-- 5278e56bd7d322ecf161eaf29fd7fa3941d7431b by Greg Falcon <gfalcon@google.com>: internal change PiperOrigin-RevId: 222078614 GitOrigin-RevId: 5278e56bd7d322ecf161eaf29fd7fa3941d7431b Change-Id: I1e86bef2e3733c81148a1a42dccd8182fe3f7fae
		
			
				
	
	
		
			1477 lines
		
	
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1477 lines
		
	
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2018 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| // This library provides Symbolize() function that symbolizes program
 | |
| // counters to their corresponding symbol names on linux platforms.
 | |
| // This library has a minimal implementation of an ELF symbol table
 | |
| // reader (i.e. it doesn't depend on libelf, etc.).
 | |
| //
 | |
| // The algorithm used in Symbolize() is as follows.
 | |
| //
 | |
| //   1. Go through a list of maps in /proc/self/maps and find the map
 | |
| //   containing the program counter.
 | |
| //
 | |
| //   2. Open the mapped file and find a regular symbol table inside.
 | |
| //   Iterate over symbols in the symbol table and look for the symbol
 | |
| //   containing the program counter.  If such a symbol is found,
 | |
| //   obtain the symbol name, and demangle the symbol if possible.
 | |
| //   If the symbol isn't found in the regular symbol table (binary is
 | |
| //   stripped), try the same thing with a dynamic symbol table.
 | |
| //
 | |
| // Note that Symbolize() is originally implemented to be used in
 | |
| // signal handlers, hence it doesn't use malloc() and other unsafe
 | |
| // operations.  It should be both thread-safe and async-signal-safe.
 | |
| //
 | |
| // Implementation note:
 | |
| //
 | |
| // We don't use heaps but only use stacks.  We want to reduce the
 | |
| // stack consumption so that the symbolizer can run on small stacks.
 | |
| //
 | |
| // Here are some numbers collected with GCC 4.1.0 on x86:
 | |
| // - sizeof(Elf32_Sym)  = 16
 | |
| // - sizeof(Elf32_Shdr) = 40
 | |
| // - sizeof(Elf64_Sym)  = 24
 | |
| // - sizeof(Elf64_Shdr) = 64
 | |
| //
 | |
| // This implementation is intended to be async-signal-safe but uses some
 | |
| // functions which are not guaranteed to be so, such as memchr() and
 | |
| // memmove().  We assume they are async-signal-safe.
 | |
| 
 | |
| #include <dlfcn.h>
 | |
| #include <elf.h>
 | |
| #include <fcntl.h>
 | |
| #include <link.h>  // For ElfW() macro.
 | |
| #include <sys/stat.h>
 | |
| #include <sys/types.h>
 | |
| #include <unistd.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <atomic>
 | |
| #include <cerrno>
 | |
| #include <cinttypes>
 | |
| #include <climits>
 | |
| #include <cstdint>
 | |
| #include <cstdio>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| 
 | |
| #include "absl/base/casts.h"
 | |
| #include "absl/base/dynamic_annotations.h"
 | |
| #include "absl/base/internal/low_level_alloc.h"
 | |
| #include "absl/base/internal/raw_logging.h"
 | |
| #include "absl/base/internal/spinlock.h"
 | |
| #include "absl/base/port.h"
 | |
| #include "absl/debugging/internal/demangle.h"
 | |
| #include "absl/debugging/internal/vdso_support.h"
 | |
| 
 | |
| namespace absl {
 | |
| 
 | |
| // Value of argv[0]. Used by MaybeInitializeObjFile().
 | |
| static char *argv0_value = nullptr;
 | |
| 
 | |
| void InitializeSymbolizer(const char *argv0) {
 | |
|   if (argv0_value != nullptr) {
 | |
|     free(argv0_value);
 | |
|     argv0_value = nullptr;
 | |
|   }
 | |
|   if (argv0 != nullptr && argv0[0] != '\0') {
 | |
|     argv0_value = strdup(argv0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace debugging_internal {
 | |
| namespace {
 | |
| 
 | |
| // Re-runs fn until it doesn't cause EINTR.
 | |
| #define NO_INTR(fn) \
 | |
|   do {              \
 | |
|   } while ((fn) < 0 && errno == EINTR)
 | |
| 
 | |
| // On Linux, ELF_ST_* are defined in <linux/elf.h>.  To make this portable
 | |
| // we define our own ELF_ST_BIND and ELF_ST_TYPE if not available.
 | |
| #ifndef ELF_ST_BIND
 | |
| #define ELF_ST_BIND(info) (((unsigned char)(info)) >> 4)
 | |
| #endif
 | |
| 
 | |
| #ifndef ELF_ST_TYPE
 | |
| #define ELF_ST_TYPE(info) (((unsigned char)(info)) & 0xF)
 | |
| #endif
 | |
| 
 | |
| // Some platforms use a special .opd section to store function pointers.
 | |
| const char kOpdSectionName[] = ".opd";
 | |
| 
 | |
| #if (defined(__powerpc__) && !(_CALL_ELF > 1)) || defined(__ia64)
 | |
| // Use opd section for function descriptors on these platforms, the function
 | |
| // address is the first word of the descriptor.
 | |
| enum { kPlatformUsesOPDSections = 1 };
 | |
| #else  // not PPC or IA64
 | |
| enum { kPlatformUsesOPDSections = 0 };
 | |
| #endif
 | |
| 
 | |
| // This works for PowerPC & IA64 only.  A function descriptor consist of two
 | |
| // pointers and the first one is the function's entry.
 | |
| const size_t kFunctionDescriptorSize = sizeof(void *) * 2;
 | |
| 
 | |
| const int kMaxDecorators = 10;  // Seems like a reasonable upper limit.
 | |
| 
 | |
| struct InstalledSymbolDecorator {
 | |
|   SymbolDecorator fn;
 | |
|   void *arg;
 | |
|   int ticket;
 | |
| };
 | |
| 
 | |
| int g_num_decorators;
 | |
| InstalledSymbolDecorator g_decorators[kMaxDecorators];
 | |
| 
 | |
| struct FileMappingHint {
 | |
|   const void *start;
 | |
|   const void *end;
 | |
|   uint64_t offset;
 | |
|   const char *filename;
 | |
| };
 | |
| 
 | |
| // Protects g_decorators.
 | |
| // We are using SpinLock and not a Mutex here, because we may be called
 | |
| // from inside Mutex::Lock itself, and it prohibits recursive calls.
 | |
| // This happens in e.g. base/stacktrace_syscall_unittest.
 | |
| // Moreover, we are using only TryLock(), if the decorator list
 | |
| // is being modified (is busy), we skip all decorators, and possibly
 | |
| // loose some info. Sorry, that's the best we could do.
 | |
| base_internal::SpinLock g_decorators_mu(base_internal::kLinkerInitialized);
 | |
| 
 | |
| const int kMaxFileMappingHints = 8;
 | |
| int g_num_file_mapping_hints;
 | |
| FileMappingHint g_file_mapping_hints[kMaxFileMappingHints];
 | |
| // Protects g_file_mapping_hints.
 | |
| base_internal::SpinLock g_file_mapping_mu(base_internal::kLinkerInitialized);
 | |
| 
 | |
| // Async-signal-safe function to zero a buffer.
 | |
| // memset() is not guaranteed to be async-signal-safe.
 | |
| static void SafeMemZero(void* p, size_t size) {
 | |
|   unsigned char *c = static_cast<unsigned char *>(p);
 | |
|   while (size--) {
 | |
|     *c++ = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| struct ObjFile {
 | |
|   ObjFile()
 | |
|       : filename(nullptr),
 | |
|         start_addr(nullptr),
 | |
|         end_addr(nullptr),
 | |
|         offset(0),
 | |
|         fd(-1),
 | |
|         elf_type(-1) {
 | |
|     SafeMemZero(&elf_header, sizeof(elf_header));
 | |
|   }
 | |
| 
 | |
|   char *filename;
 | |
|   const void *start_addr;
 | |
|   const void *end_addr;
 | |
|   uint64_t offset;
 | |
| 
 | |
|   // The following fields are initialized on the first access to the
 | |
|   // object file.
 | |
|   int fd;
 | |
|   int elf_type;
 | |
|   ElfW(Ehdr) elf_header;
 | |
| };
 | |
| 
 | |
| // Build 4-way associative cache for symbols. Within each cache line, symbols
 | |
| // are replaced in LRU order.
 | |
| enum {
 | |
|   ASSOCIATIVITY = 4,
 | |
| };
 | |
| struct SymbolCacheLine {
 | |
|   const void *pc[ASSOCIATIVITY];
 | |
|   char *name[ASSOCIATIVITY];
 | |
| 
 | |
|   // age[i] is incremented when a line is accessed. it's reset to zero if the
 | |
|   // i'th entry is read.
