--
ba4dd47492748bd630462eb68b7959037fc6a11a by Abseil Team <absl-team@google.com>:
Work around nvcc 9.0 compiler bug for open-source Tensorflow build.
With the current implementation, when I (unintentionally and transitively)
include absl/types/optional.h in a CUDA compilation unit, I get the following
nvcc error message:
  INFO: From Compiling tensorflow/core/kernels/crop_and_resize_op_gpu.cu.cc:
  external/com_google_absl/absl/types/optional.h: In member function 'void absl::optional_internal::optional_data_dtor_base<T, <anonymous> >::destruct()':
  external/com_google_absl/absl/types/optional.h:185:50: error: '__T0' was not declared in this scope
         data_.~T();
I've also seen similar compilation failures online, for flat_hash_map:
https://devtalk.nvidia.com/default/topic/1042599/nvcc-preprocessor-bug-causes-compilation-failure/
The bug is always around unnamed template parameters. Therefore, the workaround is to make them named.
PiperOrigin-RevId: 219208288
--
dad2f40cb2e8d5017660985ef6fb57f3c3cdcc80 by CJ Johnson <johnsoncj@google.com>:
Adds internal macros for catching and throwing unknown exception types
PiperOrigin-RevId: 219207362
--
0a9840328d2d86e8420b853435fdbf1f7a19d931 by Abseil Team <absl-team@google.com>:
Fix typo in mutex.h comments.
PiperOrigin-RevId: 219199397
--
0d576dc7597564210bfdf91518075064756f0bf4 by Matt Calabrese <calabrese@google.com>:
Internal change.
PiperOrigin-RevId: 219185475
--
66be156095571959fb19a76da8ad0b53ec37658e by Abseil Team <absl-team@google.com>:
Fix alignment conformance for VS 2017 >= 15.8 (fix #193)
PiperOrigin-RevId: 219129894
--
a6e1825a12587945f8194677ccfdcaba6f7aad1d by Abseil Team <absl-team@google.com>:
Reapply PR #173
PiperOrigin-RevId: 219129361
--
cf72ade4881b25acc6ccaea468f69793a0fdce32 by Abseil Team <absl-team@google.com>:
Update .gitignore
PiperOrigin-RevId: 219127495
--
0537490c6348a2cb489abe15638928ac5aa6982a by Jon Cohen <cohenjon@google.com>:
Small refactor and reformat of error messages from the exception safety test framework.
PiperOrigin-RevId: 218927773
--
4c556ca45fa25698ad12002a00c713aeceefab73 by CJ Johnson <johnsoncj@google.com>:
Updates the inlined vector swap tests to check for number of moves that took place if available
PiperOrigin-RevId: 218900777
--
dcbfda0021a1e6dfa9586986b1269c06ec394053 by Mark Barolak <mbar@google.com>:
Add parens around calls to std::numeric_limits<>::min and
std::numeric_limits<>::max to prevent compilation errors on Windows platforms
where min and max are defined as macros.
PiperOrigin-RevId: 218888700
GitOrigin-RevId: ba4dd47492748bd630462eb68b7959037fc6a11a
Change-Id: I0e393958eb8cb501b85f6114979f6d4d86ed996c
		
	
			
		
			
				
	
	
		
			1028 lines
		
	
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1028 lines
		
	
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2017 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
//
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// mutex.h
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// This header file defines a `Mutex` -- a mutually exclusive lock -- and the
 | 
						|
// most common type of synchronization primitive for facilitating locks on
 | 
						|
// shared resources. A mutex is used to prevent multiple threads from accessing
 | 
						|
// and/or writing to a shared resource concurrently.
 | 
						|
//
 | 
						|
// Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
 | 
						|
// features:
 | 
						|
//   * Conditional predicates intrinsic to the `Mutex` object
 | 
						|
//   * Shared/reader locks, in addition to standard exclusive/writer locks
 | 
						|
//   * Deadlock detection and debug support.
 | 
						|
//
 | 
						|
// The following helper classes are also defined within this file:
 | 
						|
//
 | 
						|
//  MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
 | 
						|
//              write access within the current scope.
 | 
						|
//  ReaderMutexLock
 | 
						|
//            - An RAII wrapper to acquire and release a `Mutex` for shared/read
 | 
						|
//              access within the current scope.
 | 
						|
//
 | 
						|
//  WriterMutexLock
 | 
						|
//            - Alias for `MutexLock` above, designed for use in distinguishing
 | 
						|
//              reader and writer locks within code.
 | 
						|
//
 | 
						|
// In addition to simple mutex locks, this file also defines ways to perform
 | 
						|
// locking under certain conditions.
 | 
						|
//
 | 
						|
//  Condition   - (Preferred) Used to wait for a particular predicate that
 | 
						|
//                depends on state protected by the `Mutex` to become true.
 | 
						|
//  CondVar     - A lower-level variant of `Condition` that relies on
 | 
						|
//                application code to explicitly signal the `CondVar` when
 | 
						|
//                a condition has been met.
 | 
						|
//
 | 
						|
// See below for more information on using `Condition` or `CondVar`.
 | 
						|
//
 | 
						|
// Mutexes and mutex behavior can be quite complicated. The information within
 | 
						|
// this header file is limited, as a result. Please consult the Mutex guide for
 | 
						|
// more complete information and examples.
 | 
						|
 | 
						|
#ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
 | 
						|
#define ABSL_SYNCHRONIZATION_MUTEX_H_
 | 
						|
 | 
						|
#include <atomic>
 | 
						|
#include <cstdint>
 | 
						|
#include <string>
 | 
						|
 | 
						|
#include "absl/base/internal/identity.h"
 | 
						|
#include "absl/base/internal/low_level_alloc.h"
 | 
						|
#include "absl/base/internal/thread_identity.h"
 | 
						|
#include "absl/base/internal/tsan_mutex_interface.h"
 | 
						|
#include "absl/base/port.h"
 | 
						|
#include "absl/base/thread_annotations.h"
 | 
						|
#include "absl/synchronization/internal/kernel_timeout.h"
 | 
						|
#include "absl/synchronization/internal/per_thread_sem.h"
 | 
						|
#include "absl/time/time.h"
 | 
						|
 | 
						|
// Decide if we should use the non-production implementation because
 | 
						|
// the production implementation hasn't been fully ported yet.
 | 
						|
#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
 | 
						|
#error ABSL_INTERNAL_USE_NONPROD_MUTEX cannot be directly set
 | 
						|
#elif defined(ABSL_LOW_LEVEL_ALLOC_MISSING)
 | 
						|
#define ABSL_INTERNAL_USE_NONPROD_MUTEX 1
 | 
						|
#include "absl/synchronization/internal/mutex_nonprod.inc"
 | 
						|
#endif
 | 
						|
 | 
						|
namespace absl {
 | 
						|
 | 
						|
class Condition;
 | 
						|
struct SynchWaitParams;
 | 
						|
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// Mutex
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
 | 
						|
// on some resource, typically a variable or data structure with associated
 | 
						|
// invariants. Proper usage of mutexes prevents concurrent access by different
 | 
						|
// threads to the same resource.
