-- c99f979ad34f155fbeeea69b88bdc7458d89a21c by Derek Mauro <dmauro@google.com>: Remove a floating point division by zero test. This isn't testing behavior related to the library, and MSVC warns about it in opt mode. PiperOrigin-RevId: 285220804 -- 68b015491f0dbf1ab547994673281abd1f34cd4b by Gennadiy Rozental <rogeeff@google.com>: This CL introduces following changes to the class FlagImpl: * We eliminate the CommandLineFlagLocks struct. Instead callback guard and callback function are combined into a single CallbackData struct, while primary data lock is stored separately. * CallbackData member of class FlagImpl is initially set to be nullptr and is only allocated and initialized when a flag's callback is being set. For most flags we do not pay for the extra space and extra absl::Mutex now. * Primary data guard is stored in data_guard_ data member. This is a properly aligned character buffer of necessary size. During initialization of the flag we construct absl::Mutex in this space using placement new call. * We now avoid extra value copy after successful attempt to parse value out of string. Instead we swap flag's current value with tentative value we just produced. PiperOrigin-RevId: 285132636 -- ed45d118fb818969eb13094cf7827c885dfc562c by Tom Manshreck <shreck@google.com>: Change null-term* (and nul-term*) to NUL-term* in comments PiperOrigin-RevId: 285036610 -- 729619017944db895ce8d6d29c1995aa2e5628a5 by Derek Mauro <dmauro@google.com>: Use the Posix implementation of thread identity on MinGW. Some versions of MinGW suffer from thread_local bugs. PiperOrigin-RevId: 285022920 -- 39a25493503c76885bc3254c28f66a251c5b5bb0 by Greg Falcon <gfalcon@google.com>: Implementation detail change. Add further ABSL_NAMESPACE_BEGIN and _END annotation macros to files in Abseil. PiperOrigin-RevId: 285012012 GitOrigin-RevId: c99f979ad34f155fbeeea69b88bdc7458d89a21c Change-Id: I4c85d3704e45d11a9ac50d562f39640a6adbedc1
		
			
				
	
	
		
			2725 lines
		
	
	
	
		
			110 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2725 lines
		
	
	
	
		
			110 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "absl/synchronization/mutex.h"
 | |
| 
 | |
| #ifdef _WIN32
 | |
| #include <windows.h>
 | |
| #ifdef ERROR
 | |
| #undef ERROR
 | |
| #endif
 | |
| #else
 | |
| #include <fcntl.h>
 | |
| #include <pthread.h>
 | |
| #include <sched.h>
 | |
| #include <sys/time.h>
 | |
| #endif
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <errno.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <time.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <atomic>
 | |
| #include <cinttypes>
 | |
| #include <thread>  // NOLINT(build/c++11)
 | |
| 
 | |
| #include "absl/base/attributes.h"
 | |
| #include "absl/base/config.h"
 | |
| #include "absl/base/dynamic_annotations.h"
 | |
| #include "absl/base/internal/atomic_hook.h"
 | |
| #include "absl/base/internal/cycleclock.h"
 | |
| #include "absl/base/internal/hide_ptr.h"
 | |
| #include "absl/base/internal/low_level_alloc.h"
 | |
| #include "absl/base/internal/raw_logging.h"
 | |
| #include "absl/base/internal/spinlock.h"
 | |
| #include "absl/base/internal/sysinfo.h"
 | |
| #include "absl/base/internal/thread_identity.h"
 | |
| #include "absl/base/port.h"
 | |
| #include "absl/debugging/stacktrace.h"
 | |
| #include "absl/debugging/symbolize.h"
 | |
| #include "absl/synchronization/internal/graphcycles.h"
 | |
| #include "absl/synchronization/internal/per_thread_sem.h"
 | |
| #include "absl/time/time.h"
 | |
| 
 | |
| using absl::base_internal::CurrentThreadIdentityIfPresent;
 | |
| using absl::base_internal::PerThreadSynch;
 | |
| using absl::base_internal::ThreadIdentity;
 | |
| using absl::synchronization_internal::GetOrCreateCurrentThreadIdentity;
 | |
| using absl::synchronization_internal::GraphCycles;
 | |
| using absl::synchronization_internal::GraphId;
 | |
| using absl::synchronization_internal::InvalidGraphId;
 | |
| using absl::synchronization_internal::KernelTimeout;
 | |
| using absl::synchronization_internal::PerThreadSem;
 | |
| 
 | |
| extern "C" {
 | |
| ABSL_ATTRIBUTE_WEAK void AbslInternalMutexYield() { std::this_thread::yield(); }
 | |
| }  // extern "C"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| #if defined(THREAD_SANITIZER)
 | |
| constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kIgnore;
 | |
| #else
 | |
| constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kAbort;
 | |
| #endif
 | |
| 
 | |
| ABSL_CONST_INIT std::atomic<OnDeadlockCycle> synch_deadlock_detection(
 | |
|     kDeadlockDetectionDefault);
 | |
| ABSL_CONST_INIT std::atomic<bool> synch_check_invariants(false);
 | |
| 
 | |
| // ------------------------------------------ spinlock support
 | |
| 
 | |
| // Make sure read-only globals used in the Mutex code are contained on the
 | |
| // same cacheline and cacheline aligned to eliminate any false sharing with
 | |
| // other globals from this and other modules.
 | |
| static struct MutexGlobals {
 | |
|   MutexGlobals() {
 | |
|     // Find machine-specific data needed for Delay() and
 | |
|     // TryAcquireWithSpinning(). This runs in the global constructor
 | |
|     // sequence, and before that zeros are safe values.
 | |
|     num_cpus = absl::base_internal::NumCPUs();
 | |
|     spinloop_iterations = num_cpus > 1 ? 1500 : 0;
 | |
|   }
 | |
|   int num_cpus;
 | |
|   int spinloop_iterations;
 | |
|   // Pad this struct to a full cacheline to prevent false sharing.
 | |
|   char padding[ABSL_CACHELINE_SIZE - 2 * sizeof(int)];
 | |
| } ABSL_CACHELINE_ALIGNED mutex_globals;
 | |
| static_assert(
 | |
|     sizeof(MutexGlobals) == ABSL_CACHELINE_SIZE,
 | |
|     "MutexGlobals must occupy an entire cacheline to prevent false sharing");
 | |
| 
 | |
| ABSL_CONST_INIT absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)>
 | |
|     submit_profile_data;
 | |
| ABSL_CONST_INIT absl::base_internal::AtomicHook<
 | |
|     void (*)(const char *msg, const void *obj, int64_t wait_cycles)> mutex_tracer;
 | |
| ABSL_CONST_INIT absl::base_internal::AtomicHook<
 | |
|     void (*)(const char *msg, const void *cv)> cond_var_tracer;
 | |
| ABSL_CONST_INIT absl::base_internal::AtomicHook<
 | |
|     bool (*)(const void *pc, char *out, int out_size)>
 | |
|     symbolizer(absl::Symbolize);
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu,
 | |
|                                           bool locking, bool trylock,
 | |
|                                           bool read_lock);
 | |
| 
 | |
| void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp)) {
 | |
|   submit_profile_data.Store(fn);
 | |
| }
 | |
| 
 | |
| void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
 | |
|                                     int64_t wait_cycles)) {
 | |
|   mutex_tracer.Store(fn);
 | |
| }
 | |
| 
 | |
| void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv)) {
 | |
|   cond_var_tracer.Store(fn);
 | |
| }
 | |
| 
 | |
| void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size)) {
 | |
|   symbolizer.Store(fn);
 | |
| }
 | |
| 
 | |
| // spinlock delay on iteration c.  Returns new c.
 | |
| namespace {
 | |
|   enum DelayMode { AGGRESSIVE, GENTLE };
 | |
| };
 | |
| static int Delay(int32_t c, DelayMode mode) {
 | |
|   // If this a uniprocessor, only yield/sleep.  Otherwise, if the mode is
 | |
|   // aggressive then spin many times before yielding.  If the mode is
 | |
|   // gentle then spin only a few times before yielding.  Aggressive spinning is
 | |
|   // used to ensure that an Unlock() call, which  must get the spin lock for
 | |
|   // any thread to make progress gets it without undue delay.
 | |
|   int32_t limit = (mutex_globals.num_cpus > 1) ?
 | |
|       ((mode == AGGRESSIVE) ? 5000 : 250) : 0;
 | |
|   if (c < limit) {
 | |
|     c++;               // spin
 | |
|   } else {
 | |
|     ABSL_TSAN_MUTEX_PRE_DIVERT(nullptr, 0);
 | |
|     if (c == limit) {  // yield once
 | |
|       AbslInternalMutexYield();
 | |
|       c++;
 | |
|     } else {           // then wait
 | |
|       absl::SleepFor(absl::Microseconds(10));
 | |
|       c = 0;
 | |
|     }
 | |
|     ABSL_TSAN_MUTEX_POST_DIVERT(nullptr, 0);
 | |
|   }
 | |
|   return (c);
 | |
| }
 | |
| 
 | |
| // --------------------------Generic atomic ops
 | |
| // Ensure that "(*pv & bits) == bits" by doing an atomic update of "*pv" to
 | |
| // "*pv | bits" if necessary.  Wait until (*pv & wait_until_clear)==0
 | |
| // before making any change.
 | |
| // This is used to set flags in mutex and condition variable words.