 | |
|   uint32_t age[ASSOCIATIVITY];
 | |
| };
 | |
| 
 | |
| // ---------------------------------------------------------------
 | |
| // An async-signal-safe arena for LowLevelAlloc
 | |
| static std::atomic<base_internal::LowLevelAlloc::Arena *> g_sig_safe_arena;
 | |
| 
 | |
| static base_internal::LowLevelAlloc::Arena *SigSafeArena() {
 | |
|   return g_sig_safe_arena.load(std::memory_order_acquire);
 | |
| }
 | |
| 
 | |
| static void InitSigSafeArena() {
 | |
|   if (SigSafeArena() == nullptr) {
 | |
|     base_internal::LowLevelAlloc::Arena *new_arena =
 | |
|         base_internal::LowLevelAlloc::NewArena(
 | |
|             base_internal::LowLevelAlloc::kAsyncSignalSafe);
 | |
|     base_internal::LowLevelAlloc::Arena *old_value = nullptr;
 | |
|     if (!g_sig_safe_arena.compare_exchange_strong(old_value, new_arena,
 | |
|                                                   std::memory_order_release,
 | |
|                                                   std::memory_order_relaxed)) {
 | |
|       // We lost a race to allocate an arena; deallocate.
 | |
|       base_internal::LowLevelAlloc::DeleteArena(new_arena);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // ---------------------------------------------------------------
 | |
| // An AddrMap is a vector of ObjFile, using SigSafeArena() for allocation.
 | |
| 
 | |
| class AddrMap {
 | |
|  public:
 | |
|   AddrMap() : size_(0), allocated_(0), obj_(nullptr) {}
 | |
|   ~AddrMap() { base_internal::LowLevelAlloc::Free(obj_); }
 | |
|   int Size() const { return size_; }
 | |
|   ObjFile *At(int i) { return &obj_[i]; }
 | |
|   ObjFile *Add();
 | |
|   void Clear();
 | |
| 
 | |
|  private:
 | |
|   int size_;       // count of valid elements (<= allocated_)
 | |
|   int allocated_;  // count of allocated elements
 | |
|   ObjFile *obj_;   // array of allocated_ elements
 | |
|   AddrMap(const AddrMap &) = delete;
 | |
|   AddrMap &operator=(const AddrMap &) = delete;
 | |
| };
 | |
| 
 | |
| void AddrMap::Clear() {
 | |
|   for (int i = 0; i != size_; i++) {
 | |
|     At(i)->~ObjFile();
 | |
|   }
 | |
|   size_ = 0;
 | |
| }
 | |
| 
 | |
| ObjFile *AddrMap::Add() {
 | |
|   if (size_ == allocated_) {
 | |
|     int new_allocated = allocated_ * 2 + 50;
 | |
|     ObjFile *new_obj_ =
 | |
|         static_cast<ObjFile *>(base_internal::LowLevelAlloc::AllocWithArena(
 | |
|             new_allocated * sizeof(*new_obj_), SigSafeArena()));
 | |
|     if (obj_) {
 | |
|       memcpy(new_obj_, obj_, allocated_ * sizeof(*new_obj_));
 | |
|       base_internal::LowLevelAlloc::Free(obj_);
 | |
|     }
 | |
|     obj_ = new_obj_;
 | |
|     allocated_ = new_allocated;
 | |
|   }
 | |
|   return new (&obj_[size_++]) ObjFile;
 | |
| }
 | |
| 
 | |
| // ---------------------------------------------------------------
 | |
| 
 | |
| enum FindSymbolResult { SYMBOL_NOT_FOUND = 1, SYMBOL_TRUNCATED, SYMBOL_FOUND };
 | |
| 
 | |
| class Symbolizer {
 | |
|  public:
 | |
|   Symbolizer();
 | |
|   ~Symbolizer();
 | |
|   const char *GetSymbol(const void *const pc);
 | |
| 
 | |
|  private:
 | |
|   char *CopyString(const char *s) {
 | |
|     int len = strlen(s);
 | |
|     char *dst = static_cast<char *>(
 | |
|         base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena()));
 | |
|     ABSL_RAW_CHECK(dst != nullptr, "out of memory");
 | |
|     memcpy(dst, s, len + 1);
 | |
|     return dst;
 | |
|   }
 | |
|   ObjFile *FindObjFile(const void *const start,
 | |
|                        size_t size) ABSL_ATTRIBUTE_NOINLINE;
 | |
|   static bool RegisterObjFile(const char *filename,
 | |
|                               const void *const start_addr,
 | |
|                               const void *const end_addr, uint64_t offset,
 | |
|                               void *arg);
 | |
|   SymbolCacheLine *GetCacheLine(const void *const pc);
 | |
|   const char *FindSymbolInCache(const void *const pc);
 | |
|   const char *InsertSymbolInCache(const void *const pc, const char *name);
 | |
|   void AgeSymbols(SymbolCacheLine *line);
 | |
|   void ClearAddrMap();
 | |
|   FindSymbolResult GetSymbolFromObjectFile(const ObjFile &obj,
 | |
|                                            const void *const pc,
 | |
|                                            const ptrdiff_t relocation,
 | |
|                                            char *out, int out_size,
 | |
|                                            char *tmp_buf, int tmp_buf_size);
 | |
| 
 | |
|   enum {
 | |
|     SYMBOL_BUF_SIZE = 2048,
 | |
|     TMP_BUF_SIZE = 1024,
 | |
|     SYMBOL_CACHE_LINES = 128,
 | |
|   };
 | |
| 
 | |
|   AddrMap addr_map_;
 | |
| 
 | |
|   bool ok_;
 | |
|   bool addr_map_read_;
 | |
| 
 | |
|   char symbol_buf_[SYMBOL_BUF_SIZE];
 | |
| 
 | |
|   // tmp_buf_ will be used to store arrays of ElfW(Shdr) and ElfW(Sym)
 | |
|   // so we ensure that tmp_buf_ is properly aligned to store either.
 | |
|   alignas(16) char tmp_buf_[TMP_BUF_SIZE];
 | |
|   static_assert(alignof(ElfW(Shdr)) <= 16,
 | |
|                 "alignment of tmp buf too small for Shdr");
 | |
|   static_assert(alignof(ElfW(Sym)) <= 16,
 | |
|                 "alignment of tmp buf too small for Sym");
 | |
| 
 | |
|   SymbolCacheLine symbol_cache_[SYMBOL_CACHE_LINES];
 | |
| };
 | |
| 
 | |
| static std::atomic<Symbolizer *> g_cached_symbolizer;
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| static int SymbolizerSize() {
 | |
| #if defined(__wasm__) || defined(__asmjs__)
 | |
|   int pagesize = getpagesize();
 | |
| #else
 | |
|   int pagesize = sysconf(_SC_PAGESIZE);
 | |
| #endif
 | |
|   return ((sizeof(Symbolizer) - 1) / pagesize + 1) * pagesize;
 | |
| }
 | |
| 
 | |
| // Return (and set null) g_cached_symbolized_state if it is not null.
 | |
| // Otherwise return a new symbolizer.
 | |
| static Symbolizer *AllocateSymbolizer() {
 | |
|   InitSigSafeArena();
 | |
|   Symbolizer *symbolizer =
 | |
|       g_cached_symbolizer.exchange(nullptr, std::memory_order_acquire);
 | |
|   if (symbolizer != nullptr) {
 | |
|     return symbolizer;
 | |
|   }
 | |
|   return new (base_internal::LowLevelAlloc::AllocWithArena(
 | |
|       SymbolizerSize(), SigSafeArena())) Symbolizer();
 | |
| }
 | |
| 
 | |
| // Set g_cached_symbolize_state to s if it is null, otherwise
 | |
| // delete s.
 | |
| static void FreeSymbolizer(Symbolizer *s) {
 | |
|   Symbolizer *old_cached_symbolizer = nullptr;
 | |
|   if (!g_cached_symbolizer.compare_exchange_strong(old_cached_symbolizer, s,
 | |
|                                                    std::memory_order_release,
 | |
|                                                    std::memory_order_relaxed)) {
 | |
|     s->~Symbolizer();
 | |
|     base_internal::LowLevelAlloc::Free(s);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Symbolizer::Symbolizer() : ok_(true), addr_map_read_(false) {
 | |
|   for (SymbolCacheLine &symbol_cache_line : symbol_cache_) {
 | |
|     for (size_t j = 0; j < ABSL_ARRAYSIZE(symbol_cache_line.name); ++j) {
 | |
|       symbol_cache_line.pc[j] = nullptr;
 | |
|       symbol_cache_line.name[j] = nullptr;
 | |
|       symbol_cache_line.age[j] = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| Symbolizer::~Symbolizer() {
 | |
|   for (SymbolCacheLine &symbol_cache_line : symbol_cache_) {
 | |
|     for (char *s : symbol_cache_line.name) {
 | |
|       base_internal::LowLevelAlloc::Free(s);
 | |
|     }
 | |
|   }
 | |
|   ClearAddrMap();
 | |
| }
 | |
| 
 | |
| // We don't use assert() since it's not guaranteed to be
 | |
| // async-signal-safe.  Instead we define a minimal assertion
 | |
| // macro. So far, we don't need pretty printing for __FILE__, etc.