 | 
						|
//
 | 
						|
// A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
 | 
						|
// The `Lock()` operation *acquires* a `Mutex` (in a state known as an
 | 
						|
// *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a
 | 
						|
// Mutex. During the span of time between the Lock() and Unlock() operations,
 | 
						|
// a mutex is said to be *held*. By design all mutexes support exclusive/write
 | 
						|
// locks, as this is the most common way to use a mutex.
 | 
						|
//
 | 
						|
// The `Mutex` state machine for basic lock/unlock operations is quite simple:
 | 
						|
//
 | 
						|
// |                | Lock()     | Unlock() |
 | 
						|
// |----------------+------------+----------|
 | 
						|
// | Free           | Exclusive  | invalid  |
 | 
						|
// | Exclusive      | blocks     | Free     |
 | 
						|
//
 | 
						|
// Attempts to `Unlock()` must originate from the thread that performed the
 | 
						|
// corresponding `Lock()` operation.
 | 
						|
//
 | 
						|
// An "invalid" operation is disallowed by the API. The `Mutex` implementation
 | 
						|
// is allowed to do anything on an invalid call, including but not limited to
 | 
						|
// crashing with a useful error message, silently succeeding, or corrupting
 | 
						|
// data structures. In debug mode, the implementation attempts to crash with a
 | 
						|
// useful error message.
 | 
						|
//
 | 
						|
// `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
 | 
						|
// is, however, approximately fair over long periods, and starvation-free for
 | 
						|
// threads at the same priority.
 | 
						|
//
 | 
						|
// The lock/unlock primitives are now annotated with lock annotations
 | 
						|
// defined in (base/thread_annotations.h). When writing multi-threaded code,
 | 
						|
// you should use lock annotations whenever possible to document your lock
 | 
						|
// synchronization policy. Besides acting as documentation, these annotations
 | 
						|
// also help compilers or static analysis tools to identify and warn about
 | 
						|
// issues that could potentially result in race conditions and deadlocks.
 | 
						|
//
 | 
						|
// For more information about the lock annotations, please see
 | 
						|
// [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html)
 | 
						|
// in the Clang documentation.
 | 
						|
//
 | 
						|
// See also `MutexLock`, below, for scoped `Mutex` acquisition.
 | 
						|
 | 
						|
class LOCKABLE Mutex {
 | 
						|
 public:
 | 
						|
  Mutex();
 | 
						|
  ~Mutex();
 | 
						|
 | 
						|
  // Mutex::Lock()
 | 
						|
  //
 | 
						|
  // Blocks the calling thread, if necessary, until this `Mutex` is free, and
 | 
						|
  // then acquires it exclusively. (This lock is also known as a "write lock.")
 | 
						|
  void Lock() EXCLUSIVE_LOCK_FUNCTION();
 | 
						|
 | 
						|
  // Mutex::Unlock()
 | 
						|
  //
 | 
						|
  // Releases this `Mutex` and returns it from the exclusive/write state to the
 | 
						|
  // free state. Caller must hold the `Mutex` exclusively.
 | 
						|
  void Unlock() UNLOCK_FUNCTION();
 | 
						|
 | 
						|
  // Mutex::TryLock()
 | 
						|
  //
 | 
						|
  // If the mutex can be acquired without blocking, does so exclusively and
 | 
						|
  // returns `true`. Otherwise, returns `false`. Returns `true` with high
 | 
						|
  // probability if the `Mutex` was free.
 | 
						|
  bool TryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true);
 | 
						|
 | 
						|
  // Mutex::AssertHeld()
 | 
						|
  //
 | 
						|
  // Return immediately if this thread holds the `Mutex` exclusively (in write
 | 
						|
  // mode). Otherwise, may report an error (typically by crashing with a
 | 
						|
  // diagnostic), or may return immediately.
 | 
						|
  void AssertHeld() const ASSERT_EXCLUSIVE_LOCK();
 | 
						|
 | 
						|
  // ---------------------------------------------------------------------------
 | 
						|
  // Reader-Writer Locking
 | 
						|
  // ---------------------------------------------------------------------------
 | 
						|
 | 
						|
  // A Mutex can also be used as a starvation-free reader-writer lock.
 | 
						|
  // Neither read-locks nor write-locks are reentrant/recursive to avoid
 | 
						|
  // potential client programming errors.
 | 
						|
  //
 | 
						|
  // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
 | 
						|
  // `Unlock()` and `TryLock()` methods for use within applications mixing
 | 
						|
  // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
 | 
						|
  // manner can make locking behavior clearer when mixing read and write modes.
 | 
						|
  //
 | 
						|
  // Introducing reader locks necessarily complicates the `Mutex` state
 | 
						|
  // machine somewhat. The table below illustrates the allowed state transitions
 | 
						|
  // of a mutex in such cases. Note that ReaderLock() may block even if the lock
 | 
						|
  // is held in shared mode; this occurs when another thread is blocked on a
 | 
						|
  // call to WriterLock().
 | 
						|
  //
 | 
						|
  // ---------------------------------------------------------------------------
 | 
						|
  //     Operation: WriterLock() Unlock()  ReaderLock()           ReaderUnlock()
 | 
						|
  // ---------------------------------------------------------------------------
 | 
						|
  // State
 | 
						|
  // ---------------------------------------------------------------------------
 | 
						|
  // Free           Exclusive    invalid   Shared(1)              invalid
 | 
						|
  // Shared(1)      blocks       invalid   Shared(2) or blocks    Free
 | 
						|
  // Shared(n) n>1  blocks       invalid   Shared(n+1) or blocks  Shared(n-1)
 | 
						|
  // Exclusive      blocks       Free      blocks                 invalid
 | 
						|
  // ---------------------------------------------------------------------------
 | 
						|
  //
 | 
						|
  // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
 | 
						|
 | 
						|
  // Mutex::ReaderLock()
 | 
						|
  //
 | 
						|
  // Blocks the calling thread, if necessary, until this `Mutex` is either free,
 | 
						|
  // or in shared mode, and then acquires a share of it. Note that
 | 
						|
  // `ReaderLock()` will block if some other thread has an exclusive/writer lock
 | 
						|
  // on the mutex.
 | 
						|
 | 
						|
  void ReaderLock() SHARED_LOCK_FUNCTION();
 | 
						|
 | 
						|
  // Mutex::ReaderUnlock()
 | 
						|
  //
 | 
						|
  // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
 | 
						|
  // the free state if this thread holds the last reader lock on the mutex. Note
 | 
						|
  // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
 | 
						|
  void ReaderUnlock() UNLOCK_FUNCTION();
 | 
						|
 | 
						|
  // Mutex::ReaderTryLock()
 | 
						|
  //
 | 
						|
  // If the mutex can be acquired without blocking, acquires this mutex for
 | 
						|
  // shared access and returns `true`. Otherwise, returns `false`. Returns
 | 
						|
  // `true` with high probability if the `Mutex` was free or shared.