 | |
| static void AtomicSetBits(std::atomic<intptr_t>* pv, intptr_t bits,
 | |
|                           intptr_t wait_until_clear) {
 | |
|   intptr_t v;
 | |
|   do {
 | |
|     v = pv->load(std::memory_order_relaxed);
 | |
|   } while ((v & bits) != bits &&
 | |
|            ((v & wait_until_clear) != 0 ||
 | |
|             !pv->compare_exchange_weak(v, v | bits,
 | |
|                                        std::memory_order_release,
 | |
|                                        std::memory_order_relaxed)));
 | |
| }
 | |
| 
 | |
| // Ensure that "(*pv & bits) == 0" by doing an atomic update of "*pv" to
 | |
| // "*pv & ~bits" if necessary.  Wait until (*pv & wait_until_clear)==0
 | |
| // before making any change.
 | |
| // This is used to unset flags in mutex and condition variable words.
 | |
| static void AtomicClearBits(std::atomic<intptr_t>* pv, intptr_t bits,
 | |
|                             intptr_t wait_until_clear) {
 | |
|   intptr_t v;
 | |
|   do {
 | |
|     v = pv->load(std::memory_order_relaxed);
 | |
|   } while ((v & bits) != 0 &&
 | |
|            ((v & wait_until_clear) != 0 ||
 | |
|             !pv->compare_exchange_weak(v, v & ~bits,
 | |
|                                        std::memory_order_release,
 | |
|                                        std::memory_order_relaxed)));
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------
 | |
| 
 | |
| // Data for doing deadlock detection.
 | |
| static absl::base_internal::SpinLock deadlock_graph_mu(
 | |
|     absl::base_internal::kLinkerInitialized);
 | |
| 
 | |
| // graph used to detect deadlocks.
 | |
| static GraphCycles *deadlock_graph ABSL_GUARDED_BY(deadlock_graph_mu)
 | |
|     ABSL_PT_GUARDED_BY(deadlock_graph_mu);
 | |
| 
 | |
| //------------------------------------------------------------------
 | |
| // An event mechanism for debugging mutex use.
 | |
| // It also allows mutexes to be given names for those who can't handle
 | |
| // addresses, and instead like to give their data structures names like
 | |
| // "Henry", "Fido", or "Rupert IV, King of Yondavia".
 | |
| 
 | |
| namespace {  // to prevent name pollution
 | |
| enum {       // Mutex and CondVar events passed as "ev" to PostSynchEvent
 | |
|              // Mutex events
 | |
|   SYNCH_EV_TRYLOCK_SUCCESS,
 | |
|   SYNCH_EV_TRYLOCK_FAILED,
 | |
|   SYNCH_EV_READERTRYLOCK_SUCCESS,
 | |
|   SYNCH_EV_READERTRYLOCK_FAILED,
 | |
|   SYNCH_EV_LOCK,
 | |
|   SYNCH_EV_LOCK_RETURNING,
 | |
|   SYNCH_EV_READERLOCK,
 | |
|   SYNCH_EV_READERLOCK_RETURNING,
 | |
|   SYNCH_EV_UNLOCK,
 | |
|   SYNCH_EV_READERUNLOCK,
 | |
| 
 | |
|   // CondVar events
 | |
|   SYNCH_EV_WAIT,
 | |
|   SYNCH_EV_WAIT_RETURNING,
 | |
|   SYNCH_EV_SIGNAL,
 | |
|   SYNCH_EV_SIGNALALL,
 | |
| };
 | |
| 
 | |
| enum {                    // Event flags
 | |
|   SYNCH_F_R = 0x01,       // reader event
 | |
|   SYNCH_F_LCK = 0x02,     // PostSynchEvent called with mutex held
 | |
|   SYNCH_F_TRY = 0x04,     // TryLock or ReaderTryLock
 | |
|   SYNCH_F_UNLOCK = 0x08,  // Unlock or ReaderUnlock
 | |
| 
 | |
|   SYNCH_F_LCK_W = SYNCH_F_LCK,
 | |
|   SYNCH_F_LCK_R = SYNCH_F_LCK | SYNCH_F_R,
 | |
| };
 | |
| }  // anonymous namespace
 | |
| 
 | |
| // Properties of the events.
 | |
| static const struct {
 | |
|   int flags;
 | |
|   const char *msg;
 | |
| } event_properties[] = {
 | |
|     {SYNCH_F_LCK_W | SYNCH_F_TRY, "TryLock succeeded "},
 | |
|     {0, "TryLock failed "},
 | |
|     {SYNCH_F_LCK_R | SYNCH_F_TRY, "ReaderTryLock succeeded "},
 | |
|     {0, "ReaderTryLock failed "},
 | |
|     {0, "Lock blocking "},
 | |
|     {SYNCH_F_LCK_W, "Lock returning "},
 | |
|     {0, "ReaderLock blocking "},
 | |
|     {SYNCH_F_LCK_R, "ReaderLock returning "},
 | |
|     {SYNCH_F_LCK_W | SYNCH_F_UNLOCK, "Unlock "},
 | |
|     {SYNCH_F_LCK_R | SYNCH_F_UNLOCK, "ReaderUnlock "},
 | |
|     {0, "Wait on "},
 | |
|     {0, "Wait unblocked "},
 | |
|     {0, "Signal on "},
 | |
|     {0, "SignalAll on "},
 | |
| };
 | |
| 
 | |
| static absl::base_internal::SpinLock synch_event_mu(
 | |
|     absl::base_internal::kLinkerInitialized);
 | |
| // protects synch_event
 | |
| 
 | |
| // Hash table size; should be prime > 2.
 | |
| // Can't be too small, as it's used for deadlock detection information.
 | |
| static const uint32_t kNSynchEvent = 1031;
 | |
| 
 | |
| static struct SynchEvent {     // this is a trivial hash table for the events
 | |
|   // struct is freed when refcount reaches 0
 | |
|   int refcount ABSL_GUARDED_BY(synch_event_mu);
 | |
| 
 | |
|   // buckets have linear, 0-terminated  chains
 | |
|   SynchEvent *next ABSL_GUARDED_BY(synch_event_mu);
 | |
| 
 | |
|   // Constant after initialization
 | |
|   uintptr_t masked_addr;  // object at this address is called "name"
 | |
| 
 | |
|   // No explicit synchronization used.  Instead we assume that the
 | |
|   // client who enables/disables invariants/logging on a Mutex does so
 | |
|   // while the Mutex is not being concurrently accessed by others.
 | |
|   void (*invariant)(void *arg);  // called on each event
 | |
|   void *arg;            // first arg to (*invariant)()
 | |
|   bool log;             // logging turned on
 | |
| 
 | |
|   // Constant after initialization
 | |
|   char name[1];         // actually longer---NUL-terminated std::string
 | |
| } * synch_event[kNSynchEvent] ABSL_GUARDED_BY(synch_event_mu);
 | |
| 
 | |
| // Ensure that the object at "addr" has a SynchEvent struct associated with it,
 | |
| // set "bits" in the word there (waiting until lockbit is clear before doing
 | |
| // so), and return a refcounted reference that will remain valid until
 | |
| // UnrefSynchEvent() is called.  If a new SynchEvent is allocated,
 | |
| // the string name is copied into it.
 | |
| // When used with a mutex, the caller should also ensure that kMuEvent
 | |
| // is set in the mutex word, and similarly for condition variables and kCVEvent.
 | |
| static SynchEvent *EnsureSynchEvent(std::atomic<intptr_t> *addr,
 | |
|                                     const char *name, intptr_t bits,
 | |
|                                     intptr_t lockbit) {
 | |
|   uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
 | |
|   SynchEvent *e;
 | |
|   // first look for existing SynchEvent struct..
 | |
|   synch_event_mu.Lock();
 | |
|   for (e = synch_event[h];
 | |
|        e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
 | |
|        e = e->next) {
 | |
|   }
 | |
|   if (e == nullptr) {  // no SynchEvent struct found; make one.
 | |
|     if (name == nullptr) {
 | |
|       name = "";
 | |
|     }
 | |
|     size_t l = strlen(name);
 | |
|     e = reinterpret_cast<SynchEvent *>(
 | |
|         base_internal::LowLevelAlloc::Alloc(sizeof(*e) + l));
 | |
|     e->refcount = 2;    // one for return value, one for linked list
 | |
|     e->masked_addr = base_internal::HidePtr(addr);
 | |
|     e->invariant = nullptr;
 | |
|     e->arg = nullptr;
 | |
|     e->log = false;
 | |
|     strcpy(e->name, name);  // NOLINT(runtime/printf)
 | |
|     e->next = synch_event[h];
 | |
|     AtomicSetBits(addr, bits, lockbit);
 | |
|     synch_event[h] = e;
 | |
|   } else {
 | |
|     e->refcount++;      // for return value
 | |
|   }
 | |
|   synch_event_mu.Unlock();
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| // Deallocate the SynchEvent *e, whose refcount has fallen to zero.
 | |
| static void DeleteSynchEvent(SynchEvent *e) {
 | |
|   base_internal::LowLevelAlloc::Free(e);
 | |
| }
 | |
| 
 | |
| // Decrement the reference count of *e, or do nothing if e==null.
 | |
| static void UnrefSynchEvent(SynchEvent *e) {
 | |
|   if (e != nullptr) {
 | |
|     synch_event_mu.Lock();
 | |
|     bool del = (--(e->refcount) == 0);
 | |
|     synch_event_mu.Unlock();
 | |
|     if (del) {
 | |
|       DeleteSynchEvent(e);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Forget the mapping from the object (Mutex or CondVar) at address addr
 | |
| // to SynchEvent object, and clear "bits" in its word (waiting until lockbit
 | |
| // is clear before doing so).
