git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			93 lines
		
	
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			93 lines
		
	
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2019 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//     https://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
#include "absl/base/internal/exponential_biased.h"
 | 
						|
 | 
						|
#include <stdint.h>
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <atomic>
 | 
						|
#include <cmath>
 | 
						|
#include <limits>
 | 
						|
 | 
						|
#include "absl/base/attributes.h"
 | 
						|
#include "absl/base/optimization.h"
 | 
						|
 | 
						|
namespace absl {
 | 
						|
ABSL_NAMESPACE_BEGIN
 | 
						|
namespace base_internal {
 | 
						|
 | 
						|
// The algorithm generates a random number between 0 and 1 and applies the
 | 
						|
// inverse cumulative distribution function for an exponential. Specifically:
 | 
						|
// Let m be the inverse of the sample period, then the probability
 | 
						|
// distribution function is m*exp(-mx) so the CDF is
 | 
						|
// p = 1 - exp(-mx), so
 | 
						|
// q = 1 - p = exp(-mx)
 | 
						|
// log_e(q) = -mx
 | 
						|
// -log_e(q)/m = x
 | 
						|
// log_2(q) * (-log_e(2) * 1/m) = x
 | 
						|
// In the code, q is actually in the range 1 to 2**26, hence the -26 below
 | 
						|
int64_t ExponentialBiased::GetSkipCount(int64_t mean) {
 | 
						|
  if (ABSL_PREDICT_FALSE(!initialized_)) {
 | 
						|
    Initialize();
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t rng = NextRandom(rng_);
 | 
						|
  rng_ = rng;
 | 
						|
 | 
						|
  // Take the top 26 bits as the random number
 | 
						|
  // (This plus the 1<<58 sampling bound give a max possible step of
 | 
						|
  // 5194297183973780480 bytes.)
 | 
						|
  // The uint32_t cast is to prevent a (hard-to-reproduce) NAN
 | 
						|
  // under piii debug for some binaries.
 | 
						|
  double q = static_cast<uint32_t>(rng >> (kPrngNumBits - 26)) + 1.0;
 | 
						|
  // Put the computed p-value through the CDF of a geometric.
 | 
						|
  double interval = bias_ + (std::log2(q) - 26) * (-std::log(2.0) * mean);
 | 
						|
  // Very large values of interval overflow int64_t. To avoid that, we will
 | 
						|
  // cheat and clamp any huge values to (int64_t max)/2. This is a potential
 | 
						|
  // source of bias, but the mean would need to be such a large value that it's
 | 
						|
  // not likely to come up. For example, with a mean of 1e18, the probability of
 | 
						|
  // hitting this condition is about 1/1000. For a mean of 1e17, standard
 | 
						|
  // calculators claim that this event won't happen.
 | 
						|
  if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) {
 | 
						|
    // Assume huge values are bias neutral, retain bias for next call.
 | 
						|
    return std::numeric_limits<int64_t>::max() / 2;
 | 
						|
  }
 | 
						|
  double value = std::round(interval);
 | 
						|
  bias_ = interval - value;
 | 
						|
  return value;
 | 
						|
}
 | 
						|
 | 
						|
int64_t ExponentialBiased::GetStride(int64_t mean) {
 | 
						|
  return GetSkipCount(mean - 1) + 1;
 | 
						|
}
 | 
						|
 | 
						|
void ExponentialBiased::Initialize() {
 | 
						|
  // We don't get well distributed numbers from `this` so we call NextRandom() a
 | 
						|
  // bunch to mush the bits around. We use a global_rand to handle the case
 | 
						|
  // where the same thread (by memory address) gets created and destroyed
 | 
						|
  // repeatedly.
 | 
						|
  ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0);
 | 
						|
  uint64_t r = reinterpret_cast<uint64_t>(this) +
 | 
						|
               global_rand.fetch_add(1, std::memory_order_relaxed);
 | 
						|
  for (int i = 0; i < 20; ++i) {
 | 
						|
    r = NextRandom(r);
 | 
						|
  }
 | 
						|
  rng_ = r;
 | 
						|
  initialized_ = true;
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace base_internal
 | 
						|
ABSL_NAMESPACE_END
 | 
						|
}  // namespace absl
 |