 | 
						|
  bool ReaderTryLock() SHARED_TRYLOCK_FUNCTION(true);
 | 
						|
 | 
						|
  // Mutex::AssertReaderHeld()
 | 
						|
  //
 | 
						|
  // Returns immediately if this thread holds the `Mutex` in at least shared
 | 
						|
  // mode (read mode). Otherwise, may report an error (typically by
 | 
						|
  // crashing with a diagnostic), or may return immediately.
 | 
						|
  void AssertReaderHeld() const ASSERT_SHARED_LOCK();
 | 
						|
 | 
						|
  // Mutex::WriterLock()
 | 
						|
  // Mutex::WriterUnlock()
 | 
						|
  // Mutex::WriterTryLock()
 | 
						|
  //
 | 
						|
  // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
 | 
						|
  //
 | 
						|
  // These methods may be used (along with the complementary `Reader*()`
 | 
						|
  // methods) to distingish simple exclusive `Mutex` usage (`Lock()`,
 | 
						|
  // etc.) from reader/writer lock usage.
 | 
						|
  void WriterLock() EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
 | 
						|
 | 
						|
  void WriterUnlock() UNLOCK_FUNCTION() { this->Unlock(); }
 | 
						|
 | 
						|
  bool WriterTryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true) {
 | 
						|
    return this->TryLock();
 | 
						|
  }
 | 
						|
 | 
						|
  // ---------------------------------------------------------------------------
 | 
						|
  // Conditional Critical Regions
 | 
						|
  // ---------------------------------------------------------------------------
 | 
						|
 | 
						|
  // Conditional usage of a `Mutex` can occur using two distinct paradigms:
 | 
						|
  //
 | 
						|
  //   * Use of `Mutex` member functions with `Condition` objects.
 | 
						|
  //   * Use of the separate `CondVar` abstraction.
 | 
						|
  //
 | 
						|
  // In general, prefer use of `Condition` and the `Mutex` member functions
 | 
						|
  // listed below over `CondVar`. When there are multiple threads waiting on
 | 
						|
  // distinctly different conditions, however, a battery of `CondVar`s may be
 | 
						|
  // more efficient. This section discusses use of `Condition` objects.
 | 
						|
  //
 | 
						|
  // `Mutex` contains member functions for performing lock operations only under
 | 
						|
  // certain conditions, of class `Condition`. For correctness, the `Condition`
 | 
						|
  // must return a boolean that is a pure function, only of state protected by
 | 
						|
  // the `Mutex`. The condition must be invariant w.r.t. environmental state
 | 
						|
  // such as thread, cpu id, or time, and must be `noexcept`. The condition will
 | 
						|
  // always be invoked with the mutex held in at least read mode, so you should
 | 
						|
  // not block it for long periods or sleep it on a timer.
 | 
						|
  //
 | 
						|
  // Since a condition must not depend directly on the current time, use
 | 
						|
  // `*WithTimeout()` member function variants to make your condition
 | 
						|
  // effectively true after a given duration, or `*WithDeadline()` variants to
 | 
						|
  // make your condition effectively true after a given time.
 | 
						|
  //
 | 
						|
  // The condition function should have no side-effects aside from debug
 | 
						|
  // logging; as a special exception, the function may acquire other mutexes
 | 
						|
  // provided it releases all those that it acquires.  (This exception was
 | 
						|
  // required to allow logging.)
 | 
						|
 | 
						|
  // Mutex::Await()
 | 
						|
  //
 | 
						|
  // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
 | 
						|
  // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
 | 
						|
  // same mode in which it was previously held. If the condition is initially
 | 
						|
  // `true`, `Await()` *may* skip the release/re-acquire step.
 | 
						|
  //
 | 
						|
  // `Await()` requires that this thread holds this `Mutex` in some mode.
 | 
						|
  void Await(const Condition &cond);
 | 
						|
 | 
						|
  // Mutex::LockWhen()
 | 
						|
  // Mutex::ReaderLockWhen()
 | 
						|
  // Mutex::WriterLockWhen()
 | 
						|
  //
 | 
						|
  // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
 | 
						|
  // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
 | 
						|
  // logically equivalent to `*Lock(); Await();` though they may have different
 | 
						|
  // performance characteristics.
 | 
						|
  void LockWhen(const Condition &cond) EXCLUSIVE_LOCK_FUNCTION();
 | 
						|
 | 
						|
  void ReaderLockWhen(const Condition &cond) SHARED_LOCK_FUNCTION();
 | 
						|
 | 
						|
  void WriterLockWhen(const Condition &cond) EXCLUSIVE_LOCK_FUNCTION() {
 | 
						|
    this->LockWhen(cond);
 | 
						|
  }
 | 
						|
 | 
						|
  // ---------------------------------------------------------------------------
 | 
						|
  // Mutex Variants with Timeouts/Deadlines
 | 
						|
  // ---------------------------------------------------------------------------
 | 
						|
 | 
						|
  // Mutex::AwaitWithTimeout()
 | 
						|
  // Mutex::AwaitWithDeadline()
 | 
						|
  //
 | 
						|
  // If `cond` is initially true, do nothing, or act as though `cond` is
 | 
						|
  // initially false.
 | 
						|
  //
 | 
						|
  // If `cond` is initially false, unlock this `Mutex` and block until
 | 
						|
  // simultaneously:
 | 
						|
  //   - either `cond` is true or the {timeout has expired, deadline has passed}
 | 
						|
  //     and
 | 
						|
  //   - this `Mutex` can be reacquired,
 | 
						|
  // then reacquire this `Mutex` in the same mode in which it was previously
 | 
						|
  // held, returning `true` iff `cond` is `true` on return.
 | 
						|
  //
 | 
						|
  // Deadlines in the past are equivalent to an immediate deadline.
 | 
						|
  // Negative timeouts are equivalent to a zero timeout.
 | 
						|
  //
 | 
						|
  // This method requires that this thread holds this `Mutex` in some mode.
 | 
						|
  bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout);
 | 
						|
 | 
						|
  bool AwaitWithDeadline(const Condition &cond, absl::Time deadline);
 | 
						|
 | 
						|
  // Mutex::LockWhenWithTimeout()
 | 
						|
  // Mutex::ReaderLockWhenWithTimeout()
 | 
						|
  // Mutex::WriterLockWhenWithTimeout()
 | 
						|
  //
 | 
						|
  // Blocks until simultaneously both:
 | 
						|
  //   - either `cond` is `true` or the timeout has expired, and
 | 
						|
  //   - this `Mutex` can be acquired,
 | 
						|
  // then atomically acquires this `Mutex`, returning `true` iff `cond` is
 | 
						|
  // `true` on return.