 | |
| static void ForgetSynchEvent(std::atomic<intptr_t> *addr, intptr_t bits,
 | |
|                              intptr_t lockbit) {
 | |
|   uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
 | |
|   SynchEvent **pe;
 | |
|   SynchEvent *e;
 | |
|   synch_event_mu.Lock();
 | |
|   for (pe = &synch_event[h];
 | |
|        (e = *pe) != nullptr && e->masked_addr != base_internal::HidePtr(addr);
 | |
|        pe = &e->next) {
 | |
|   }
 | |
|   bool del = false;
 | |
|   if (e != nullptr) {
 | |
|     *pe = e->next;
 | |
|     del = (--(e->refcount) == 0);
 | |
|   }
 | |
|   AtomicClearBits(addr, bits, lockbit);
 | |
|   synch_event_mu.Unlock();
 | |
|   if (del) {
 | |
|     DeleteSynchEvent(e);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return a refcounted reference to the SynchEvent of the object at address
 | |
| // "addr", if any.  The pointer returned is valid until the UnrefSynchEvent() is
 | |
| // called.
 | |
| static SynchEvent *GetSynchEvent(const void *addr) {
 | |
|   uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
 | |
|   SynchEvent *e;
 | |
|   synch_event_mu.Lock();
 | |
|   for (e = synch_event[h];
 | |
|        e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
 | |
|        e = e->next) {
 | |
|   }
 | |
|   if (e != nullptr) {
 | |
|     e->refcount++;
 | |
|   }
 | |
|   synch_event_mu.Unlock();
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| // Called when an event "ev" occurs on a Mutex of CondVar "obj"
 | |
| // if event recording is on
 | |
| static void PostSynchEvent(void *obj, int ev) {
 | |
|   SynchEvent *e = GetSynchEvent(obj);
 | |
|   // logging is on if event recording is on and either there's no event struct,
 | |
|   // or it explicitly says to log
 | |
|   if (e == nullptr || e->log) {
 | |
|     void *pcs[40];
 | |
|     int n = absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 1);
 | |
|     // A buffer with enough space for the ASCII for all the PCs, even on a
 | |
|     // 64-bit machine.
 | |
|     char buffer[ABSL_ARRAYSIZE(pcs) * 24];
 | |
|     int pos = snprintf(buffer, sizeof (buffer), " @");
 | |
|     for (int i = 0; i != n; i++) {
 | |
|       pos += snprintf(&buffer[pos], sizeof (buffer) - pos, " %p", pcs[i]);
 | |
|     }
 | |
|     ABSL_RAW_LOG(INFO, "%s%p %s %s", event_properties[ev].msg, obj,
 | |
|                  (e == nullptr ? "" : e->name), buffer);
 | |
|   }
 | |
|   const int flags = event_properties[ev].flags;
 | |
|   if ((flags & SYNCH_F_LCK) != 0 && e != nullptr && e->invariant != nullptr) {
 | |
|     // Calling the invariant as is causes problems under ThreadSanitizer.
 | |
|     // We are currently inside of Mutex Lock/Unlock and are ignoring all
 | |
|     // memory accesses and synchronization. If the invariant transitively
 | |
|     // synchronizes something else and we ignore the synchronization, we will
 | |
|     // get false positive race reports later.
 | |
|     // Reuse EvalConditionAnnotated to properly call into user code.
 | |
|     struct local {
 | |
|       static bool pred(SynchEvent *ev) {
 | |
|         (*ev->invariant)(ev->arg);
 | |
|         return false;
 | |
|       }
 | |
|     };
 | |
|     Condition cond(&local::pred, e);
 | |
|     Mutex *mu = static_cast<Mutex *>(obj);
 | |
|     const bool locking = (flags & SYNCH_F_UNLOCK) == 0;
 | |
|     const bool trylock = (flags & SYNCH_F_TRY) != 0;
 | |
|     const bool read_lock = (flags & SYNCH_F_R) != 0;
 | |
|     EvalConditionAnnotated(&cond, mu, locking, trylock, read_lock);
 | |
|   }
 | |
|   UnrefSynchEvent(e);
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------
 | |
| 
 | |
| // The SynchWaitParams struct encapsulates the way in which a thread is waiting:
 | |
| // whether it has a timeout, the condition, exclusive/shared, and whether a
 | |
| // condition variable wait has an associated Mutex (as opposed to another
 | |
| // type of lock).  It also points to the PerThreadSynch struct of its thread.
 | |
| // cv_word tells Enqueue() to enqueue on a CondVar using CondVarEnqueue().
 | |
| //
 | |
| // This structure is held on the stack rather than directly in
 | |
| // PerThreadSynch because a thread can be waiting on multiple Mutexes if,
 | |
| // while waiting on one Mutex, the implementation calls a client callback
 | |
| // (such as a Condition function) that acquires another Mutex. We don't
 | |
| // strictly need to allow this, but programmers become confused if we do not
 | |
| // allow them to use functions such a LOG() within Condition functions.  The
 | |
| // PerThreadSynch struct points at the most recent SynchWaitParams struct when
 | |
| // the thread is on a Mutex's waiter queue.
 | |
| struct SynchWaitParams {
 | |
|   SynchWaitParams(Mutex::MuHow how_arg, const Condition *cond_arg,
 | |
|                   KernelTimeout timeout_arg, Mutex *cvmu_arg,
 | |
|                   PerThreadSynch *thread_arg,
 | |
|                   std::atomic<intptr_t> *cv_word_arg)
 | |
|       : how(how_arg),
 | |
|         cond(cond_arg),
 | |
|         timeout(timeout_arg),
 | |
|         cvmu(cvmu_arg),
 | |
|         thread(thread_arg),
 | |
|         cv_word(cv_word_arg),
 | |
|         contention_start_cycles(base_internal::CycleClock::Now()) {}
 | |
| 
 | |
|   const Mutex::MuHow how;  // How this thread needs to wait.
 | |
|   const Condition *cond;  // The condition that this thread is waiting for.
 | |
|                           // In Mutex, this field is set to zero if a timeout
 | |
|                           // expires.
 | |
|   KernelTimeout timeout;  // timeout expiry---absolute time
 | |
|                           // In Mutex, this field is set to zero if a timeout
 | |
|                           // expires.
 | |
|   Mutex *const cvmu;      // used for transfer from cond var to mutex
 | |
|   PerThreadSynch *const thread;  // thread that is waiting
 | |
| 
 | |
|   // If not null, thread should be enqueued on the CondVar whose state
 | |
|   // word is cv_word instead of queueing normally on the Mutex.
 | |
|   std::atomic<intptr_t> *cv_word;
 | |
| 
 | |
|   int64_t contention_start_cycles;  // Time (in cycles) when this thread started
 | |
|                                   // to contend for the mutex.
 | |
| };
 | |
| 
 | |
| struct SynchLocksHeld {
 | |
|   int n;              // number of valid entries in locks[]
 | |
|   bool overflow;      // true iff we overflowed the array at some point
 | |
|   struct {
 | |
|     Mutex *mu;        // lock acquired
 | |
|     int32_t count;      // times acquired
 | |
|     GraphId id;       // deadlock_graph id of acquired lock
 | |
|   } locks[40];
 | |
|   // If a thread overfills the array during deadlock detection, we
 | |
|   // continue, discarding information as needed.  If no overflow has
 | |
|   // taken place, we can provide more error checking, such as
 | |
|   // detecting when a thread releases a lock it does not hold.
 | |
| };
 | |
| 
 | |
| // A sentinel value in lists that is not 0.
 | |
| // A 0 value is used to mean "not on a list".
 | |
| static PerThreadSynch *const kPerThreadSynchNull =
 | |
|   reinterpret_cast<PerThreadSynch *>(1);
 | |
| 
 | |
| static SynchLocksHeld *LocksHeldAlloc() {
 | |
|   SynchLocksHeld *ret = reinterpret_cast<SynchLocksHeld *>(
 | |
|       base_internal::LowLevelAlloc::Alloc(sizeof(SynchLocksHeld)));
 | |
|   ret->n = 0;
 | |
|   ret->overflow = false;
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| // Return the PerThreadSynch-struct for this thread.
 | |
| static PerThreadSynch *Synch_GetPerThread() {
 | |
|   ThreadIdentity *identity = GetOrCreateCurrentThreadIdentity();
 | |
|   return &identity->per_thread_synch;
 | |
| }
 | |
| 
 | |
| static PerThreadSynch *Synch_GetPerThreadAnnotated(Mutex *mu) {
 | |
|   if (mu) {
 | |
|     ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
 | |
|   }
 | |
|   PerThreadSynch *w = Synch_GetPerThread();
 | |
|   if (mu) {
 | |
|     ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
 | |
|   }
 | |
|   return w;
 | |
| }
 | |
| 
 | |
| static SynchLocksHeld *Synch_GetAllLocks() {
 | |
|   PerThreadSynch *s = Synch_GetPerThread();
 | |
|   if (s->all_locks == nullptr) {
 | |
|     s->all_locks = LocksHeldAlloc();  // Freed by ReclaimThreadIdentity.
 | |
|   }
 | |
|   return s->all_locks;
 | |
| }
 | |
| 
 | |
| // Post on "w"'s associated PerThreadSem.