 | |
| #define SAFE_ASSERT(expr) ((expr) ? static_cast<void>(0) : abort())
 | |
| 
 | |
| // Read up to "count" bytes from file descriptor "fd" into the buffer
 | |
| // starting at "buf" while handling short reads and EINTR.  On
 | |
| // success, return the number of bytes read.  Otherwise, return -1.
 | |
| static ssize_t ReadPersistent(int fd, void *buf, size_t count) {
 | |
|   SAFE_ASSERT(fd >= 0);
 | |
|   SAFE_ASSERT(count <= SSIZE_MAX);
 | |
|   char *buf0 = reinterpret_cast<char *>(buf);
 | |
|   size_t num_bytes = 0;
 | |
|   while (num_bytes < count) {
 | |
|     ssize_t len;
 | |
|     NO_INTR(len = read(fd, buf0 + num_bytes, count - num_bytes));
 | |
|     if (len < 0) {  // There was an error other than EINTR.
 | |
|       ABSL_RAW_LOG(WARNING, "read failed: errno=%d", errno);
 | |
|       return -1;
 | |
|     }
 | |
|     if (len == 0) {  // Reached EOF.
 | |
|       break;
 | |
|     }
 | |
|     num_bytes += len;
 | |
|   }
 | |
|   SAFE_ASSERT(num_bytes <= count);
 | |
|   return static_cast<ssize_t>(num_bytes);
 | |
| }
 | |
| 
 | |
| // Read up to "count" bytes from "offset" in the file pointed by file
 | |
| // descriptor "fd" into the buffer starting at "buf".  On success,
 | |
| // return the number of bytes read.  Otherwise, return -1.
 | |
| static ssize_t ReadFromOffset(const int fd, void *buf, const size_t count,
 | |
|                               const off_t offset) {
 | |
|   off_t off = lseek(fd, offset, SEEK_SET);
 | |
|   if (off == (off_t)-1) {
 | |
|     ABSL_RAW_LOG(WARNING, "lseek(%d, %ju, SEEK_SET) failed: errno=%d", fd,
 | |
|                  static_cast<uintmax_t>(offset), errno);
 | |
|     return -1;
 | |
|   }
 | |
|   return ReadPersistent(fd, buf, count);
 | |
| }
 | |
| 
 | |
| // Try reading exactly "count" bytes from "offset" bytes in a file
 | |
| // pointed by "fd" into the buffer starting at "buf" while handling
 | |
| // short reads and EINTR.  On success, return true. Otherwise, return
 | |
| // false.
 | |
| static bool ReadFromOffsetExact(const int fd, void *buf, const size_t count,
 | |
|                                 const off_t offset) {
 | |
|   ssize_t len = ReadFromOffset(fd, buf, count, offset);
 | |
|   return len >= 0 && static_cast<size_t>(len) == count;
 | |
| }
 | |
| 
 | |
| // Returns elf_header.e_type if the file pointed by fd is an ELF binary.
 | |
| static int FileGetElfType(const int fd) {
 | |
|   ElfW(Ehdr) elf_header;
 | |
|   if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {
 | |
|     return -1;
 | |
|   }
 | |
|   if (memcmp(elf_header.e_ident, ELFMAG, SELFMAG) != 0) {
 | |
|     return -1;
 | |
|   }
 | |
|   return elf_header.e_type;
 | |
| }
 | |
| 
 | |
| // Read the section headers in the given ELF binary, and if a section
 | |
| // of the specified type is found, set the output to this section header
 | |
| // and return true.  Otherwise, return false.
 | |
| // To keep stack consumption low, we would like this function to not get
 | |
| // inlined.
 | |
| static ABSL_ATTRIBUTE_NOINLINE bool GetSectionHeaderByType(
 | |
|     const int fd, ElfW(Half) sh_num, const off_t sh_offset, ElfW(Word) type,
 | |
|     ElfW(Shdr) * out, char *tmp_buf, int tmp_buf_size) {
 | |
|   ElfW(Shdr) *buf = reinterpret_cast<ElfW(Shdr) *>(tmp_buf);
 | |
|   const int buf_entries = tmp_buf_size / sizeof(buf[0]);
 | |
|   const int buf_bytes = buf_entries * sizeof(buf[0]);
 | |
| 
 | |
|   for (int i = 0; i < sh_num;) {
 | |
|     const ssize_t num_bytes_left = (sh_num - i) * sizeof(buf[0]);
 | |
|     const ssize_t num_bytes_to_read =
 | |
|         (buf_bytes > num_bytes_left) ? num_bytes_left : buf_bytes;
 | |
|     const off_t offset = sh_offset + i * sizeof(buf[0]);
 | |
|     const ssize_t len = ReadFromOffset(fd, buf, num_bytes_to_read, offset);
 | |
|     if (len % sizeof(buf[0]) != 0) {
 | |
|       ABSL_RAW_LOG(
 | |
|           WARNING,
 | |
|           "Reading %zd bytes from offset %ju returned %zd which is not a "
 | |
|           "multiple of %zu.",
 | |
|           num_bytes_to_read, static_cast<uintmax_t>(offset), len,
 | |
|           sizeof(buf[0]));
 | |
|       return false;
 | |
|     }
 | |
|     const ssize_t num_headers_in_buf = len / sizeof(buf[0]);
 | |
|     SAFE_ASSERT(num_headers_in_buf <= buf_entries);
 | |
|     for (int j = 0; j < num_headers_in_buf; ++j) {
 | |
|       if (buf[j].sh_type == type) {
 | |
|         *out = buf[j];
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     i += num_headers_in_buf;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // There is no particular reason to limit section name to 63 characters,
 | |
| // but there has (as yet) been no need for anything longer either.
 | |
| const int kMaxSectionNameLen = 64;
 | |
| 
 | |
| bool ForEachSection(int fd,
 | |
|                     const std::function<bool(const std::string &name,
 | |
|                                              const ElfW(Shdr) &)> &callback) {
 | |
|   ElfW(Ehdr) elf_header;
 | |
|   if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   ElfW(Shdr) shstrtab;
 | |
|   off_t shstrtab_offset =
 | |
|       (elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx);
 | |
|   if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   for (int i = 0; i < elf_header.e_shnum; ++i) {
 | |
|     ElfW(Shdr) out;
 | |
|     off_t section_header_offset =
 | |
|         (elf_header.e_shoff + elf_header.e_shentsize * i);
 | |
|     if (!ReadFromOffsetExact(fd, &out, sizeof(out), section_header_offset)) {
 | |
|       return false;
 | |
|     }
 | |
|     off_t name_offset = shstrtab.sh_offset + out.sh_name;
 | |
|     char header_name[kMaxSectionNameLen + 1];
 | |
|     ssize_t n_read =
 | |
|         ReadFromOffset(fd, &header_name, kMaxSectionNameLen, name_offset);
 | |
|     if (n_read == -1) {
 | |
|       return false;
 | |
|     } else if (n_read > kMaxSectionNameLen) {
 | |
|       // Long read?
 | |
|       return false;
 | |
|     }
 | |
|     header_name[n_read] = '\0';
 | |
| 
 | |
|     std::string name(header_name);
 | |
|     if (!callback(name, out)) {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // name_len should include terminating '\0'.