 | 
						|
  //
 | 
						|
  // Negative timeouts are equivalent to a zero timeout.
 | 
						|
  bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
 | 
						|
      EXCLUSIVE_LOCK_FUNCTION();
 | 
						|
  bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
 | 
						|
      SHARED_LOCK_FUNCTION();
 | 
						|
  bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
 | 
						|
      EXCLUSIVE_LOCK_FUNCTION() {
 | 
						|
    return this->LockWhenWithTimeout(cond, timeout);
 | 
						|
  }
 | 
						|
 | 
						|
  // Mutex::LockWhenWithDeadline()
 | 
						|
  // Mutex::ReaderLockWhenWithDeadline()
 | 
						|
  // Mutex::WriterLockWhenWithDeadline()
 | 
						|
  //
 | 
						|
  // Blocks until simultaneously both:
 | 
						|
  //   - either `cond` is `true` or the deadline has been passed, and
 | 
						|
  //   - this `Mutex` can be acquired,
 | 
						|
  // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
 | 
						|
  // on return.
 | 
						|
  //
 | 
						|
  // Deadlines in the past are equivalent to an immediate deadline.
 | 
						|
  bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline)
 | 
						|
      EXCLUSIVE_LOCK_FUNCTION();
 | 
						|
  bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
 | 
						|
      SHARED_LOCK_FUNCTION();
 | 
						|
  bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
 | 
						|
      EXCLUSIVE_LOCK_FUNCTION() {
 | 
						|
    return this->LockWhenWithDeadline(cond, deadline);
 | 
						|
  }
 | 
						|
 | 
						|
  // ---------------------------------------------------------------------------
 | 
						|
  // Debug Support: Invariant Checking, Deadlock Detection, Logging.
 | 
						|
  // ---------------------------------------------------------------------------
 | 
						|
 | 
						|
  // Mutex::EnableInvariantDebugging()
 | 
						|
  //
 | 
						|
  // If `invariant`!=null and if invariant debugging has been enabled globally,
 | 
						|
  // cause `(*invariant)(arg)` to be called at moments when the invariant for
 | 
						|
  // this `Mutex` should hold (for example: just after acquire, just before
 | 
						|
  // release).
 | 
						|
  //
 | 
						|
  // The routine `invariant` should have no side-effects since it is not
 | 
						|
  // guaranteed how many times it will be called; it should check the invariant
 | 
						|
  // and crash if it does not hold. Enabling global invariant debugging may
 | 
						|
  // substantially reduce `Mutex` performance; it should be set only for
 | 
						|
  // non-production runs.  Optimization options may also disable invariant
 | 
						|
  // checks.
 | 
						|
  void EnableInvariantDebugging(void (*invariant)(void *), void *arg);
 | 
						|
 | 
						|
  // Mutex::EnableDebugLog()
 | 
						|
  //
 | 
						|
  // Cause all subsequent uses of this `Mutex` to be logged via
 | 
						|
  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
 | 
						|
  // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
 | 
						|
  //
 | 
						|
  // Note: This method substantially reduces `Mutex` performance.
 | 
						|
  void EnableDebugLog(const char *name);
 | 
						|
 | 
						|
  // Deadlock detection
 | 
						|
 | 
						|
  // Mutex::ForgetDeadlockInfo()
 | 
						|
  //
 | 
						|
  // Forget any deadlock-detection information previously gathered
 | 
						|
  // about this `Mutex`. Call this method in debug mode when the lock ordering
 | 
						|
  // of a `Mutex` changes.
 | 
						|
  void ForgetDeadlockInfo();
 | 
						|
 | 
						|
  // Mutex::AssertNotHeld()
 | 
						|
  //
 | 
						|
  // Return immediately if this thread does not hold this `Mutex` in any
 | 
						|
  // mode; otherwise, may report an error (typically by crashing with a
 | 
						|
  // diagnostic), or may return immediately.
 | 
						|
  //
 | 
						|
  // Currently this check is performed only if all of:
 | 
						|
  //    - in debug mode
 | 
						|
  //    - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
 | 
						|
  //    - number of locks concurrently held by this thread is not large.
 | 
						|
  // are true.
 | 
						|
  void AssertNotHeld() const;
 | 
						|
 | 
						|
  // Special cases.
 | 
						|
 | 
						|
  // A `MuHow` is a constant that indicates how a lock should be acquired.
 | 
						|
  // Internal implementation detail.  Clients should ignore.
 | 
						|
  typedef const struct MuHowS *MuHow;
 | 
						|
 | 
						|
  // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
 | 
						|
  //
 | 
						|
  // Causes the `Mutex` implementation to prepare itself for re-entry caused by
 | 
						|
  // future use of `Mutex` within a fatal signal handler. This method is
 | 
						|
  // intended for use only for last-ditch attempts to log crash information.
 | 
						|
  // It does not guarantee that attempts to use Mutexes within the handler will
 | 
						|
  // not deadlock; it merely makes other faults less likely.
 | 
						|
  //
 | 
						|
  // WARNING:  This routine must be invoked from a signal handler, and the
 | 
						|
  // signal handler must either loop forever or terminate the process.
 | 
						|
  // Attempts to return from (or `longjmp` out of) the signal handler once this
 | 
						|
  // call has been made may cause arbitrary program behaviour including
 | 
						|
  // crashes and deadlocks.
 | 
						|
  static void InternalAttemptToUseMutexInFatalSignalHandler();
 | 
						|
 | 
						|
 private:
 | 
						|
#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
 | 
						|
  friend class CondVar;
 | 
						|
 | 
						|
  synchronization_internal::MutexImpl *impl() { return impl_.get(); }
 | 
						|
 | 
						|
  synchronization_internal::SynchronizationStorage<
 | 
						|
      synchronization_internal::MutexImpl>
 | 
						|
      impl_;
 | 
						|
#else
 | 
						|
  std::atomic<intptr_t> mu_;  // The Mutex state.
 | 
						|
 | 
						|
  // Post()/Wait() versus associated PerThreadSem; in class for required
 | 
						|
  // friendship with PerThreadSem.
 | 
						|
  static inline void IncrementSynchSem(Mutex *mu,
 | 
						|
                                       base_internal::PerThreadSynch *w);
 | 
						|
  static inline bool DecrementSynchSem(
 | 
						|
      Mutex *mu, base_internal::PerThreadSynch *w,
 | 
						|
      synchronization_internal::KernelTimeout t);
 | 
						|
 | 
						|
  // slow path acquire
 | 
						|
  void LockSlowLoop(SynchWaitParams *waitp, int flags);
 | 
						|
  // wrappers around LockSlowLoop()
 | 
						|
  bool LockSlowWithDeadline(MuHow how, const Condition *cond,
 | 
						|
                            synchronization_internal::KernelTimeout t,
 | 
						|
                            int flags);
 | 
						|
  void LockSlow(MuHow how, const Condition *cond,
 | 
						|
                int flags) ABSL_ATTRIBUTE_COLD;
 | 
						|
  // slow path release
 | 
						|
  void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD;
 | 
						|
  // Common code between Await() and AwaitWithTimeout/Deadline()
 | 
						|
  bool AwaitCommon(const Condition &cond,
 | 
						|
                   synchronization_internal::KernelTimeout t);
 | 
						|
  // Attempt to remove thread s from queue.