 | |
| inline void Mutex::IncrementSynchSem(Mutex *mu, PerThreadSynch *w) {
 | |
|   if (mu) {
 | |
|     ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
 | |
|   }
 | |
|   PerThreadSem::Post(w->thread_identity());
 | |
|   if (mu) {
 | |
|     ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Wait on "w"'s associated PerThreadSem; returns false if timeout expired.
 | |
| bool Mutex::DecrementSynchSem(Mutex *mu, PerThreadSynch *w, KernelTimeout t) {
 | |
|   if (mu) {
 | |
|     ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
 | |
|   }
 | |
|   assert(w == Synch_GetPerThread());
 | |
|   static_cast<void>(w);
 | |
|   bool res = PerThreadSem::Wait(t);
 | |
|   if (mu) {
 | |
|     ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
 | |
|   }
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| // We're in a fatal signal handler that hopes to use Mutex and to get
 | |
| // lucky by not deadlocking.  We try to improve its chances of success
 | |
| // by effectively disabling some of the consistency checks.  This will
 | |
| // prevent certain ABSL_RAW_CHECK() statements from being triggered when
 | |
| // re-rentry is detected.  The ABSL_RAW_CHECK() statements are those in the
 | |
| // Mutex code checking that the "waitp" field has not been reused.
 | |
| void Mutex::InternalAttemptToUseMutexInFatalSignalHandler() {
 | |
|   // Fix the per-thread state only if it exists.
 | |
|   ThreadIdentity *identity = CurrentThreadIdentityIfPresent();
 | |
|   if (identity != nullptr) {
 | |
|     identity->per_thread_synch.suppress_fatal_errors = true;
 | |
|   }
 | |
|   // Don't do deadlock detection when we are already failing.
 | |
|   synch_deadlock_detection.store(OnDeadlockCycle::kIgnore,
 | |
|                                  std::memory_order_release);
 | |
| }
 | |
| 
 | |
| // --------------------------time support
 | |
| 
 | |
| // Return the current time plus the timeout.  Use the same clock as
 | |
| // PerThreadSem::Wait() for consistency.  Unfortunately, we don't have
 | |
| // such a choice when a deadline is given directly.
 | |
| static absl::Time DeadlineFromTimeout(absl::Duration timeout) {
 | |
| #ifndef _WIN32
 | |
|   struct timeval tv;
 | |
|   gettimeofday(&tv, nullptr);
 | |
|   return absl::TimeFromTimeval(tv) + timeout;
 | |
| #else
 | |
|   return absl::Now() + timeout;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // --------------------------Mutexes
 | |
| 
 | |
| // In the layout below, the msb of the bottom byte is currently unused.  Also,
 | |
| // the following constraints were considered in choosing the layout:
 | |
| //  o Both the debug allocator's "uninitialized" and "freed" patterns (0xab and
 | |
| //    0xcd) are illegal: reader and writer lock both held.
 | |
| //  o kMuWriter and kMuEvent should exceed kMuDesig and kMuWait, to enable the
 | |
| //    bit-twiddling trick in Mutex::Unlock().
 | |
| //  o kMuWriter / kMuReader == kMuWrWait / kMuWait,
 | |
| //    to enable the bit-twiddling trick in CheckForMutexCorruption().
 | |
| static const intptr_t kMuReader      = 0x0001L;  // a reader holds the lock
 | |
| static const intptr_t kMuDesig       = 0x0002L;  // there's a designated waker
 | |
| static const intptr_t kMuWait        = 0x0004L;  // threads are waiting
 | |
| static const intptr_t kMuWriter      = 0x0008L;  // a writer holds the lock
 | |
| static const intptr_t kMuEvent       = 0x0010L;  // record this mutex's events
 | |
| // INVARIANT1:  there's a thread that was blocked on the mutex, is
 | |
| // no longer, yet has not yet acquired the mutex.  If there's a
 | |
| // designated waker, all threads can avoid taking the slow path in
 | |
| // unlock because the designated waker will subsequently acquire
 | |
| // the lock and wake someone.  To maintain INVARIANT1 the bit is
 | |
| // set when a thread is unblocked(INV1a), and threads that were
 | |
| // unblocked reset the bit when they either acquire or re-block
 | |
| // (INV1b).
 | |
| static const intptr_t kMuWrWait      = 0x0020L;  // runnable writer is waiting
 | |
|                                                  // for a reader
 | |
| static const intptr_t kMuSpin        = 0x0040L;  // spinlock protects wait list
 | |
| static const intptr_t kMuLow         = 0x00ffL;  // mask all mutex bits
 | |
| static const intptr_t kMuHigh        = ~kMuLow;  // mask pointer/reader count
 | |
| 
 | |
| // Hack to make constant values available to gdb pretty printer
 | |
| enum {
 | |
|   kGdbMuSpin = kMuSpin,
 | |
|   kGdbMuEvent = kMuEvent,
 | |
|   kGdbMuWait = kMuWait,
 | |
|   kGdbMuWriter = kMuWriter,
 | |
|   kGdbMuDesig = kMuDesig,
 | |
|   kGdbMuWrWait = kMuWrWait,
 | |
|   kGdbMuReader = kMuReader,
 | |
|   kGdbMuLow = kMuLow,
 | |
| };
 | |
| 
 | |
| // kMuWrWait implies kMuWait.
 | |
| // kMuReader and kMuWriter are mutually exclusive.
 | |
| // If kMuReader is zero, there are no readers.
 | |
| // Otherwise, if kMuWait is zero, the high order bits contain a count of the
 | |
| // number of readers.  Otherwise, the reader count is held in
 | |
| // PerThreadSynch::readers of the most recently queued waiter, again in the
 | |
| // bits above kMuLow.
 | |
| static const intptr_t kMuOne = 0x0100;  // a count of one reader
 | |
| 
 | |
| // flags passed to Enqueue and LockSlow{,WithTimeout,Loop}
 | |
| static const int kMuHasBlocked = 0x01;  // already blocked (MUST == 1)
 | |
| static const int kMuIsCond = 0x02;      // conditional waiter (CV or Condition)
 | |
| 
 | |
| static_assert(PerThreadSynch::kAlignment > kMuLow,
 | |
|               "PerThreadSynch::kAlignment must be greater than kMuLow");
 | |
| 
 | |
| // This struct contains various bitmasks to be used in
 | |
| // acquiring and releasing a mutex in a particular mode.
 | |
| struct MuHowS {
 | |
|   // if all the bits in fast_need_zero are zero, the lock can be acquired by
 | |
|   // adding fast_add and oring fast_or.  The bit kMuDesig should be reset iff
 | |
|   // this is the designated waker.
 | |
|   intptr_t fast_need_zero;
 | |
|   intptr_t fast_or;
 | |
|   intptr_t fast_add;
 | |
| 
 | |
|   intptr_t slow_need_zero;  // fast_need_zero with events (e.g. logging)
 | |
| 
 | |
|   intptr_t slow_inc_need_zero;  // if all the bits in slow_inc_need_zero are
 | |
|                                 // zero a reader can acquire a read share by
 | |
|                                 // setting the reader bit and incrementing
 | |
|                                 // the reader count (in last waiter since
 | |
|                                 // we're now slow-path).  kMuWrWait be may
 | |
|                                 // be ignored if we already waited once.
 | |
| };
 | |
| 
 | |
| static const MuHowS kSharedS = {
 | |
|     // shared or read lock
 | |
|     kMuWriter | kMuWait | kMuEvent,   // fast_need_zero
 | |
|     kMuReader,                        // fast_or
 | |
|     kMuOne,                           // fast_add
 | |
|     kMuWriter | kMuWait,              // slow_need_zero
 | |
|     kMuSpin | kMuWriter | kMuWrWait,  // slow_inc_need_zero
 | |
| };
 | |
| static const MuHowS kExclusiveS = {
 | |
|     // exclusive or write lock
 | |
|     kMuWriter | kMuReader | kMuEvent,  // fast_need_zero
 | |
|     kMuWriter,                         // fast_or
 | |
|     0,                                 // fast_add
 | |
|     kMuWriter | kMuReader,             // slow_need_zero
 | |
|     ~static_cast<intptr_t>(0),         // slow_inc_need_zero
 | |
| };
 | |
| static const Mutex::MuHow kShared = &kSharedS;        // shared lock
 | |
| static const Mutex::MuHow kExclusive = &kExclusiveS;  // exclusive lock
 | |
| 
 | |
| #ifdef NDEBUG
 | |
| static constexpr bool kDebugMode = false;
 | |
| #else
 | |
| static constexpr bool kDebugMode = true;
 | |
| #endif
 | |
| 
 | |
| #ifdef THREAD_SANITIZER
 | |
| static unsigned TsanFlags(Mutex::MuHow how) {
 | |
|   return how == kShared ? __tsan_mutex_read_lock : 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static bool DebugOnlyIsExiting() {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Mutex::~Mutex() {
 | |
|   intptr_t v = mu_.load(std::memory_order_relaxed);
 | |
|   if ((v & kMuEvent) != 0 && !DebugOnlyIsExiting()) {
 | |
|     ForgetSynchEvent(&this->mu_, kMuEvent, kMuSpin);
 | |
|   }
 | |
|   if (kDebugMode) {
 | |
|     this->ForgetDeadlockInfo();
 | |
|   }
 | |
|   ABSL_TSAN_MUTEX_DESTROY(this, __tsan_mutex_not_static);
 | |
| }
 | |
| 
 | |
| void Mutex::EnableDebugLog(const char *name) {
 | |
|   SynchEvent *e = EnsureSynchEvent(&this->mu_, name, kMuEvent, kMuSpin);
 | |
|   e->log = true;
 | |
|   UnrefSynchEvent(e);
 | |
| }
 | |
| 
 | |
| void EnableMutexInvariantDebugging(bool enabled) {
 | |
|   synch_check_invariants.store(enabled, std::memory_order_release);
 | |
| }
 | |
| 
 | |
| void Mutex::EnableInvariantDebugging(void (*invariant)(void *),
 | |
|                                      void *arg) {
 | |
|   if (synch_check_invariants.load(std::memory_order_acquire) &&
 | |
|       invariant != nullptr) {
 | |
|     SynchEvent *e = EnsureSynchEvent(&this->mu_, nullptr, kMuEvent, kMuSpin);
 | |
|     e->invariant = invariant;
 | |
|     e->arg = arg;
 | |
|     UnrefSynchEvent(e);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode) {
 | |
|   synch_deadlock_detection.store(mode, std::memory_order_release);
 | |
| }
 | |
| 
 | |
| // Return true iff threads x and y are waiting on the same condition for the
 | |
| // same type of lock.  Requires that x and y be waiting on the same Mutex
 | |
| // queue.