 | |
| bool GetSectionHeaderByName(int fd, const char *name, size_t name_len,
 | |
|                             ElfW(Shdr) * out) {
 | |
|   char header_name[kMaxSectionNameLen];
 | |
|   if (sizeof(header_name) < name_len) {
 | |
|     ABSL_RAW_LOG(WARNING,
 | |
|                  "Section name '%s' is too long (%zu); "
 | |
|                  "section will not be found (even if present).",
 | |
|                  name, name_len);
 | |
|     // No point in even trying.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   ElfW(Ehdr) elf_header;
 | |
|   if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   ElfW(Shdr) shstrtab;
 | |
|   off_t shstrtab_offset =
 | |
|       (elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx);
 | |
|   if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   for (int i = 0; i < elf_header.e_shnum; ++i) {
 | |
|     off_t section_header_offset =
 | |
|         (elf_header.e_shoff + elf_header.e_shentsize * i);
 | |
|     if (!ReadFromOffsetExact(fd, out, sizeof(*out), section_header_offset)) {
 | |
|       return false;
 | |
|     }
 | |
|     off_t name_offset = shstrtab.sh_offset + out->sh_name;
 | |
|     ssize_t n_read = ReadFromOffset(fd, &header_name, name_len, name_offset);
 | |
|     if (n_read < 0) {
 | |
|       return false;
 | |
|     } else if (static_cast<size_t>(n_read) != name_len) {
 | |
|       // Short read -- name could be at end of file.
 | |
|       continue;
 | |
|     }
 | |
|     if (memcmp(header_name, name, name_len) == 0) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Compare symbols at in the same address.
 | |
| // Return true if we should pick symbol1.
 | |
| static bool ShouldPickFirstSymbol(const ElfW(Sym) & symbol1,
 | |
|                                   const ElfW(Sym) & symbol2) {
 | |
|   // If one of the symbols is weak and the other is not, pick the one
 | |
|   // this is not a weak symbol.
 | |
|   char bind1 = ELF_ST_BIND(symbol1.st_info);
 | |
|   char bind2 = ELF_ST_BIND(symbol1.st_info);
 | |
|   if (bind1 == STB_WEAK && bind2 != STB_WEAK) return false;
 | |
|   if (bind2 == STB_WEAK && bind1 != STB_WEAK) return true;
 | |
| 
 | |
|   // If one of the symbols has zero size and the other is not, pick the
 | |
|   // one that has non-zero size.
 | |
|   if (symbol1.st_size != 0 && symbol2.st_size == 0) {
 | |
|     return true;
 | |
|   }
 | |
|   if (symbol1.st_size == 0 && symbol2.st_size != 0) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If one of the symbols has no type and the other is not, pick the
 | |
|   // one that has a type.
 | |
|   char type1 = ELF_ST_TYPE(symbol1.st_info);
 | |
|   char type2 = ELF_ST_TYPE(symbol1.st_info);
 | |
|   if (type1 != STT_NOTYPE && type2 == STT_NOTYPE) {
 | |
|     return true;
 | |
|   }
 | |
|   if (type1 == STT_NOTYPE && type2 != STT_NOTYPE) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Pick the first one, if we still cannot decide.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Return true if an address is inside a section.
 | |
| static bool InSection(const void *address, const ElfW(Shdr) * section) {
 | |
|   const char *start = reinterpret_cast<const char *>(section->sh_addr);
 | |
|   size_t size = static_cast<size_t>(section->sh_size);
 | |
|   return start <= address && address < (start + size);
 | |
| }
 | |
| 
 | |
| // Read a symbol table and look for the symbol containing the
 | |
| // pc. Iterate over symbols in a symbol table and look for the symbol
 | |
| // containing "pc".  If the symbol is found, and its name fits in
 | |
| // out_size, the name is written into out and SYMBOL_FOUND is returned.
 | |
| // If the name does not fit, truncated name is written into out,
 | |
| // and SYMBOL_TRUNCATED is returned. Out is NUL-terminated.
 | |
| // If the symbol is not found, SYMBOL_NOT_FOUND is returned;
 | |
| // To keep stack consumption low, we would like this function to not get
 | |
| // inlined.
 | |
| static ABSL_ATTRIBUTE_NOINLINE FindSymbolResult FindSymbol(
 | |
|     const void *const pc, const int fd, char *out, int out_size,
 | |
|     ptrdiff_t relocation, const ElfW(Shdr) * strtab, const ElfW(Shdr) * symtab,
 | |
|     const ElfW(Shdr) * opd, char *tmp_buf, int tmp_buf_size) {
 | |
|   if (symtab == nullptr) {
 | |
|     return SYMBOL_NOT_FOUND;
 | |
|   }
 | |
| 
 | |
|   // Read multiple symbols at once to save read() calls.
 | |
|   ElfW(Sym) *buf = reinterpret_cast<ElfW(Sym) *>(tmp_buf);
 | |
|   const int buf_entries = tmp_buf_size / sizeof(buf[0]);
 | |
| 
 | |
|   const int num_symbols = symtab->sh_size / symtab->sh_entsize;
 | |
| 
 | |
|   // On platforms using an .opd section (PowerPC & IA64), a function symbol
 | |
|   // has the address of a function descriptor, which contains the real
 | |
|   // starting address.  However, we do not always want to use the real
 | |
|   // starting address because we sometimes want to symbolize a function
 | |
|   // pointer into the .opd section, e.g. FindSymbol(&foo,...).
 | |
|   const bool pc_in_opd =
 | |
|       kPlatformUsesOPDSections && opd != nullptr && InSection(pc, opd);
 | |
|   const bool deref_function_descriptor_pointer =
 | |
|       kPlatformUsesOPDSections && opd != nullptr && !pc_in_opd;
 | |
| 
 | |
|   ElfW(Sym) best_match;
 | |
|   SafeMemZero(&best_match, sizeof(best_match));
 | |
|   bool found_match = false;
 | |
|   for (int i = 0; i < num_symbols;) {
 | |
|     off_t offset = symtab->sh_offset + i * symtab->sh_entsize;
 | |
|     const int num_remaining_symbols = num_symbols - i;
 | |
|     const int entries_in_chunk = std::min(num_remaining_symbols, buf_entries);
 | |
|     const int bytes_in_chunk = entries_in_chunk * sizeof(buf[0]);
 | |
|     const ssize_t len = ReadFromOffset(fd, buf, bytes_in_chunk, offset);
 | |
|     SAFE_ASSERT(len % sizeof(buf[0]) == 0);
 | |
|     const ssize_t num_symbols_in_buf = len / sizeof(buf[0]);
 | |
|     SAFE_ASSERT(num_symbols_in_buf <= entries_in_chunk);
 | |
|     for (int j = 0; j < num_symbols_in_buf; ++j) {
 | |
|       const ElfW(Sym) &symbol = buf[j];
 | |
| 
 | |
|       // For a DSO, a symbol address is relocated by the loading address.
 | |
|       // We keep the original address for opd redirection below.
 | |
|       const char *const original_start_address =
 | |
|           reinterpret_cast<const char *>(symbol.st_value);
 | |
|       const char *start_address = original_start_address + relocation;
 | |
| 
 | |
|       if (deref_function_descriptor_pointer &&
 | |
|           InSection(original_start_address, opd)) {
 | |
|         // The opd section is mapped into memory.  Just dereference
 | |
|         // start_address to get the first double word, which points to the
 | |
|         // function entry.
 | |
|         start_address = *reinterpret_cast<const char *const *>(start_address);
 | |
|       }
 | |
| 
 | |
|       // If pc is inside the .opd section, it points to a function descriptor.
 | |
|       const size_t size = pc_in_opd ? kFunctionDescriptorSize : symbol.st_size;
 | |
|       const void *const end_address =
 | |
|           reinterpret_cast<const char *>(start_address) + size;
 | |
|       if (symbol.st_value != 0 &&  // Skip null value symbols.
 | |
|           symbol.st_shndx != 0 &&  // Skip undefined symbols.
 | |
| #ifdef STT_TLS
 | |
|           ELF_ST_TYPE(symbol.st_info) != STT_TLS &&  // Skip thread-local data.
 | |
| #endif                                               // STT_TLS
 | |
|           ((start_address <= pc && pc < end_address) ||
 | |
|            (start_address == pc && pc == end_address))) {
 | |
|         if (!found_match || ShouldPickFirstSymbol(symbol, best_match)) {
 | |
|           found_match = true;
 | |
|           best_match = symbol;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     i += num_symbols_in_buf;
 | |
|   }
 | |
| 
 | |
|   if (found_match) {
 | |
|     const size_t off = strtab->sh_offset + best_match.st_name;
 | |
|     const ssize_t n_read = ReadFromOffset(fd, out, out_size, off);
 | |
|     if (n_read <= 0) {
 | |
|       // This should never happen.
 | |
|       ABSL_RAW_LOG(WARNING,
 | |
|                    "Unable to read from fd %d at offset %zu: n_read = %zd", fd,
 | |
|                    off, n_read);
 | |
|       return SYMBOL_NOT_FOUND;
 | |
|     }
 | |
|     ABSL_RAW_CHECK(n_read <= out_size, "ReadFromOffset read too much data.");
 | |
| 
 | |
|     // strtab->sh_offset points into .strtab-like section that contains
 | |
|     // NUL-terminated strings: '\0foo\0barbaz\0...".