 | 
						|
  void TryRemove(base_internal::PerThreadSynch *s);
 | 
						|
  // Block a thread on mutex.
 | 
						|
  void Block(base_internal::PerThreadSynch *s);
 | 
						|
  // Wake a thread; return successor.
 | 
						|
  base_internal::PerThreadSynch *Wakeup(base_internal::PerThreadSynch *w);
 | 
						|
 | 
						|
  friend class CondVar;   // for access to Trans()/Fer().
 | 
						|
  void Trans(MuHow how);  // used for CondVar->Mutex transfer
 | 
						|
  void Fer(
 | 
						|
      base_internal::PerThreadSynch *w);  // used for CondVar->Mutex transfer
 | 
						|
#endif
 | 
						|
 | 
						|
  // Catch the error of writing Mutex when intending MutexLock.
 | 
						|
  Mutex(const volatile Mutex * /*ignored*/) {}  // NOLINT(runtime/explicit)
 | 
						|
 | 
						|
  Mutex(const Mutex&) = delete;
 | 
						|
  Mutex& operator=(const Mutex&) = delete;
 | 
						|
};
 | 
						|
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// Mutex RAII Wrappers
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
 | 
						|
// MutexLock
 | 
						|
//
 | 
						|
// `MutexLock` is a helper class, which acquires and releases a `Mutex` via
 | 
						|
// RAII.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
// Class Foo {
 | 
						|
//
 | 
						|
//   Foo::Bar* Baz() {
 | 
						|
//     MutexLock l(&lock_);
 | 
						|
//     ...
 | 
						|
//     return bar;
 | 
						|
//   }
 | 
						|
//
 | 
						|
// private:
 | 
						|
//   Mutex lock_;
 | 
						|
// };
 | 
						|
class SCOPED_LOCKABLE MutexLock {
 | 
						|
 public:
 | 
						|
  explicit MutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
 | 
						|
    this->mu_->Lock();
 | 
						|
  }
 | 
						|
 | 
						|
  MutexLock(const MutexLock &) = delete;  // NOLINT(runtime/mutex)
 | 
						|
  MutexLock(MutexLock&&) = delete;  // NOLINT(runtime/mutex)
 | 
						|
  MutexLock& operator=(const MutexLock&) = delete;
 | 
						|
  MutexLock& operator=(MutexLock&&) = delete;
 | 
						|
 | 
						|
  ~MutexLock() UNLOCK_FUNCTION() { this->mu_->Unlock(); }
 | 
						|
 | 
						|
 private:
 | 
						|
  Mutex *const mu_;
 | 
						|
};
 | 
						|
 | 
						|
// ReaderMutexLock
 | 
						|
//
 | 
						|
// The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
 | 
						|
// releases a shared lock on a `Mutex` via RAII.
 | 
						|
class SCOPED_LOCKABLE ReaderMutexLock {
 | 
						|
 public:
 | 
						|
  explicit ReaderMutexLock(Mutex *mu) SHARED_LOCK_FUNCTION(mu)
 | 
						|
      :  mu_(mu) {
 | 
						|
    mu->ReaderLock();
 | 
						|
  }
 | 
						|
 | 
						|
  ReaderMutexLock(const ReaderMutexLock&) = delete;
 | 
						|
  ReaderMutexLock(ReaderMutexLock&&) = delete;
 | 
						|
  ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
 | 
						|
  ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
 | 
						|
 | 
						|
  ~ReaderMutexLock() UNLOCK_FUNCTION() {
 | 
						|
    this->mu_->ReaderUnlock();
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  Mutex *const mu_;
 | 
						|
};
 | 
						|
 | 
						|
// WriterMutexLock
 | 
						|
//
 | 
						|
// The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
 | 
						|
// releases a write (exclusive) lock on a `Mutex` via RAII.
 | 
						|
class SCOPED_LOCKABLE WriterMutexLock {
 | 
						|
 public:
 | 
						|
  explicit WriterMutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu)
 | 
						|
      : mu_(mu) {
 | 
						|
    mu->WriterLock();
 | 
						|
  }
 | 
						|
 | 
						|
  WriterMutexLock(const WriterMutexLock&) = delete;
 | 
						|
  WriterMutexLock(WriterMutexLock&&) = delete;
 | 
						|
  WriterMutexLock& operator=(const WriterMutexLock&) = delete;
 | 
						|
  WriterMutexLock& operator=(WriterMutexLock&&) = delete;
 | 
						|
 | 
						|
  ~WriterMutexLock() UNLOCK_FUNCTION() {
 | 
						|
    this->mu_->WriterUnlock();
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  Mutex *const mu_;
 | 
						|
};
 | 
						|
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// Condition
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// As noted above, `Mutex` contains a number of member functions which take a
 | 
						|
// `Condition` as an argument; clients can wait for conditions to become `true`
 | 
						|
// before attempting to acquire the mutex. These sections are known as
 | 
						|
// "condition critical" sections. To use a `Condition`, you simply need to
 | 
						|
// construct it, and use within an appropriate `Mutex` member function;
 | 
						|
// everything else in the `Condition` class is an implementation detail.
 | 
						|
//
 | 
						|
// A `Condition` is specified as a function pointer which returns a boolean.
 | 
						|
// `Condition` functions should be pure functions -- their results should depend
 | 
						|
// only on passed arguments, should not consult any external state (such as
 | 
						|
// clocks), and should have no side-effects, aside from debug logging. Any
 | 
						|
// objects that the function may access should be limited to those which are
 | 
						|
// constant while the mutex is blocked on the condition (e.g. a stack variable),
 | 
						|
// or objects of state protected explicitly by the mutex.
 | 
						|
//
 | 
						|
// No matter which construction is used for `Condition`, the underlying
 | 
						|
// function pointer / functor / callable must not throw any
 | 
						|
// exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
 | 
						|
// the face of a throwing `Condition`. (When Abseil is allowed to depend
 | 
						|
// on C++17, these function pointers will be explicitly marked
 | 
						|
// `noexcept`; until then this requirement cannot be enforced in the
 | 
						|
// type system.)