 | |
| static bool MuSameCondition(PerThreadSynch *x, PerThreadSynch *y) {
 | |
|   return x->waitp->how == y->waitp->how &&
 | |
|          Condition::GuaranteedEqual(x->waitp->cond, y->waitp->cond);
 | |
| }
 | |
| 
 | |
| // Given the contents of a mutex word containing a PerThreadSynch pointer,
 | |
| // return the pointer.
 | |
| static inline PerThreadSynch *GetPerThreadSynch(intptr_t v) {
 | |
|   return reinterpret_cast<PerThreadSynch *>(v & kMuHigh);
 | |
| }
 | |
| 
 | |
| // The next several routines maintain the per-thread next and skip fields
 | |
| // used in the Mutex waiter queue.
 | |
| // The queue is a circular singly-linked list, of which the "head" is the
 | |
| // last element, and head->next if the first element.
 | |
| // The skip field has the invariant:
 | |
| //   For thread x, x->skip is one of:
 | |
| //     - invalid (iff x is not in a Mutex wait queue),
 | |
| //     - null, or
 | |
| //     - a pointer to a distinct thread waiting later in the same Mutex queue
 | |
| //       such that all threads in [x, x->skip] have the same condition and
 | |
| //       lock type (MuSameCondition() is true for all pairs in [x, x->skip]).
 | |
| // In addition, if x->skip is  valid, (x->may_skip || x->skip == null)
 | |
| //
 | |
| // By the spec of MuSameCondition(), it is not necessary when removing the
 | |
| // first runnable thread y from the front a Mutex queue to adjust the skip
 | |
| // field of another thread x because if x->skip==y, x->skip must (have) become
 | |
| // invalid before y is removed.  The function TryRemove can remove a specified
 | |
| // thread from an arbitrary position in the queue whether runnable or not, so
 | |
| // it fixes up skip fields that would otherwise be left dangling.
 | |
| // The statement
 | |
| //     if (x->may_skip && MuSameCondition(x, x->next)) { x->skip = x->next; }
 | |
| // maintains the invariant provided x is not the last waiter in a Mutex queue
 | |
| // The statement
 | |
| //          if (x->skip != null) { x->skip = x->skip->skip; }
 | |
| // maintains the invariant.
 | |
| 
 | |
| // Returns the last thread y in a mutex waiter queue such that all threads in
 | |
| // [x, y] inclusive share the same condition.  Sets skip fields of some threads
 | |
| // in that range to optimize future evaluation of Skip() on x values in
 | |
| // the range.  Requires thread x is in a mutex waiter queue.
 | |
| // The locking is unusual.  Skip() is called under these conditions:
 | |
| //   - spinlock is held in call from Enqueue(), with maybe_unlocking == false
 | |
| //   - Mutex is held in call from UnlockSlow() by last unlocker, with
 | |
| //     maybe_unlocking == true
 | |
| //   - both Mutex and spinlock are held in call from DequeueAllWakeable() (from
 | |
| //     UnlockSlow()) and TryRemove()
 | |
| // These cases are mutually exclusive, so Skip() never runs concurrently
 | |
| // with itself on the same Mutex.   The skip chain is used in these other places
 | |
| // that cannot occur concurrently:
 | |
| //   - FixSkip() (from TryRemove()) - spinlock and Mutex are held)
 | |
| //   - Dequeue() (with spinlock and Mutex held)
 | |
| //   - UnlockSlow() (with spinlock and Mutex held)
 | |
| // A more complex case is Enqueue()
 | |
| //   - Enqueue() (with spinlock held and maybe_unlocking == false)
 | |
| //               This is the first case in which Skip is called, above.
 | |
| //   - Enqueue() (without spinlock held; but queue is empty and being freshly
 | |
| //                formed)
 | |
| //   - Enqueue() (with spinlock held and maybe_unlocking == true)
 | |
| // The first case has mutual exclusion, and the second isolation through
 | |
| // working on an otherwise unreachable data structure.
 | |
| // In the last case, Enqueue() is required to change no skip/next pointers
 | |
| // except those in the added node and the former "head" node.  This implies
 | |
| // that the new node is added after head, and so must be the new head or the
 | |
| // new front of the queue.
 | |
| static PerThreadSynch *Skip(PerThreadSynch *x) {
 | |
|   PerThreadSynch *x0 = nullptr;
 | |
|   PerThreadSynch *x1 = x;
 | |
|   PerThreadSynch *x2 = x->skip;
 | |
|   if (x2 != nullptr) {
 | |
|     // Each iteration attempts to advance sequence (x0,x1,x2) to next sequence
 | |
|     // such that   x1 == x0->skip && x2 == x1->skip
 | |
|     while ((x0 = x1, x1 = x2, x2 = x2->skip) != nullptr) {
 | |
|       x0->skip = x2;      // short-circuit skip from x0 to x2
 | |
|     }
 | |
|     x->skip = x1;         // short-circuit skip from x to result
 | |
|   }
 | |
|   return x1;
 | |
| }
 | |
| 
 | |
| // "ancestor" appears before "to_be_removed" in the same Mutex waiter queue.
 | |
| // The latter is going to be removed out of order, because of a timeout.
 | |
| // Check whether "ancestor" has a skip field pointing to "to_be_removed",
 | |
| // and fix it if it does.
 | |
| static void FixSkip(PerThreadSynch *ancestor, PerThreadSynch *to_be_removed) {
 | |
|   if (ancestor->skip == to_be_removed) {  // ancestor->skip left dangling
 | |
|     if (to_be_removed->skip != nullptr) {
 | |
|       ancestor->skip = to_be_removed->skip;  // can skip past to_be_removed
 | |
|     } else if (ancestor->next != to_be_removed) {  // they are not adjacent
 | |
|       ancestor->skip = ancestor->next;             // can skip one past ancestor
 | |
|     } else {
 | |
|       ancestor->skip = nullptr;  // can't skip at all
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void CondVarEnqueue(SynchWaitParams *waitp);
 | |
| 
 | |
| // Enqueue thread "waitp->thread" on a waiter queue.
 | |
| // Called with mutex spinlock held if head != nullptr
 | |
| // If head==nullptr and waitp->cv_word==nullptr, then Enqueue() is
 | |
| // idempotent; it alters no state associated with the existing (empty)
 | |
| // queue.
 | |
| //
 | |
| // If waitp->cv_word == nullptr, queue the thread at either the front or
 | |
| // the end (according to its priority) of the circular mutex waiter queue whose
 | |
| // head is "head", and return the new head.  mu is the previous mutex state,
 | |
| // which contains the reader count (perhaps adjusted for the operation in
 | |
| // progress) if the list was empty and a read lock held, and the holder hint if
 | |
| // the list was empty and a write lock held.  (flags & kMuIsCond) indicates
 | |
| // whether this thread was transferred from a CondVar or is waiting for a
 | |
| // non-trivial condition.  In this case, Enqueue() never returns nullptr
 | |
| //
 | |
| // If waitp->cv_word != nullptr, CondVarEnqueue() is called, and "head" is
 | |
| // returned. This mechanism is used by CondVar to queue a thread on the
 | |
| // condition variable queue instead of the mutex queue in implementing Wait().
 | |
| // In this case, Enqueue() can return nullptr (if head==nullptr).
 | |
| static PerThreadSynch *Enqueue(PerThreadSynch *head,
 | |
|                                SynchWaitParams *waitp, intptr_t mu, int flags) {
 | |
|   // If we have been given a cv_word, call CondVarEnqueue() and return
 | |
|   // the previous head of the Mutex waiter queue.