 | |
|     //
 | |
|     // sh_offset+st_name points to the start of symbol name, but we don't know
 | |
|     // how long the symbol is, so we try to read as much as we have space for,
 | |
|     // and usually over-read (i.e. there is a NUL somewhere before n_read).
 | |
|     if (memchr(out, '\0', n_read) == nullptr) {
 | |
|       // Either out_size was too small (n_read == out_size and no NUL), or
 | |
|       // we tried to read past the EOF (n_read < out_size) and .strtab is
 | |
|       // corrupt (missing terminating NUL; should never happen for valid ELF).
 | |
|       out[n_read - 1] = '\0';
 | |
|       return SYMBOL_TRUNCATED;
 | |
|     }
 | |
|     return SYMBOL_FOUND;
 | |
|   }
 | |
| 
 | |
|   return SYMBOL_NOT_FOUND;
 | |
| }
 | |
| 
 | |
| // Get the symbol name of "pc" from the file pointed by "fd".  Process
 | |
| // both regular and dynamic symbol tables if necessary.
 | |
| // See FindSymbol() comment for description of return value.
 | |
| FindSymbolResult Symbolizer::GetSymbolFromObjectFile(
 | |
|     const ObjFile &obj, const void *const pc, const ptrdiff_t relocation,
 | |
|     char *out, int out_size, char *tmp_buf, int tmp_buf_size) {
 | |
|   ElfW(Shdr) symtab;
 | |
|   ElfW(Shdr) strtab;
 | |
|   ElfW(Shdr) opd;
 | |
|   ElfW(Shdr) *opd_ptr = nullptr;
 | |
| 
 | |
|   // On platforms using an .opd sections for function descriptor, read
 | |
|   // the section header.  The .opd section is in data segment and should be
 | |
|   // loaded but we check that it is mapped just to be extra careful.
 | |
|   if (kPlatformUsesOPDSections) {
 | |
|     if (GetSectionHeaderByName(obj.fd, kOpdSectionName,
 | |
|                                sizeof(kOpdSectionName) - 1, &opd) &&
 | |
|         FindObjFile(reinterpret_cast<const char *>(opd.sh_addr) + relocation,
 | |
|                     opd.sh_size) != nullptr) {
 | |
|       opd_ptr = &opd;
 | |
|     } else {
 | |
|       return SYMBOL_NOT_FOUND;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Consult a regular symbol table first.
 | |
|   if (!GetSectionHeaderByType(obj.fd, obj.elf_header.e_shnum,
 | |
|                               obj.elf_header.e_shoff, SHT_SYMTAB, &symtab,
 | |
|                               tmp_buf, tmp_buf_size)) {
 | |
|     return SYMBOL_NOT_FOUND;
 | |
|   }
 | |
|   if (!ReadFromOffsetExact(
 | |
|           obj.fd, &strtab, sizeof(strtab),
 | |
|           obj.elf_header.e_shoff + symtab.sh_link * sizeof(symtab))) {
 | |
|     return SYMBOL_NOT_FOUND;
 | |
|   }
 | |
|   const FindSymbolResult rc =
 | |
|       FindSymbol(pc, obj.fd, out, out_size, relocation, &strtab, &symtab,
 | |
|                  opd_ptr, tmp_buf, tmp_buf_size);
 | |
|   if (rc != SYMBOL_NOT_FOUND) {
 | |
|     return rc;  // Found the symbol in a regular symbol table.
 | |
|   }
 | |
| 
 | |
|   // If the symbol is not found, then consult a dynamic symbol table.
 | |
|   if (!GetSectionHeaderByType(obj.fd, obj.elf_header.e_shnum,
 | |
|                               obj.elf_header.e_shoff, SHT_DYNSYM, &symtab,
 | |
|                               tmp_buf, tmp_buf_size)) {
 | |
|     return SYMBOL_NOT_FOUND;
 | |
|   }
 | |
|   if (!ReadFromOffsetExact(
 | |
|           obj.fd, &strtab, sizeof(strtab),
 | |
|           obj.elf_header.e_shoff + symtab.sh_link * sizeof(symtab))) {
 | |
|     return SYMBOL_NOT_FOUND;
 | |
|   }
 | |
|   return FindSymbol(pc, obj.fd, out, out_size, relocation, &strtab, &symtab,
 | |
|                     opd_ptr, tmp_buf, tmp_buf_size);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // Thin wrapper around a file descriptor so that the file descriptor
 | |
| // gets closed for sure.
 | |
| class FileDescriptor {
 | |
|  public:
 | |
|   explicit FileDescriptor(int fd) : fd_(fd) {}
 | |
|   FileDescriptor(const FileDescriptor &) = delete;
 | |
|   FileDescriptor &operator=(const FileDescriptor &) = delete;
 | |
| 
 | |
|   ~FileDescriptor() {
 | |
|     if (fd_ >= 0) {
 | |
|       NO_INTR(close(fd_));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   int get() const { return fd_; }
 | |
| 
 | |
|  private:
 | |
|   const int fd_;
 | |
| };
 | |
| 
 | |
| // Helper class for reading lines from file.
 | |
| //
 | |
| // Note: we don't use ProcMapsIterator since the object is big (it has
 | |
| // a 5k array member) and uses async-unsafe functions such as sscanf()
 | |
| // and snprintf().
 | |
| class LineReader {
 | |
|  public:
 | |
|   explicit LineReader(int fd, char *buf, int buf_len)
 | |
|       : fd_(fd),
 | |
|         buf_len_(buf_len),
 | |
|         buf_(buf),
 | |
|         bol_(buf),
 | |
|         eol_(buf),
 | |
|         eod_(buf) {}
 | |
| 
 | |
|   LineReader(const LineReader &) = delete;
 | |
|   LineReader &operator=(const LineReader &) = delete;
 | |
| 
 | |
|   // Read '\n'-terminated line from file.  On success, modify "bol"
 | |
|   // and "eol", then return true.  Otherwise, return false.
 | |
|   //
 | |
|   // Note: if the last line doesn't end with '\n', the line will be
 | |
|   // dropped.  It's an intentional behavior to make the code simple.
 | |
|   bool ReadLine(const char **bol, const char **eol) {
 | |
|     if (BufferIsEmpty()) {  // First time.
 | |
|       const ssize_t num_bytes = ReadPersistent(fd_, buf_, buf_len_);
 | |
|       if (num_bytes <= 0) {  // EOF or error.
 | |
|         return false;
 | |
|       }
 | |
|       eod_ = buf_ + num_bytes;
 | |
|       bol_ = buf_;
 | |
|     } else {
 | |
|       bol_ = eol_ + 1;            // Advance to the next line in the buffer.
 | |
|       SAFE_ASSERT(bol_ <= eod_);  // "bol_" can point to "eod_".
 | |
|       if (!HasCompleteLine()) {
 | |
|         const int incomplete_line_length = eod_ - bol_;
 | |
|         // Move the trailing incomplete line to the beginning.
 | |
|         memmove(buf_, bol_, incomplete_line_length);
 | |
|         // Read text from file and append it.
 | |
|         char *const append_pos = buf_ + incomplete_line_length;
 | |
|         const int capacity_left = buf_len_ - incomplete_line_length;
 | |
|         const ssize_t num_bytes =
 | |
|             ReadPersistent(fd_, append_pos, capacity_left);
 | |
|         if (num_bytes <= 0) {  // EOF or error.
 | |
|           return false;
 | |
|         }
 | |
|         eod_ = append_pos + num_bytes;
 | |
|         bol_ = buf_;
 | |
|       }
 | |
|     }
 | |
|     eol_ = FindLineFeed();
 | |
|     if (eol_ == nullptr) {  // '\n' not found.  Malformed line.
 | |
|       return false;
 | |
|     }
 | |
|     *eol_ = '\0';  // Replace '\n' with '\0'.
 | |
| 
 | |
|     *bol = bol_;
 | |
|     *eol = eol_;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   char *FindLineFeed() const {
 | |
|     return reinterpret_cast<char *>(memchr(bol_, '\n', eod_ - bol_));
 | |
|   }
 | |
| 
 | |
|   bool BufferIsEmpty() const { return buf_ == eod_; }
 | |
| 
 | |
|   bool HasCompleteLine() const {
 | |
|     return !BufferIsEmpty() && FindLineFeed() != nullptr;
 | |
|   }
 | |
| 
 | |
|   const int fd_;
 | |
|   const int buf_len_;
 | |
|   char *const buf_;
 | |
|   char *bol_;
 | |
|   char *eol_;
 | |
|   const char *eod_;  // End of data in "buf_".
 | |
| };
 | |
| }  // namespace
 | |
| 
 | |
| // Place the hex number read from "start" into "*hex".  The pointer to
 | |
| // the first non-hex character or "end" is returned.
 | |
| static const char *GetHex(const char *start, const char *end,
 | |
|                           uint64_t *const value) {
 | |
|   uint64_t hex = 0;
 | |
|   const char *p;
 | |
|   for (p = start; p < end; ++p) {
 | |
|     int ch = *p;
 | |
|     if ((ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'F') ||
 | |
|         (ch >= 'a' && ch <= 'f')) {
 | |
|       hex = (hex << 4) | (ch < 'A' ? ch - '0' : (ch & 0xF) + 9);
 | |
|     } else {  // Encountered the first non-hex character.