 | 
						|
//
 | 
						|
// Note: to use a `Condition`, you need only construct it and pass it within the
 | 
						|
// appropriate `Mutex' member function, such as `Mutex::Await()`.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   // assume count_ is not internal reference count
 | 
						|
//   int count_ GUARDED_BY(mu_);
 | 
						|
//
 | 
						|
//   mu_.LockWhen(Condition(+[](int* count) { return *count == 0; },
 | 
						|
//         &count_));
 | 
						|
//
 | 
						|
// When multiple threads are waiting on exactly the same condition, make sure
 | 
						|
// that they are constructed with the same parameters (same pointer to function
 | 
						|
// + arg, or same pointer to object + method), so that the mutex implementation
 | 
						|
// can avoid redundantly evaluating the same condition for each thread.
 | 
						|
class Condition {
 | 
						|
 public:
 | 
						|
  // A Condition that returns the result of "(*func)(arg)"
 | 
						|
  Condition(bool (*func)(void *), void *arg);
 | 
						|
 | 
						|
  // Templated version for people who are averse to casts.
 | 
						|
  //
 | 
						|
  // To use a lambda, prepend it with unary plus, which converts the lambda
 | 
						|
  // into a function pointer:
 | 
						|
  //     Condition(+[](T* t) { return ...; }, arg).
 | 
						|
  //
 | 
						|
  // Note: lambdas in this case must contain no bound variables.
 | 
						|
  //
 | 
						|
  // See class comment for performance advice.
 | 
						|
  template<typename T>
 | 
						|
  Condition(bool (*func)(T *), T *arg);
 | 
						|
 | 
						|
  // Templated version for invoking a method that returns a `bool`.
 | 
						|
  //
 | 
						|
  // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
 | 
						|
  // `object->Method()`.
 | 
						|
  //
 | 
						|
  // Implementation Note: `absl::internal::identity` is used to allow methods to
 | 
						|
  // come from base classes. A simpler signature like
 | 
						|
  // `Condition(T*, bool (T::*)())` does not suffice.
 | 
						|
  template<typename T>
 | 
						|
  Condition(T *object, bool (absl::internal::identity<T>::type::* method)());
 | 
						|
 | 
						|
  // Same as above, for const members
 | 
						|
  template<typename T>
 | 
						|
  Condition(const T *object,
 | 
						|
            bool (absl::internal::identity<T>::type::* method)() const);
 | 
						|
 | 
						|
  // A Condition that returns the value of `*cond`
 | 
						|
  explicit Condition(const bool *cond);
 | 
						|
 | 
						|
  // Templated version for invoking a functor that returns a `bool`.
 | 
						|
  // This approach accepts pointers to non-mutable lambdas, `std::function`,
 | 
						|
  // the result of` std::bind` and user-defined functors that define
 | 
						|
  // `bool F::operator()() const`.
 | 
						|
  //
 | 
						|
  // Example:
 | 
						|
  //
 | 
						|
  //   auto reached = [this, current]() {
 | 
						|
  //     mu_.AssertReaderHeld();                // For annotalysis.
 | 
						|
  //     return processed_ >= current;
 | 
						|
  //   };
 | 
						|
  //   mu_.Await(Condition(&reached));
 | 
						|
 | 
						|
  // See class comment for performance advice. In particular, if there
 | 
						|
  // might be more than one waiter for the same condition, make sure
 | 
						|
  // that all waiters construct the condition with the same pointers.
 | 
						|
 | 
						|
  // Implementation note: The second template parameter ensures that this
 | 
						|
  // constructor doesn't participate in overload resolution if T doesn't have
 | 
						|
  // `bool operator() const`.
 | 
						|
  template <typename T, typename E = decltype(
 | 
						|
      static_cast<bool (T::*)() const>(&T::operator()))>
 | 
						|
  explicit Condition(const T *obj)
 | 
						|
      : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
 | 
						|
 | 
						|
  // A Condition that always returns `true`.
 | 
						|
  static const Condition kTrue;
 | 
						|
 | 
						|
  // Evaluates the condition.
 | 
						|
  bool Eval() const;
 | 
						|
 | 
						|
  // Returns `true` if the two conditions are guaranteed to return the same
 | 
						|
  // value if evaluated at the same time, `false` if the evaluation *may* return
 | 
						|
  // different results.
 | 
						|
  //
 | 
						|
  // Two `Condition` values are guaranteed equal if both their `func` and `arg`
 | 
						|
  // components are the same. A null pointer is equivalent to a `true`
 | 
						|
  // condition.
 | 
						|
  static bool GuaranteedEqual(const Condition *a, const Condition *b);
 | 
						|
 | 
						|
 private:
 | 
						|
  typedef bool (*InternalFunctionType)(void * arg);
 | 
						|
  typedef bool (Condition::*InternalMethodType)();
 | 
						|
  typedef bool (*InternalMethodCallerType)(void * arg,
 | 
						|
                                           InternalMethodType internal_method);
 | 
						|
 | 
						|
  bool (*eval_)(const Condition*);  // Actual evaluator
 | 
						|
  InternalFunctionType function_;   // function taking pointer returning bool
 | 
						|
  InternalMethodType method_;       // method returning bool
 | 
						|
  void *arg_;                       // arg of function_ or object of method_
 | 
						|
 | 
						|
  Condition();        // null constructor used only to create kTrue
 | 
						|
 | 
						|
  // Various functions eval_ can point to:
 | 
						|
  static bool CallVoidPtrFunction(const Condition*);
 | 
						|
  template <typename T> static bool CastAndCallFunction(const Condition* c);
 | 
						|
  template <typename T> static bool CastAndCallMethod(const Condition* c);
 | 
						|
};
 | 
						|
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// CondVar
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// A condition variable, reflecting state evaluated separately outside of the
 | 
						|
// `Mutex` object, which can be signaled to wake callers.
 | 
						|
// This class is not normally needed; use `Mutex` member functions such as
 | 
						|
// `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
 | 
						|
// with many threads and many conditions, `CondVar` may be faster.
 | 
						|
//
 | 
						|
// The implementation may deliver signals to any condition variable at
 | 
						|
// any time, even when no call to `Signal()` or `SignalAll()` is made; as a
 | 
						|
// result, upon being awoken, you must check the logical condition you have
 | 
						|
// been waiting upon.
 | 
						|
//
 | 
						|
// Examples:
 | 
						|
//
 | 
						|
// Usage for a thread waiting for some condition C protected by mutex mu:
 | 
						|
//       mu.Lock();
 | 
						|
//       while (!C) { cv->Wait(&mu); }        // releases and reacquires mu
 | 
						|
//       //  C holds; process data
 | 
						|
//       mu.Unlock();
 | 
						|
//
 | 
						|
// Usage to wake T is:
 | 
						|
//       mu.Lock();
 | 
						|
//      // process data, possibly establishing C
 | 
						|
//      if (C) { cv->Signal(); }
 | 
						|
//      mu.Unlock();
 | 
						|
//
 | 
						|
// If C may be useful to more than one waiter, use `SignalAll()` instead of
 | 
						|
// `Signal()`.
 | 
						|
//
 | 
						|
// With this implementation it is efficient to use `Signal()/SignalAll()` inside
 | 
						|
// the locked region; this usage can make reasoning about your program easier.