 | |
|   if (waitp->cv_word != nullptr) {
 | |
|     CondVarEnqueue(waitp);
 | |
|     return head;
 | |
|   }
 | |
| 
 | |
|   PerThreadSynch *s = waitp->thread;
 | |
|   ABSL_RAW_CHECK(
 | |
|       s->waitp == nullptr ||    // normal case
 | |
|           s->waitp == waitp ||  // Fer()---transfer from condition variable
 | |
|           s->suppress_fatal_errors,
 | |
|       "detected illegal recursion into Mutex code");
 | |
|   s->waitp = waitp;
 | |
|   s->skip = nullptr;             // maintain skip invariant (see above)
 | |
|   s->may_skip = true;            // always true on entering queue
 | |
|   s->wake = false;               // not being woken
 | |
|   s->cond_waiter = ((flags & kMuIsCond) != 0);
 | |
|   if (head == nullptr) {         // s is the only waiter
 | |
|     s->next = s;                 // it's the only entry in the cycle
 | |
|     s->readers = mu;             // reader count is from mu word
 | |
|     s->maybe_unlocking = false;  // no one is searching an empty list
 | |
|     head = s;                    // s is new head
 | |
|   } else {
 | |
|     PerThreadSynch *enqueue_after = nullptr;  // we'll put s after this element
 | |
| #ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM
 | |
|     int64_t now_cycles = base_internal::CycleClock::Now();
 | |
|     if (s->next_priority_read_cycles < now_cycles) {
 | |
|       // Every so often, update our idea of the thread's priority.
 | |
|       // pthread_getschedparam() is 5% of the block/wakeup time;
 | |
|       // base_internal::CycleClock::Now() is 0.5%.
 | |
|       int policy;
 | |
|       struct sched_param param;
 | |
|       const int err = pthread_getschedparam(pthread_self(), &policy, ¶m);
 | |
|       if (err != 0) {
 | |
|         ABSL_RAW_LOG(ERROR, "pthread_getschedparam failed: %d", err);
 | |
|       } else {
 | |
|         s->priority = param.sched_priority;
 | |
|         s->next_priority_read_cycles =
 | |
|             now_cycles +
 | |
|             static_cast<int64_t>(base_internal::CycleClock::Frequency());
 | |
|       }
 | |
|     }
 | |
|     if (s->priority > head->priority) {  // s's priority is above head's
 | |
|       // try to put s in priority-fifo order, or failing that at the front.
 | |
|       if (!head->maybe_unlocking) {
 | |
|         // No unlocker can be scanning the queue, so we can insert between
 | |
|         // skip-chains, and within a skip-chain if it has the same condition as
 | |
|         // s.  We insert in priority-fifo order, examining the end of every
 | |
|         // skip-chain, plus every element with the same condition as s.
 | |
|         PerThreadSynch *advance_to = head;    // next value of enqueue_after
 | |
|         PerThreadSynch *cur;                  // successor of enqueue_after
 | |
|         do {
 | |
|           enqueue_after = advance_to;
 | |
|           cur = enqueue_after->next;  // this advance ensures progress
 | |
|           advance_to = Skip(cur);   // normally, advance to end of skip chain
 | |
|                                     // (side-effect: optimizes skip chain)
 | |
|           if (advance_to != cur && s->priority > advance_to->priority &&
 | |
|               MuSameCondition(s, cur)) {
 | |
|             // but this skip chain is not a singleton, s has higher priority
 | |
|             // than its tail and has the same condition as the chain,
 | |
|             // so we can insert within the skip-chain
 | |
|             advance_to = cur;         // advance by just one
 | |
|           }
 | |
|         } while (s->priority <= advance_to->priority);
 | |
|               // termination guaranteed because s->priority > head->priority
 | |
|               // and head is the end of a skip chain
 | |
|       } else if (waitp->how == kExclusive &&
 | |
|                  Condition::GuaranteedEqual(waitp->cond, nullptr)) {
 | |
|         // An unlocker could be scanning the queue, but we know it will recheck
 | |
|         // the queue front for writers that have no condition, which is what s
 | |
|         // is, so an insert at front is safe.
 | |
|         enqueue_after = head;       // add after head, at front
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|     if (enqueue_after != nullptr) {
 | |
|       s->next = enqueue_after->next;
 | |
|       enqueue_after->next = s;
 | |
| 
 | |
|       // enqueue_after can be: head, Skip(...), or cur.
 | |
|       // The first two imply enqueue_after->skip == nullptr, and
 | |
|       // the last is used only if MuSameCondition(s, cur).
 | |
|       // We require this because clearing enqueue_after->skip
 | |
|       // is impossible; enqueue_after's predecessors might also
 | |
|       // incorrectly skip over s if we were to allow other
 | |
|       // insertion points.
 | |
|       ABSL_RAW_CHECK(
 | |
|           enqueue_after->skip == nullptr || MuSameCondition(enqueue_after, s),
 | |
|           "Mutex Enqueue failure");
 | |
| 
 | |
|       if (enqueue_after != head && enqueue_after->may_skip &&
 | |
|           MuSameCondition(enqueue_after, enqueue_after->next)) {
 | |
|         // enqueue_after can skip to its new successor, s
 | |
|         enqueue_after->skip = enqueue_after->next;
 | |
|       }
 | |
|       if (MuSameCondition(s, s->next)) {  // s->may_skip is known to be true
 | |
|         s->skip = s->next;                // s may skip to its successor
 | |
|       }
 | |
|     } else {   // enqueue not done any other way, so
 | |
|                // we're inserting s at the back
 | |
|       // s will become new head; copy data from head into it
 | |
|       s->next = head->next;        // add s after head
 | |
|       head->next = s;
 | |
|       s->readers = head->readers;  // reader count is from previous head
 | |
|       s->maybe_unlocking = head->maybe_unlocking;  // same for unlock hint
 | |
|       if (head->may_skip && MuSameCondition(head, s)) {
 | |
|         // head now has successor; may skip
 | |
|         head->skip = s;
 | |
|       }
 | |
|       head = s;  // s is new head
 | |
|     }
 | |
|   }
 | |
|   s->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed);
 | |
|   return head;
 | |
| }
 | |
| 
 | |
| // Dequeue the successor pw->next of thread pw from the Mutex waiter queue
 | |
| // whose last element is head.  The new head element is returned, or null
 | |
| // if the list is made empty.
 | |
| // Dequeue is called with both spinlock and Mutex held.
 | |
| static PerThreadSynch *Dequeue(PerThreadSynch *head, PerThreadSynch *pw) {
 | |
|   PerThreadSynch *w = pw->next;
 | |
|   pw->next = w->next;         // snip w out of list
 | |
|   if (head == w) {            // we removed the head
 | |
|     head = (pw == w) ? nullptr : pw;  // either emptied list, or pw is new head
 | |
|   } else if (pw != head && MuSameCondition(pw, pw->next)) {
 | |
|     // pw can skip to its new successor
 | |
|     if (pw->next->skip !=
 | |
|         nullptr) {  // either skip to its successors skip target
 | |
|       pw->skip = pw->next->skip;
 | |
|     } else {                   // or to pw's successor
 | |
|       pw->skip = pw->next;
 | |
|     }
 | |
|   }
 | |
|   return head;
 | |
| }
 | |
| 
 | |
| // Traverse the elements [ pw->next, h] of the circular list whose last element
 | |
| // is head.
 | |
| // Remove all elements with wake==true and place them in the
 | |
| // singly-linked list wake_list in the order found.   Assumes that
 | |
| // there is only one such element if the element has how == kExclusive.
 | |
| // Return the new head.
 | |
| static PerThreadSynch *DequeueAllWakeable(PerThreadSynch *head,
 | |
|                                           PerThreadSynch *pw,
 | |
|                                           PerThreadSynch **wake_tail) {
 | |
|   PerThreadSynch *orig_h = head;
 | |
|   PerThreadSynch *w = pw->next;
 | |
|   bool skipped = false;
 | |
|   do {
 | |
|     if (w->wake) {                    // remove this element
 | |
|       ABSL_RAW_CHECK(pw->skip == nullptr, "bad skip in DequeueAllWakeable");
 | |
|       // we're removing pw's successor so either pw->skip is zero or we should
 | |
|       // already have removed pw since if pw->skip!=null, pw has the same
 | |
|       // condition as w.
 | |
|       head = Dequeue(head, pw);
 | |
|       w->next = *wake_tail;           // keep list terminated
 | |
|       *wake_tail = w;                 // add w to wake_list;
 | |
|       wake_tail = &w->next;           // next addition to end
 | |
|       if (w->waitp->how == kExclusive) {  // wake at most 1 writer
 | |
|         break;
 | |
|       }
 | |
|     } else {                // not waking this one; skip
 | |
|       pw = Skip(w);       // skip as much as possible
 | |
|       skipped = true;
 | |
|     }
 | |
|     w = pw->next;
 | |
|     // We want to stop processing after we've considered the original head,
 | |
|     // orig_h.  We can't test for w==orig_h in the loop because w may skip over
 | |
|     // it; we are guaranteed only that w's predecessor will not skip over
 | |
|     // orig_h.  When we've considered orig_h, either we've processed it and
 | |
|     // removed it (so orig_h != head), or we considered it and skipped it (so
 | |
|     // skipped==true && pw == head because skipping from head always skips by
 | |
|     // just one, leaving pw pointing at head).  So we want to
 | |
|     // continue the loop with the negation of that expression.
 | |
|   } while (orig_h == head && (pw != head || !skipped));
 | |
|   return head;
 | |
| }
 | |
| 
 | |
| // Try to remove thread s from the list of waiters on this mutex.
 | |
| // Does nothing if s is not on the waiter list.