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   SAFE_ASSERT(p <= end);
 | |
|   *value = hex;
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| static const char *GetHex(const char *start, const char *end,
 | |
|                           const void **const addr) {
 | |
|   uint64_t hex = 0;
 | |
|   const char *p = GetHex(start, end, &hex);
 | |
|   *addr = reinterpret_cast<void *>(hex);
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| // Read /proc/self/maps and run "callback" for each mmapped file found.  If
 | |
| // "callback" returns false, stop scanning and return true. Else continue
 | |
| // scanning /proc/self/maps. Return true if no parse error is found.
 | |
| static ABSL_ATTRIBUTE_NOINLINE bool ReadAddrMap(
 | |
|     bool (*callback)(const char *filename, const void *const start_addr,
 | |
|                      const void *const end_addr, uint64_t offset, void *arg),
 | |
|     void *arg, void *tmp_buf, int tmp_buf_size) {
 | |
|   // Use /proc/self/task/<pid>/maps instead of /proc/self/maps. The latter
 | |
|   // requires kernel to stop all threads, and is significantly slower when there
 | |
|   // are 1000s of threads.
 | |
|   char maps_path[80];
 | |
|   snprintf(maps_path, sizeof(maps_path), "/proc/self/task/%d/maps", getpid());
 | |
| 
 | |
|   int maps_fd;
 | |
|   NO_INTR(maps_fd = open(maps_path, O_RDONLY));
 | |
|   FileDescriptor wrapped_maps_fd(maps_fd);
 | |
|   if (wrapped_maps_fd.get() < 0) {
 | |
|     ABSL_RAW_LOG(WARNING, "%s: errno=%d", maps_path, errno);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Iterate over maps and look for the map containing the pc.  Then
 | |
|   // look into the symbol tables inside.
 | |
|   LineReader reader(wrapped_maps_fd.get(), static_cast<char *>(tmp_buf),
 | |
|                     tmp_buf_size);
 | |
|   while (true) {
 | |
|     const char *cursor;
 | |
|     const char *eol;
 | |
|     if (!reader.ReadLine(&cursor, &eol)) {  // EOF or malformed line.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     const char *line = cursor;
 | |
|     const void *start_address;
 | |
|     // Start parsing line in /proc/self/maps.  Here is an example:
 | |
|     //
 | |
|     // 08048000-0804c000 r-xp 00000000 08:01 2142121    /bin/cat
 | |
|     //
 | |
|     // We want start address (08048000), end address (0804c000), flags
 | |
|     // (r-xp) and file name (/bin/cat).
 | |
| 
 | |
|     // Read start address.
 | |
|     cursor = GetHex(cursor, eol, &start_address);
 | |
|     if (cursor == eol || *cursor != '-') {
 | |
|       ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line);
 | |
|       return false;
 | |
|     }
 | |
|     ++cursor;  // Skip '-'.
 | |
| 
 | |
|     // Read end address.
 | |
|     const void *end_address;
 | |
|     cursor = GetHex(cursor, eol, &end_address);
 | |
|     if (cursor == eol || *cursor != ' ') {
 | |
|       ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line);
 | |
|       return false;
 | |
|     }
 | |
|     ++cursor;  // Skip ' '.
 | |
| 
 | |
|     // Read flags.  Skip flags until we encounter a space or eol.
 | |
|     const char *const flags_start = cursor;
 | |
|     while (cursor < eol && *cursor != ' ') {
 | |
|       ++cursor;
 | |
|     }
 | |
|     // We expect at least four letters for flags (ex. "r-xp").
 | |
|     if (cursor == eol || cursor < flags_start + 4) {
 | |
|       ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps: %s", line);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Check flags.  Normally we are only interested in "r-x" maps.  On
 | |
|     // the PowerPC, function pointers point to descriptors in the .opd
 | |
|     // section.  The descriptors themselves are not executable code.  So
 | |
|     // we need to relax the check below to "r**".
 | |
|     if (memcmp(flags_start, "r-x", 3) != 0 &&  // Not a "r-x" map.
 | |
|         !(kPlatformUsesOPDSections && flags_start[0] == 'r')) {
 | |
|       continue;  // We skip this map.
 | |
|     }
 | |
|     ++cursor;  // Skip ' '.
 | |
| 
 | |
|     // Read file offset.
 | |
|     uint64_t offset;
 | |
|     cursor = GetHex(cursor, eol, &offset);
 | |
|     ++cursor;  // Skip ' '.
 | |
| 
 | |
|     // Skip to file name.  "cursor" now points to dev.  We need to skip at least
 | |
|     // two spaces for dev and inode.
 | |
|     int num_spaces = 0;
 | |
|     while (cursor < eol) {
 | |
|       if (*cursor == ' ') {
 | |
|         ++num_spaces;
 | |
|       } else if (num_spaces >= 2) {
 | |
|         // The first non-space character after  skipping two spaces
 | |
|         // is the beginning of the file name.
 | |
|         break;
 | |
|       }
 | |
|       ++cursor;
 | |
|     }
 | |
| 
 | |
|     // Check whether this entry corresponds to our hint table for the true
 | |
|     // filename.
 | |
|     bool hinted =
 | |
|         GetFileMappingHint(&start_address, &end_address, &offset, &cursor);
 | |
|     if (!hinted && (cursor == eol || cursor[0] == '[')) {
 | |
|       // not an object file, typically [vdso] or [vsyscall]
 | |
|       continue;
 | |
|     }
 | |
|     if (!callback(cursor, start_address, end_address, offset, arg)) break;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Find the objfile mapped in address region containing [addr, addr + len).
 | |
| ObjFile *Symbolizer::FindObjFile(const void *const addr, size_t len) {
 | |
|   for (int i = 0; i < 2; ++i) {
 | |
|     if (!ok_) return nullptr;
 | |
| 
 | |
|     // Read /proc/self/maps if necessary
 | |
|     if (!addr_map_read_) {
 | |
|       addr_map_read_ = true;
 | |
|       if (!ReadAddrMap(RegisterObjFile, this, tmp_buf_, TMP_BUF_SIZE)) {
 | |
|         ok_ = false;
 | |
|         return nullptr;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     int lo = 0;
 | |
|     int hi = addr_map_.Size();
 | |
|     while (lo < hi) {
 | |
|       int mid = (lo + hi) / 2;
 | |
|       if (addr < addr_map_.At(mid)->end_addr) {
 | |
|         hi = mid;
 | |
|       } else {
 | |
|         lo = mid + 1;
 | |
|       }
 | |
|     }
 | |
|     if (lo != addr_map_.Size()) {
 | |
|       ObjFile *obj = addr_map_.At(lo);
 | |
|       SAFE_ASSERT(obj->end_addr > addr);
 | |
|       if (addr >= obj->start_addr &&
 | |
|           reinterpret_cast<const char *>(addr) + len <= obj->end_addr)
 | |
|         return obj;
 | |
|     }
 | |
| 
 | |
|     // The address mapping may have changed since it was last read.  Retry.
 | |
|     ClearAddrMap();
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void Symbolizer::ClearAddrMap() {
 | |
|   for (int i = 0; i != addr_map_.Size(); i++) {
 | |
|     ObjFile *o = addr_map_.At(i);
 | |
|     base_internal::LowLevelAlloc::Free(o->filename);
 | |
|     if (o->fd >= 0) {
 | |
|       NO_INTR(close(o->fd));
 | |
|     }
 | |
|   }
 | |
|   addr_map_.Clear();
 | |
|   addr_map_read_ = false;
 | |
| }
 | |
| 
 | |
| // Callback for ReadAddrMap to register objfiles in an in-memory table.
 | |
| bool Symbolizer::RegisterObjFile(const char *filename,
 | |
|                                  const void *const start_addr,
 | |
|                                  const void *const end_addr, uint64_t offset,
 | |
|                                  void *arg) {
 | |
|   Symbolizer *impl = static_cast<Symbolizer *>(arg);
 | |
| 
 | |
|   // Files are supposed to be added in the increasing address order.  Make
 | |
|   // sure that's the case.