 | 
						|
//
 | 
						|
class CondVar {
 | 
						|
 public:
 | 
						|
  CondVar();
 | 
						|
  ~CondVar();
 | 
						|
 | 
						|
  // CondVar::Wait()
 | 
						|
  //
 | 
						|
  // Atomically releases a `Mutex` and blocks on this condition variable.
 | 
						|
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
 | 
						|
  // spurious wakeup), then reacquires the `Mutex` and returns.
 | 
						|
  //
 | 
						|
  // Requires and ensures that the current thread holds the `Mutex`.
 | 
						|
  void Wait(Mutex *mu);
 | 
						|
 | 
						|
  // CondVar::WaitWithTimeout()
 | 
						|
  //
 | 
						|
  // Atomically releases a `Mutex` and blocks on this condition variable.
 | 
						|
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
 | 
						|
  // spurious wakeup), or until the timeout has expired, then reacquires
 | 
						|
  // the `Mutex` and returns.
 | 
						|
  //
 | 
						|
  // Returns true if the timeout has expired without this `CondVar`
 | 
						|
  // being signalled in any manner. If both the timeout has expired
 | 
						|
  // and this `CondVar` has been signalled, the implementation is free
 | 
						|
  // to return `true` or `false`.
 | 
						|
  //
 | 
						|
  // Requires and ensures that the current thread holds the `Mutex`.
 | 
						|
  bool WaitWithTimeout(Mutex *mu, absl::Duration timeout);
 | 
						|
 | 
						|
  // CondVar::WaitWithDeadline()
 | 
						|
  //
 | 
						|
  // Atomically releases a `Mutex` and blocks on this condition variable.
 | 
						|
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
 | 
						|
  // spurious wakeup), or until the deadline has passed, then reacquires
 | 
						|
  // the `Mutex` and returns.
 | 
						|
  //
 | 
						|
  // Deadlines in the past are equivalent to an immediate deadline.
 | 
						|
  //
 | 
						|
  // Returns true if the deadline has passed without this `CondVar`
 | 
						|
  // being signalled in any manner. If both the deadline has passed
 | 
						|
  // and this `CondVar` has been signalled, the implementation is free
 | 
						|
  // to return `true` or `false`.
 | 
						|
  //
 | 
						|
  // Requires and ensures that the current thread holds the `Mutex`.
 | 
						|
  bool WaitWithDeadline(Mutex *mu, absl::Time deadline);
 | 
						|
 | 
						|
  // CondVar::Signal()
 | 
						|
  //
 | 
						|
  // Signal this `CondVar`; wake at least one waiter if one exists.
 | 
						|
  void Signal();
 | 
						|
 | 
						|
  // CondVar::SignalAll()
 | 
						|
  //
 | 
						|
  // Signal this `CondVar`; wake all waiters.
 | 
						|
  void SignalAll();
 | 
						|
 | 
						|
  // CondVar::EnableDebugLog()
 | 
						|
  //
 | 
						|
  // Causes all subsequent uses of this `CondVar` to be logged via
 | 
						|
  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
 | 
						|
  // Note: this method substantially reduces `CondVar` performance.
 | 
						|
  void EnableDebugLog(const char *name);
 | 
						|
 | 
						|
 private:
 | 
						|
#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
 | 
						|
  synchronization_internal::CondVarImpl *impl() { return impl_.get(); }
 | 
						|
  synchronization_internal::SynchronizationStorage<
 | 
						|
      synchronization_internal::CondVarImpl>
 | 
						|
      impl_;
 | 
						|
#else
 | 
						|
  bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t);
 | 
						|
  void Remove(base_internal::PerThreadSynch *s);
 | 
						|
  void Wakeup(base_internal::PerThreadSynch *w);
 | 
						|
  std::atomic<intptr_t> cv_;  // Condition variable state.
 | 
						|
#endif
 | 
						|
  CondVar(const CondVar&) = delete;
 | 
						|
  CondVar& operator=(const CondVar&) = delete;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// Variants of MutexLock.
 | 
						|
//
 | 
						|
// If you find yourself using one of these, consider instead using
 | 
						|
// Mutex::Unlock() and/or if-statements for clarity.
 | 
						|
 | 
						|
// MutexLockMaybe
 | 
						|
//
 | 
						|
// MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
 | 
						|
class SCOPED_LOCKABLE MutexLockMaybe {
 | 
						|
 public:
 | 
						|
  explicit MutexLockMaybe(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu)
 | 
						|
      : mu_(mu) { if (this->mu_ != nullptr) { this->mu_->Lock(); } }
 | 
						|
  ~MutexLockMaybe() UNLOCK_FUNCTION() {
 | 
						|
    if (this->mu_ != nullptr) { this->mu_->Unlock(); }
 | 
						|
  }
 | 
						|
 private:
 | 
						|
  Mutex *const mu_;
 | 
						|
  MutexLockMaybe(const MutexLockMaybe&) = delete;
 | 
						|
  MutexLockMaybe(MutexLockMaybe&&) = delete;
 | 
						|
  MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
 | 
						|
  MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
 | 
						|
};
 | 
						|
 | 
						|
// ReleasableMutexLock
 | 
						|
//
 | 
						|
// ReleasableMutexLock is like MutexLock, but permits `Release()` of its
 | 
						|
// mutex before destruction. `Release()` may be called at most once.