 | |
| void Mutex::TryRemove(PerThreadSynch *s) {
 | |
|   intptr_t v = mu_.load(std::memory_order_relaxed);
 | |
|   // acquire spinlock & lock
 | |
|   if ((v & (kMuWait | kMuSpin | kMuWriter | kMuReader)) == kMuWait &&
 | |
|       mu_.compare_exchange_strong(v, v | kMuSpin | kMuWriter,
 | |
|                                   std::memory_order_acquire,
 | |
|                                   std::memory_order_relaxed)) {
 | |
|     PerThreadSynch *h = GetPerThreadSynch(v);
 | |
|     if (h != nullptr) {
 | |
|       PerThreadSynch *pw = h;   // pw is w's predecessor
 | |
|       PerThreadSynch *w;
 | |
|       if ((w = pw->next) != s) {  // search for thread,
 | |
|         do {                      // processing at least one element
 | |
|           if (!MuSameCondition(s, w)) {  // seeking different condition
 | |
|             pw = Skip(w);                // so skip all that won't match
 | |
|             // we don't have to worry about dangling skip fields
 | |
|             // in the threads we skipped; none can point to s
 | |
|             // because their condition differs from s
 | |
|           } else {          // seeking same condition
 | |
|             FixSkip(w, s);  // fix up any skip pointer from w to s
 | |
|             pw = w;
 | |
|           }
 | |
|           // don't search further if we found the thread, or we're about to
 | |
|           // process the first thread again.
 | |
|         } while ((w = pw->next) != s && pw != h);
 | |
|       }
 | |
|       if (w == s) {                 // found thread; remove it
 | |
|         // pw->skip may be non-zero here; the loop above ensured that
 | |
|         // no ancestor of s can skip to s, so removal is safe anyway.
 | |
|         h = Dequeue(h, pw);
 | |
|         s->next = nullptr;
 | |
|         s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
 | |
|       }
 | |
|     }
 | |
|     intptr_t nv;
 | |
|     do {                        // release spinlock and lock
 | |
|       v = mu_.load(std::memory_order_relaxed);
 | |
|       nv = v & (kMuDesig | kMuEvent);
 | |
|       if (h != nullptr) {
 | |
|         nv |= kMuWait | reinterpret_cast<intptr_t>(h);
 | |
|         h->readers = 0;            // we hold writer lock
 | |
|         h->maybe_unlocking = false;  // finished unlocking
 | |
|       }
 | |
|     } while (!mu_.compare_exchange_weak(v, nv,
 | |
|                                         std::memory_order_release,
 | |
|                                         std::memory_order_relaxed));
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Wait until thread "s", which must be the current thread, is removed from the
 | |
| // this mutex's waiter queue.  If "s->waitp->timeout" has a timeout, wake up
 | |
| // if the wait extends past the absolute time specified, even if "s" is still
 | |
| // on the mutex queue.  In this case, remove "s" from the queue and return
 | |
| // true, otherwise return false.
 | |
| ABSL_XRAY_LOG_ARGS(1) void Mutex::Block(PerThreadSynch *s) {
 | |
|   while (s->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) {
 | |
|     if (!DecrementSynchSem(this, s, s->waitp->timeout)) {
 | |
|       // After a timeout, we go into a spin loop until we remove ourselves
 | |
|       // from the queue, or someone else removes us.  We can't be sure to be
 | |
|       // able to remove ourselves in a single lock acquisition because this
 | |
|       // mutex may be held, and the holder has the right to read the centre
 | |
|       // of the waiter queue without holding the spinlock.
 | |
|       this->TryRemove(s);
 | |
|       int c = 0;
 | |
|       while (s->next != nullptr) {
 | |
|         c = Delay(c, GENTLE);
 | |
|         this->TryRemove(s);
 | |
|       }
 | |
|       if (kDebugMode) {
 | |
|         // This ensures that we test the case that TryRemove() is called when s
 | |
|         // is not on the queue.
 | |
|         this->TryRemove(s);
 | |
|       }
 | |
|       s->waitp->timeout = KernelTimeout::Never();      // timeout is satisfied
 | |
|       s->waitp->cond = nullptr;  // condition no longer relevant for wakeups
 | |
|     }
 | |
|   }
 | |
|   ABSL_RAW_CHECK(s->waitp != nullptr || s->suppress_fatal_errors,
 | |
|                  "detected illegal recursion in Mutex code");
 | |
|   s->waitp = nullptr;
 | |
| }
 | |
| 
 | |
| // Wake thread w, and return the next thread in the list.
 | |
| PerThreadSynch *Mutex::Wakeup(PerThreadSynch *w) {
 | |
|   PerThreadSynch *next = w->next;
 | |
|   w->next = nullptr;
 | |
|   w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
 | |
|   IncrementSynchSem(this, w);
 | |
| 
 | |
|   return next;
 | |
| }
 | |
| 
 | |
| static GraphId GetGraphIdLocked(Mutex *mu)
 | |
|     ABSL_EXCLUSIVE_LOCKS_REQUIRED(deadlock_graph_mu) {
 | |
|   if (!deadlock_graph) {  // (re)create the deadlock graph.
 | |
|     deadlock_graph =
 | |
|         new (base_internal::LowLevelAlloc::Alloc(sizeof(*deadlock_graph)))
 | |
|             GraphCycles;
 | |
|   }
 | |
|   return deadlock_graph->GetId(mu);
 | |
| }
 | |
| 
 | |
| static GraphId GetGraphId(Mutex *mu) ABSL_LOCKS_EXCLUDED(deadlock_graph_mu) {
 | |
|   deadlock_graph_mu.Lock();
 | |
|   GraphId id = GetGraphIdLocked(mu);
 | |
|   deadlock_graph_mu.Unlock();
 | |
|   return id;
 | |
| }
 | |
| 
 | |
| // Record a lock acquisition.  This is used in debug mode for deadlock
 | |
| // detection.  The held_locks pointer points to the relevant data
 | |
| // structure for each case.
 | |
| static void LockEnter(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
 | |
|   int n = held_locks->n;
 | |
|   int i = 0;
 | |
|   while (i != n && held_locks->locks[i].id != id) {
 | |
|     i++;
 | |
|   }
 | |
|   if (i == n) {
 | |
|     if (n == ABSL_ARRAYSIZE(held_locks->locks)) {
 | |
|       held_locks->overflow = true;  // lost some data
 | |
|     } else {                        // we have room for lock
 | |
|       held_locks->locks[i].mu = mu;
 | |
|       held_locks->locks[i].count = 1;
 | |
|       held_locks->locks[i].id = id;
 | |
|       held_locks->n = n + 1;
 | |
|     }
 | |
|   } else {
 | |
|     held_locks->locks[i].count++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Record a lock release.  Each call to LockEnter(mu, id, x) should be
 | |
| // eventually followed by a call to LockLeave(mu, id, x) by the same thread.
 | |
| // It does not process the event if is not needed when deadlock detection is
 | |
| // disabled.
 | |
| static void LockLeave(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
 | |
|   int n = held_locks->n;
 | |
|   int i = 0;
 | |
|   while (i != n && held_locks->locks[i].id != id) {
 | |
|     i++;
 | |
|   }
 | |
|   if (i == n) {
 | |
|     if (!held_locks->overflow) {
 | |
|       // The deadlock id may have been reassigned after ForgetDeadlockInfo,
 | |
|       // but in that case mu should still be present.
 | |
|       i = 0;
 | |
|       while (i != n && held_locks->locks[i].mu != mu) {
 | |
|         i++;
 | |
|       }
 | |
|       if (i == n) {  // mu missing means releasing unheld lock
 | |
|         SynchEvent *mu_events = GetSynchEvent(mu);
 | |
|         ABSL_RAW_LOG(FATAL,
 | |
|                      "thread releasing lock it does not hold: %p %s; "
 | |
|                      ,
 | |
|                      static_cast<void *>(mu),
 | |
|                      mu_events == nullptr ? "" : mu_events->name);
 | |
|       }
 | |
|     }
 | |
|   } else if (held_locks->locks[i].count == 1) {
 | |
|     held_locks->n = n - 1;
 | |
|     held_locks->locks[i] = held_locks->locks[n - 1];
 | |
|     held_locks->locks[n - 1].id = InvalidGraphId();
 | |
|     held_locks->locks[n - 1].mu =
 | |
|         nullptr;  // clear mu to please the leak detector.
 | |
|   } else {
 | |
|     assert(held_locks->locks[i].count > 0);
 | |
|     held_locks->locks[i].count--;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Call LockEnter() if in debug mode and deadlock detection is enabled.
 | |
| static inline void DebugOnlyLockEnter(Mutex *mu) {
 | |
|   if (kDebugMode) {
 | |
|     if (synch_deadlock_detection.load(std::memory_order_acquire) !=
 | |
|         OnDeadlockCycle::kIgnore) {
 | |
|       LockEnter(mu, GetGraphId(mu), Synch_GetAllLocks());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Call LockEnter() if in debug mode and deadlock detection is enabled.
 | |
| static inline void DebugOnlyLockEnter(Mutex *mu, GraphId id) {
 | |
|   if (kDebugMode) {
 | |
|     if (synch_deadlock_detection.load(std::memory_order_acquire) !=
 | |
|         OnDeadlockCycle::kIgnore) {
 | |
|       LockEnter(mu, id, Synch_GetAllLocks());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Call LockLeave() if in debug mode and deadlock detection is enabled.