 | |
|   int addr_map_size = impl->addr_map_.Size();
 | |
|   if (addr_map_size != 0) {
 | |
|     ObjFile *old = impl->addr_map_.At(addr_map_size - 1);
 | |
|     if (old->end_addr > end_addr) {
 | |
|       ABSL_RAW_LOG(ERROR,
 | |
|                    "Unsorted addr map entry: 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR
 | |
|                    ": %s",
 | |
|                    reinterpret_cast<uintptr_t>(end_addr), filename,
 | |
|                    reinterpret_cast<uintptr_t>(old->end_addr), old->filename);
 | |
|       return true;
 | |
|     } else if (old->end_addr == end_addr) {
 | |
|       // The same entry appears twice. This sometimes happens for [vdso].
 | |
|       if (old->start_addr != start_addr ||
 | |
|           strcmp(old->filename, filename) != 0) {
 | |
|         ABSL_RAW_LOG(ERROR,
 | |
|                      "Duplicate addr 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR ": %s",
 | |
|                      reinterpret_cast<uintptr_t>(end_addr), filename,
 | |
|                      reinterpret_cast<uintptr_t>(old->end_addr), old->filename);
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   ObjFile *obj = impl->addr_map_.Add();
 | |
|   obj->filename = impl->CopyString(filename);
 | |
|   obj->start_addr = start_addr;
 | |
|   obj->end_addr = end_addr;
 | |
|   obj->offset = offset;
 | |
|   obj->elf_type = -1;  // filled on demand
 | |
|   obj->fd = -1;        // opened on demand
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // This function wraps the Demangle function to provide an interface
 | |
| // where the input symbol is demangled in-place.
 | |
| // To keep stack consumption low, we would like this function to not
 | |
| // get inlined.
 | |
| static ABSL_ATTRIBUTE_NOINLINE void DemangleInplace(char *out, int out_size,
 | |
|                                                     char *tmp_buf,
 | |
|                                                     int tmp_buf_size) {
 | |
|   if (Demangle(out, tmp_buf, tmp_buf_size)) {
 | |
|     // Demangling succeeded. Copy to out if the space allows.
 | |
|     int len = strlen(tmp_buf);
 | |
|     if (len + 1 <= out_size) {  // +1 for '\0'.
 | |
|       SAFE_ASSERT(len < tmp_buf_size);
 | |
|       memmove(out, tmp_buf, len + 1);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| SymbolCacheLine *Symbolizer::GetCacheLine(const void *const pc) {
 | |
|   uintptr_t pc0 = reinterpret_cast<uintptr_t>(pc);
 | |
|   pc0 >>= 3;  // drop the low 3 bits
 | |
| 
 | |
|   // Shuffle bits.
 | |
|   pc0 ^= (pc0 >> 6) ^ (pc0 >> 12) ^ (pc0 >> 18);
 | |
|   return &symbol_cache_[pc0 % SYMBOL_CACHE_LINES];
 | |
| }
 | |
| 
 | |
| void Symbolizer::AgeSymbols(SymbolCacheLine *line) {
 | |
|   for (uint32_t &age : line->age) {
 | |
|     ++age;
 | |
|   }
 | |
| }
 | |
| 
 | |
| const char *Symbolizer::FindSymbolInCache(const void *const pc) {
 | |
|   if (pc == nullptr) return nullptr;
 | |
| 
 | |
|   SymbolCacheLine *line = GetCacheLine(pc);
 | |
|   for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) {
 | |
|     if (line->pc[i] == pc) {
 | |
|       AgeSymbols(line);
 | |
|       line->age[i] = 0;
 | |
|       return line->name[i];
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| const char *Symbolizer::InsertSymbolInCache(const void *const pc,
 | |
|                                             const char *name) {
 | |
|   SAFE_ASSERT(pc != nullptr);
 | |
| 
 | |
|   SymbolCacheLine *line = GetCacheLine(pc);
 | |
|   uint32_t max_age = 0;
 | |
|   int oldest_index = -1;
 | |
|   for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) {
 | |
|     if (line->pc[i] == nullptr) {
 | |
|       AgeSymbols(line);
 | |
|       line->pc[i] = pc;
 | |
|       line->name[i] = CopyString(name);
 | |
|       line->age[i] = 0;
 | |
|       return line->name[i];
 | |
|     }
 | |
|     if (line->age[i] >= max_age) {
 | |
|       max_age = line->age[i];
 | |
|       oldest_index = i;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   AgeSymbols(line);
 | |
|   ABSL_RAW_CHECK(oldest_index >= 0, "Corrupt cache");
 | |
|   base_internal::LowLevelAlloc::Free(line->name[oldest_index]);
 | |
|   line->pc[oldest_index] = pc;
 | |
|   line->name[oldest_index] = CopyString(name);
 | |
|   line->age[oldest_index] = 0;
 | |
|   return line->name[oldest_index];
 | |
| }
 | |
| 
 | |
| static void MaybeOpenFdFromSelfExe(ObjFile *obj) {
 | |
|   if (memcmp(obj->start_addr, ELFMAG, SELFMAG) != 0) {
 | |
|     return;
 | |
|   }
 | |
|   int fd = open("/proc/self/exe", O_RDONLY);
 | |
|   if (fd == -1) {
 | |
|     return;
 | |
|   }
 | |
|   // Verify that contents of /proc/self/exe matches in-memory image of
 | |
|   // the binary. This can fail if the "deleted" binary is in fact not
 | |
|   // the main executable, or for binaries that have the first PT_LOAD
 | |
|   // segment smaller than 4K. We do it in four steps so that the
 | |
|   // buffer is smaller and we don't consume too much stack space.
 | |
|   const char *mem = reinterpret_cast<const char *>(obj->start_addr);
 | |
|   for (int i = 0; i < 4; ++i) {
 | |
|     char buf[1024];
 | |
|     ssize_t n = read(fd, buf, sizeof(buf));
 | |
|     if (n != sizeof(buf) || memcmp(buf, mem, sizeof(buf)) != 0) {
 | |
|       close(fd);
 | |
|       return;
 | |
|     }
 | |
|     mem += sizeof(buf);
 | |
|   }
 | |
|   obj->fd = fd;
 | |
| }
 | |
| 
 | |
| static bool MaybeInitializeObjFile(ObjFile *obj) {
 | |
|   if (obj->fd < 0) {
 | |
|     obj->fd = open(obj->filename, O_RDONLY);
 | |
| 
 | |
|     if (obj->fd < 0) {
 | |
|       // Getting /proc/self/exe here means that we were hinted.
 | |
|       if (strcmp(obj->filename, "/proc/self/exe") == 0) {
 | |
|         // /proc/self/exe may be inaccessible (due to setuid, etc.), so try
 | |
|         // accessing the binary via argv0.
 | |
|         if (argv0_value != nullptr) {
 | |
|           obj->fd = open(argv0_value, O_RDONLY);
 | |
|         }
 | |
|       } else {
 | |
|         MaybeOpenFdFromSelfExe(obj);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (obj->fd < 0) {
 | |
|       ABSL_RAW_LOG(WARNING, "%s: open failed: errno=%d", obj->filename, errno);
 | |
|       return false;
 | |
|     }
 | |
|     obj->elf_type = FileGetElfType(obj->fd);
 | |
|     if (obj->elf_type < 0) {
 | |
|       ABSL_RAW_LOG(WARNING, "%s: wrong elf type: %d", obj->filename,
 | |
|                    obj->elf_type);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (!ReadFromOffsetExact(obj->fd, &obj->elf_header, sizeof(obj->elf_header),
 | |
|                              0)) {
 | |
|       ABSL_RAW_LOG(WARNING, "%s: failed to read elf header", obj->filename);
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // The implementation of our symbolization routine.  If it
 | |
| // successfully finds the symbol containing "pc" and obtains the
 | |
| // symbol name, returns pointer to that symbol. Otherwise, returns nullptr.
 | |
| // If any symbol decorators have been installed via InstallSymbolDecorator(),
 | |
| // they are called here as well.
 | |
| // To keep stack consumption low, we would like this function to not
 | |
| // get inlined.
 | |
| const char *Symbolizer::GetSymbol(const void *const pc) {
 | |
|   const char *entry = FindSymbolInCache(pc);
 | |
|   if (entry != nullptr) {
 | |
|     return entry;
 | |
|   }
 | |
|   symbol_buf_[0] = '\0';
 | |
| 
 | |
|   ObjFile *const obj = FindObjFile(pc, 1);
 | |
|   ptrdiff_t relocation = 0;
 | |
|   int fd = -1;
 | |
|   if (obj != nullptr) {
 | |
|     if (MaybeInitializeObjFile(obj)) {
 | |
|       if (obj->elf_type == ET_DYN &&
 | |
|           reinterpret_cast<uint64_t>(obj->start_addr) >= obj->offset) {
 | |
|         // This object was relocated.