 | 
						|
class SCOPED_LOCKABLE ReleasableMutexLock {
 | 
						|
 public:
 | 
						|
  explicit ReleasableMutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu)
 | 
						|
      : mu_(mu) {
 | 
						|
    this->mu_->Lock();
 | 
						|
  }
 | 
						|
  ~ReleasableMutexLock() UNLOCK_FUNCTION() {
 | 
						|
    if (this->mu_ != nullptr) { this->mu_->Unlock(); }
 | 
						|
  }
 | 
						|
 | 
						|
  void Release() UNLOCK_FUNCTION();
 | 
						|
 | 
						|
 private:
 | 
						|
  Mutex *mu_;
 | 
						|
  ReleasableMutexLock(const ReleasableMutexLock&) = delete;
 | 
						|
  ReleasableMutexLock(ReleasableMutexLock&&) = delete;
 | 
						|
  ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
 | 
						|
  ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
 | 
						|
};
 | 
						|
 | 
						|
#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
 | 
						|
#else
 | 
						|
inline Mutex::Mutex() : mu_(0) {
 | 
						|
  ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
 | 
						|
}
 | 
						|
 | 
						|
inline CondVar::CondVar() : cv_(0) {}
 | 
						|
#endif
 | 
						|
 | 
						|
// static
 | 
						|
template <typename T>
 | 
						|
bool Condition::CastAndCallMethod(const Condition *c) {
 | 
						|
  typedef bool (T::*MemberType)();
 | 
						|
  MemberType rm = reinterpret_cast<MemberType>(c->method_);
 | 
						|
  T *x = static_cast<T *>(c->arg_);
 | 
						|
  return (x->*rm)();
 | 
						|
}
 | 
						|
 | 
						|
// static
 | 
						|
template <typename T>
 | 
						|
bool Condition::CastAndCallFunction(const Condition *c) {
 | 
						|
  typedef bool (*FuncType)(T *);
 | 
						|
  FuncType fn = reinterpret_cast<FuncType>(c->function_);
 | 
						|
  T *x = static_cast<T *>(c->arg_);
 | 
						|
  return (*fn)(x);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
inline Condition::Condition(bool (*func)(T *), T *arg)
 | 
						|
    : eval_(&CastAndCallFunction<T>),
 | 
						|
      function_(reinterpret_cast<InternalFunctionType>(func)),
 | 
						|
      method_(nullptr),
 | 
						|
      arg_(const_cast<void *>(static_cast<const void *>(arg))) {}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
inline Condition::Condition(T *object,
 | 
						|
                            bool (absl::internal::identity<T>::type::*method)())
 | 
						|
    : eval_(&CastAndCallMethod<T>),
 | 
						|
      function_(nullptr),
 | 
						|
      method_(reinterpret_cast<InternalMethodType>(method)),
 | 
						|
      arg_(object) {}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
inline Condition::Condition(const T *object,
 | 
						|
                            bool (absl::internal::identity<T>::type::*method)()
 | 
						|
                                const)
 | 
						|
    : eval_(&CastAndCallMethod<T>),
 | 
						|
      function_(nullptr),
 | 
						|
      method_(reinterpret_cast<InternalMethodType>(method)),
 | 
						|
      arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {}
 | 
						|
 | 
						|
// Register a hook for profiling support.
 | 
						|
//
 | 
						|
// The function pointer registered here will be called whenever a mutex is
 | 
						|
// contended.  The callback is given the absl/base/cycleclock.h timestamp when
 | 
						|
// waiting began.
 | 
						|
//
 | 
						|
// Calls to this function do not race or block, but there is no ordering
 | 
						|
// guaranteed between calls to this function and call to the provided hook.
 | 
						|
// In particular, the previously registered hook may still be called for some
 | 
						|
// time after this function returns.
 | 
						|
void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp));
 | 
						|
 | 
						|
// Register a hook for Mutex tracing.
 | 
						|
//
 | 
						|
// The function pointer registered here will be called whenever a mutex is
 | 
						|
// contended.  The callback is given an opaque handle to the contended mutex,
 | 
						|
// an event name, and the number of wait cycles (as measured by
 | 
						|
// //absl/base/internal/cycleclock.h, and which may not be real
 | 
						|
// "cycle" counts.)
 | 
						|
//
 | 
						|
// The only event name currently sent is "slow release".
 | 
						|
//
 | 
						|
// This has the same memory ordering concerns as RegisterMutexProfiler() above.
 | 
						|
void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
 | 
						|
                              int64_t wait_cycles));
 | 
						|
 | 
						|
// TODO(gfalcon): Combine RegisterMutexProfiler() and RegisterMutexTracer()
 | 
						|
// into a single interface, since they are only ever called in pairs.
 | 
						|
 | 
						|
// Register a hook for CondVar tracing.
 | 
						|
//
 | 
						|
// The function pointer registered here will be called here on various CondVar
 | 
						|
// events.  The callback is given an opaque handle to the CondVar object and
 | 
						|
// a string identifying the event.  This is thread-safe, but only a single
 | 
						|
// tracer can be registered.
 | 
						|
//
 | 
						|
// Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
 | 
						|
// "SignalAll wakeup".
 | 
						|
//
 | 
						|
// This has the same memory ordering concerns as RegisterMutexProfiler() above.
 | 
						|
void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv));
 | 
						|
 | 
						|
// Register a hook for symbolizing stack traces in deadlock detector reports.
 | 
						|
//
 | 
						|
// 'pc' is the program counter being symbolized, 'out' is the buffer to write
 | 
						|
// into, and 'out_size' is the size of the buffer.  This function can return
 | 
						|
// false if symbolizing failed, or true if a null-terminated symbol was written
 | 
						|
// to 'out.'
 | 
						|
//
 | 
						|
// This has the same memory ordering concerns as RegisterMutexProfiler() above.
 | 
						|
//
 | 
						|
// DEPRECATED: The default symbolizer function is absl::Symbolize() and the
 | 
						|
// ability to register a different hook for symbolizing stack traces will be
 | 
						|
// removed on or after 2023-05-01.
 | 
						|
ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed "
 | 
						|
                "on or after 2023-05-01")
 | 
						|
void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size));
 | 
						|
 | 
						|
// EnableMutexInvariantDebugging()
 | 
						|
//
 | 
						|
// Enable or disable global support for Mutex invariant debugging.  If enabled,
 | 
						|
// then invariant predicates can be registered per-Mutex for debug checking.
 | 
						|
// See Mutex::EnableInvariantDebugging().
 | 
						|
void EnableMutexInvariantDebugging(bool enabled);
 | 
						|
 | 
						|
// When in debug mode, and when the feature has been enabled globally, the
 | 
						|
// implementation will keep track of lock ordering and complain (or optionally
 | 
						|
// crash) if a cycle is detected in the acquired-before graph.
 | 
						|
 | 
						|
// Possible modes of operation for the deadlock detector in debug mode.
 | 
						|
enum class OnDeadlockCycle {
 | 
						|
  kIgnore,  // Neither report on nor attempt to track cycles in lock ordering
 | 
						|
  kReport,  // Report lock cycles to stderr when detected
 | 
						|
  kAbort,  // Report lock cycles to stderr when detected, then abort
 | 
						|
};
 | 
						|
 | 
						|
// SetMutexDeadlockDetectionMode()
 | 
						|
//
 | 
						|
// Enable or disable global support for detection of potential deadlocks
 | 
						|
// due to Mutex lock ordering inversions.  When set to 'kIgnore', tracking of
 | 
						|
// lock ordering is disabled.  Otherwise, in debug builds, a lock ordering graph
 | 
						|
// will be maintained internally, and detected cycles will be reported in
 | 
						|
// the manner chosen here.
 | 
						|
void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
 | 
						|
 | 
						|
}  // namespace absl
 | 
						|
 | 
						|
// In some build configurations we pass --detect-odr-violations to the
 | 
						|
// gold linker.  This causes it to flag weak symbol overrides as ODR
 | 
						|
// violations.  Because ODR only applies to C++ and not C,
 | 
						|
// --detect-odr-violations ignores symbols not mangled with C++ names.
 | 
						|
// By changing our extension points to be extern "C", we dodge this
 | 
						|
// check.
 | 
						|
extern "C" {
 | 
						|
void AbslInternalMutexYield();
 | 
						|
}  // extern "C"
 | 
						|
#endif  // ABSL_SYNCHRONIZATION_MUTEX_H_
 |