new(move || {
Ok(weak_globals
.upgrade()
.unwrap()
.get("builtins")
.cloned()
.unwrap())
}))),
);
// Insert top-level static value builtins.
globals.insert("true", Value::Bool(true));
globals.insert("false", Value::Bool(false));
globals.insert("null", Value::Null);
// If "source builtins" were supplied, compile them and insert
// them.
builtins.extend(src_builtins.into_iter().map(move |(name, code)| {
let compiled = compile_src_builtin(name, code, &source, weak);
(name, compiled)
}));
// Construct the actual `builtins` attribute set and insert it
// in the global scope.
globals.insert(
"builtins",
Value::attrs(NixAttrs::from_iter(builtins.clone())),
);
// Finally, the builtins that should be globally available are
// "elevated" to the outer scope.
for global in GLOBAL_BUILTINS {
if let Some(builtin) = builtins.get(global).cloned() {
globals.insert(global, builtin);
}
}
globals
}))
}
pub fn compile(
expr: &ast::Expr,
location: Option<PathBuf>,
file: Arc<codemap::File>,
globals: Rc<GlobalsMap>,
observer: &mut dyn CompilerObserver,
) -> EvalResult<CompilationOutput> {
let mut c = Compiler::new(location, file, globals.clone(), observer)?;
let root_span = c.span_for(expr);
let root_slot = c.scope_mut().declare_phantom(root_span, false);
c.compile(root_slot, expr.clone());
// The final operation of any top-level Nix program must always be
// `OpForce`. A thunk should not be returned to the user in an
// unevaluated state (though in practice, a value *containing* a
// thunk might be returned).
c.emit_force(expr);
c.push_op(OpCode::OpReturn, &root_span);
let lambda = Rc::new(c.contexts.pop().unwrap().lambda);
c.observer.observe_compiled_toplevel(&lambda);
Ok(CompilationOutput {
lambda,
warnings: c.warnings,
errors: c.errors,
globals,
})
}