 | |
|         //
 | |
|         // For obj->offset > 0, adjust the relocation since a mapping at offset
 | |
|         // X in the file will have a start address of [true relocation]+X.
 | |
|         relocation = reinterpret_cast<ptrdiff_t>(obj->start_addr) - obj->offset;
 | |
|       }
 | |
| 
 | |
|       fd = obj->fd;
 | |
|     }
 | |
|     if (GetSymbolFromObjectFile(*obj, pc, relocation, symbol_buf_,
 | |
|                                 sizeof(symbol_buf_), tmp_buf_,
 | |
|                                 sizeof(tmp_buf_)) == SYMBOL_FOUND) {
 | |
|       // Only try to demangle the symbol name if it fit into symbol_buf_.
 | |
|       DemangleInplace(symbol_buf_, sizeof(symbol_buf_), tmp_buf_,
 | |
|                       sizeof(tmp_buf_));
 | |
|     }
 | |
|   } else {
 | |
| #if ABSL_HAVE_VDSO_SUPPORT
 | |
|     VDSOSupport vdso;
 | |
|     if (vdso.IsPresent()) {
 | |
|       VDSOSupport::SymbolInfo symbol_info;
 | |
|       if (vdso.LookupSymbolByAddress(pc, &symbol_info)) {
 | |
|         // All VDSO symbols are known to be short.
 | |
|         size_t len = strlen(symbol_info.name);
 | |
|         ABSL_RAW_CHECK(len + 1 < sizeof(symbol_buf_),
 | |
|                        "VDSO symbol unexpectedly long");
 | |
|         memcpy(symbol_buf_, symbol_info.name, len + 1);
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   if (g_decorators_mu.TryLock()) {
 | |
|     if (g_num_decorators > 0) {
 | |
|       SymbolDecoratorArgs decorator_args = {
 | |
|           pc,       relocation,       fd,     symbol_buf_, sizeof(symbol_buf_),
 | |
|           tmp_buf_, sizeof(tmp_buf_), nullptr};
 | |
|       for (int i = 0; i < g_num_decorators; ++i) {
 | |
|         decorator_args.arg = g_decorators[i].arg;
 | |
|         g_decorators[i].fn(&decorator_args);
 | |
|       }
 | |
|     }
 | |
|     g_decorators_mu.Unlock();
 | |
|   }
 | |
|   if (symbol_buf_[0] == '\0') {
 | |
|     return nullptr;
 | |
|   }
 | |
|   symbol_buf_[sizeof(symbol_buf_) - 1] = '\0';  // Paranoia.
 | |
|   return InsertSymbolInCache(pc, symbol_buf_);
 | |
| }
 | |
| 
 | |
| bool RemoveAllSymbolDecorators(void) {
 | |
|   if (!g_decorators_mu.TryLock()) {
 | |
|     // Someone else is using decorators. Get out.
 | |
|     return false;
 | |
|   }
 | |
|   g_num_decorators = 0;
 | |
|   g_decorators_mu.Unlock();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool RemoveSymbolDecorator(int ticket) {
 | |
|   if (!g_decorators_mu.TryLock()) {
 | |
|     // Someone else is using decorators. Get out.
 | |
|     return false;
 | |
|   }
 | |
|   for (int i = 0; i < g_num_decorators; ++i) {
 | |
|     if (g_decorators[i].ticket == ticket) {
 | |
|       while (i < g_num_decorators - 1) {
 | |
|         g_decorators[i] = g_decorators[i + 1];
 | |
|         ++i;
 | |
|       }
 | |
|       g_num_decorators = i;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   g_decorators_mu.Unlock();
 | |
|   return true;  // Decorator is known to be removed.
 | |
| }
 | |
| 
 | |
| int InstallSymbolDecorator(SymbolDecorator decorator, void *arg) {
 | |
|   static int ticket = 0;
 | |
| 
 | |
|   if (!g_decorators_mu.TryLock()) {
 | |
|     // Someone else is using decorators. Get out.
 | |
|     return false;
 | |
|   }
 | |
|   int ret = ticket;
 | |
|   if (g_num_decorators >= kMaxDecorators) {
 | |
|     ret = -1;
 | |
|   } else {
 | |
|     g_decorators[g_num_decorators] = {decorator, arg, ticket++};
 | |
|     ++g_num_decorators;
 | |
|   }
 | |
|   g_decorators_mu.Unlock();
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| bool RegisterFileMappingHint(const void *start, const void *end, uint64_t offset,
 | |
|                              const char *filename) {
 | |
|   SAFE_ASSERT(start <= end);
 | |
|   SAFE_ASSERT(filename != nullptr);
 | |
| 
 | |
|   InitSigSafeArena();
 | |
| 
 | |
|   if (!g_file_mapping_mu.TryLock()) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool ret = true;
 | |
|   if (g_num_file_mapping_hints >= kMaxFileMappingHints) {
 | |
|     ret = false;
 | |
|   } else {
 | |
|     // TODO(ckennelly): Move this into a std::string copy routine.
 | |
|     int len = strlen(filename);
 | |
|     char *dst = static_cast<char *>(
 | |
|         base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena()));
 | |
|     ABSL_RAW_CHECK(dst != nullptr, "out of memory");
 | |
|     memcpy(dst, filename, len + 1);
 | |
| 
 | |
|     auto &hint = g_file_mapping_hints[g_num_file_mapping_hints++];
 | |
|     hint.start = start;
 | |
|     hint.end = end;
 | |
|     hint.offset = offset;
 | |
|     hint.filename = dst;
 | |
|   }
 | |
| 
 | |
|   g_file_mapping_mu.Unlock();
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| bool GetFileMappingHint(const void **start, const void **end, uint64_t *offset,
 | |
|                         const char **filename) {
 | |
|   if (!g_file_mapping_mu.TryLock()) {
 | |
|     return false;
 | |
|   }
 | |
|   bool found = false;
 | |
|   for (int i = 0; i < g_num_file_mapping_hints; i++) {
 | |
|     if (g_file_mapping_hints[i].start <= *start &&
 | |
|         *end <= g_file_mapping_hints[i].end) {
 | |
|       // We assume that the start_address for the mapping is the base
 | |
|       // address of the ELF section, but when [start_address,end_address) is
 | |
|       // not strictly equal to [hint.start, hint.end), that assumption is
 | |
|       // invalid.
 | |
|       //
 | |
|       // This uses the hint's start address (even though hint.start is not
 | |
|       // necessarily equal to start_address) to ensure the correct
 | |
|       // relocation is computed later.
 | |
|       *start = g_file_mapping_hints[i].start;
 | |
|       *end = g_file_mapping_hints[i].end;
 | |
|       *offset = g_file_mapping_hints[i].offset;
 | |
|       *filename = g_file_mapping_hints[i].filename;
 | |
|       found = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   g_file_mapping_mu.Unlock();
 | |
|   return found;
 | |
| }
 | |
| 
 | |
| }  // namespace debugging_internal
 | |
| 
 | |
| bool Symbolize(const void *pc, char *out, int out_size) {
 | |
|   // Symbolization is very slow under tsan.
 | |
|   ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
 | |
|   SAFE_ASSERT(out_size >= 0);
 | |
|   debugging_internal::Symbolizer *s = debugging_internal::AllocateSymbolizer();
 | |
|   const char *name = s->GetSymbol(pc);
 | |
|   bool ok = false;
 | |
|   if (name != nullptr && out_size > 0) {
 | |
|     strncpy(out, name, out_size);
 | |
|     ok = true;
 | |
|     if (out[out_size - 1] != '\0') {
 | |
|       // strncpy() does not '\0' terminate when it truncates.  Do so, with
 | |
|       // trailing ellipsis.
 | |
|       static constexpr char kEllipsis[] = "...";
 | |
|       int ellipsis_size =
 | |
|           std::min(implicit_cast<int>(strlen(kEllipsis)), out_size - 1);
 | |
|       memcpy(out + out_size - ellipsis_size - 1, kEllipsis, ellipsis_size);
 | |
|       out[out_size - 1] = '\0';
 | |
|     }
 | |
|   }
 | |
|   debugging_internal::FreeSymbolizer(s);
 | |
|   ANNOTATE_IGNORE_READS_AND_WRITES_END();
 | |
|   return ok;
 | |
| }
 | |
| 
 | |
| }  // namespace absl
 |