 | |
| static inline void DebugOnlyLockLeave(Mutex *mu) {
 | |
|   if (kDebugMode) {
 | |
|     if (synch_deadlock_detection.load(std::memory_order_acquire) !=
 | |
|         OnDeadlockCycle::kIgnore) {
 | |
|       LockLeave(mu, GetGraphId(mu), Synch_GetAllLocks());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static char *StackString(void **pcs, int n, char *buf, int maxlen,
 | |
|                          bool symbolize) {
 | |
|   static const int kSymLen = 200;
 | |
|   char sym[kSymLen];
 | |
|   int len = 0;
 | |
|   for (int i = 0; i != n; i++) {
 | |
|     if (symbolize) {
 | |
|       if (!symbolizer(pcs[i], sym, kSymLen)) {
 | |
|         sym[0] = '\0';
 | |
|       }
 | |
|       snprintf(buf + len, maxlen - len, "%s\t@ %p %s\n",
 | |
|                (i == 0 ? "\n" : ""),
 | |
|                pcs[i], sym);
 | |
|     } else {
 | |
|       snprintf(buf + len, maxlen - len, " %p", pcs[i]);
 | |
|     }
 | |
|     len += strlen(&buf[len]);
 | |
|   }
 | |
|   return buf;
 | |
| }
 | |
| 
 | |
| static char *CurrentStackString(char *buf, int maxlen, bool symbolize) {
 | |
|   void *pcs[40];
 | |
|   return StackString(pcs, absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 2), buf,
 | |
|                      maxlen, symbolize);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| enum { kMaxDeadlockPathLen = 10 };  // maximum length of a deadlock cycle;
 | |
|                                     // a path this long would be remarkable
 | |
| // Buffers required to report a deadlock.
 | |
| // We do not allocate them on stack to avoid large stack frame.
 | |
| struct DeadlockReportBuffers {
 | |
|   char buf[6100];
 | |
|   GraphId path[kMaxDeadlockPathLen];
 | |
| };
 | |
| 
 | |
| struct ScopedDeadlockReportBuffers {
 | |
|   ScopedDeadlockReportBuffers() {
 | |
|     b = reinterpret_cast<DeadlockReportBuffers *>(
 | |
|         base_internal::LowLevelAlloc::Alloc(sizeof(*b)));
 | |
|   }
 | |
|   ~ScopedDeadlockReportBuffers() { base_internal::LowLevelAlloc::Free(b); }
 | |
|   DeadlockReportBuffers *b;
 | |
| };
 | |
| 
 | |
| // Helper to pass to GraphCycles::UpdateStackTrace.
 | |
| int GetStack(void** stack, int max_depth) {
 | |
|   return absl::GetStackTrace(stack, max_depth, 3);
 | |
| }
 | |
| }  // anonymous namespace
 | |
| 
 | |
| // Called in debug mode when a thread is about to acquire a lock in a way that
 | |
| // may block.
 | |
| static GraphId DeadlockCheck(Mutex *mu) {
 | |
|   if (synch_deadlock_detection.load(std::memory_order_acquire) ==
 | |
|       OnDeadlockCycle::kIgnore) {
 | |
|     return InvalidGraphId();
 | |
|   }
 | |
| 
 | |
|   SynchLocksHeld *all_locks = Synch_GetAllLocks();
 | |
| 
 | |
|   absl::base_internal::SpinLockHolder lock(&deadlock_graph_mu);
 | |
|   const GraphId mu_id = GetGraphIdLocked(mu);
 | |
| 
 | |
|   if (all_locks->n == 0) {
 | |
|     // There are no other locks held. Return now so that we don't need to
 | |
|     // call GetSynchEvent(). This way we do not record the stack trace
 | |
|     // for this Mutex. It's ok, since if this Mutex is involved in a deadlock,
 | |
|     // it can't always be the first lock acquired by a thread.
 | |
|     return mu_id;
 | |
|   }
 | |
| 
 | |
|   // We prefer to keep stack traces that show a thread holding and acquiring
 | |
|   // as many locks as possible.  This increases the chances that a given edge
 | |
|   // in the acquires-before graph will be represented in the stack traces
 | |
|   // recorded for the locks.
 | |
|   deadlock_graph->UpdateStackTrace(mu_id, all_locks->n + 1, GetStack);
 | |
| 
 | |
|   // For each other mutex already held by this thread:
 | |
|   for (int i = 0; i != all_locks->n; i++) {
 | |
|     const GraphId other_node_id = all_locks->locks[i].id;
 | |
|     const Mutex *other =
 | |
|         static_cast<const Mutex *>(deadlock_graph->Ptr(other_node_id));
 | |
|     if (other == nullptr) {
 | |
|       // Ignore stale lock
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Add the acquired-before edge to the graph.
 | |
|     if (!deadlock_graph->InsertEdge(other_node_id, mu_id)) {
 | |
|       ScopedDeadlockReportBuffers scoped_buffers;
 | |
|       DeadlockReportBuffers *b = scoped_buffers.b;
 | |
|       static int number_of_reported_deadlocks = 0;
 | |
|       number_of_reported_deadlocks++;
 | |
|       // Symbolize only 2 first deadlock report to avoid huge slowdowns.
 | |
|       bool symbolize = number_of_reported_deadlocks <= 2;
 | |
|       ABSL_RAW_LOG(ERROR, "Potential Mutex deadlock: %s",
 | |
|                    CurrentStackString(b->buf, sizeof (b->buf), symbolize));
 | |
|       int len = 0;
 | |
|       for (int j = 0; j != all_locks->n; j++) {
 | |
|         void* pr = deadlock_graph->Ptr(all_locks->locks[j].id);
 | |
|         if (pr != nullptr) {
 | |
|           snprintf(b->buf + len, sizeof (b->buf) - len, " %p", pr);
 | |
|           len += static_cast<int>(strlen(&b->buf[len]));
 | |
|         }
 | |
|       }
 | |
|       ABSL_RAW_LOG(ERROR, "Acquiring %p    Mutexes held: %s",
 | |
|                    static_cast<void *>(mu), b->buf);
 | |
|       ABSL_RAW_LOG(ERROR, "Cycle: ");
 | |
|       int path_len = deadlock_graph->FindPath(
 | |
|           mu_id, other_node_id, ABSL_ARRAYSIZE(b->path), b->path);
 | |
|       for (int j = 0; j != path_len; j++) {
 | |
|         GraphId id = b->path[j];
 | |
|         Mutex *path_mu = static_cast<Mutex *>(deadlock_graph->Ptr(id));
 | |
|         if (path_mu == nullptr) continue;
 | |
|         void** stack;
 | |
|         int depth = deadlock_graph->GetStackTrace(id, &stack);
 | |
|         snprintf(b->buf, sizeof(b->buf),
 | |
|                  "mutex@%p stack: ", static_cast<void *>(path_mu));
 | |
|         StackString(stack, depth, b->buf + strlen(b->buf),
 | |
|                     static_cast<int>(sizeof(b->buf) - strlen(b->buf)),
 | |
|                     symbolize);
 | |
|         ABSL_RAW_LOG(ERROR, "%s", b->buf);
 | |
|       }
 | |
|       if (synch_deadlock_detection.load(std::memory_order_acquire) ==
 | |
|           OnDeadlockCycle::kAbort) {
 | |
|         deadlock_graph_mu.Unlock();  // avoid deadlock in fatal sighandler
 | |
|         ABSL_RAW_LOG(FATAL, "dying due to potential deadlock");
 | |
|         return mu_id;
 | |
|       }
 | |
|       break;   // report at most one potential deadlock per acquisition
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return mu_id;
 | |
| }
 | |
| 
 | |
| // Invoke DeadlockCheck() iff we're in debug mode and
 | |
| // deadlock checking has been enabled.
 | |
| static inline GraphId DebugOnlyDeadlockCheck(Mutex *mu) {
 | |
|   if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
 | |
|                         OnDeadlockCycle::kIgnore) {
 | |
|     return DeadlockCheck(mu);
 | |
|   } else {
 | |
|     return InvalidGraphId();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Mutex::ForgetDeadlockInfo() {
 | |
|   if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
 | |
|                         OnDeadlockCycle::kIgnore) {
 | |
|     deadlock_graph_mu.Lock();
 | |
|     if (deadlock_graph != nullptr) {
 | |
|       deadlock_graph->RemoveNode(this);
 | |
|     }
 | |
|     deadlock_graph_mu.Unlock();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Mutex::AssertNotHeld() const {
 | |
|   // We have the data to allow this check only if in debug mode and deadlock
 | |
|   // detection is enabled.
 | |
|   if (kDebugMode &&
 | |
|       (mu_.load(std::memory_order_relaxed) & (kMuWriter | kMuReader)) != 0 &&
 | |
|       synch_deadlock_detection.load(std::memory_order_acquire) !=
 | |
|           OnDeadlockCycle::kIgnore) {
 | |
|     GraphId id = GetGraphId(const_cast<Mutex *>(this));
 | |
|     SynchLocksHeld *locks = Synch_GetAllLocks();
 | |
|     for (int i = 0; i != locks->n; i++) {
 | |
|       if (locks->locks[i].id == id) {
 | |
|         SynchEvent *mu_events = GetSynchEvent(this);
 | |
|         ABSL_RAW_LOG(FATAL, "thread should not hold mutex %p %s",
 | |
|                      static_cast<const void *>(this),
 | |
|                      (mu_events == nullptr ? "" : mu_events->name));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Attempt to acquire *mu, and return whether successful.  The implementation
 | |
| // may spin for a short while if the lock cannot be acquired immediately.
 | |
| static bool TryAcquireWithSpinning(std::atomic<intptr_t>* mu) {
 | |
|   int c = mutex_globals.spinloop_iterations;
 | |
|   int result = -1;  // result of operation:  0=false, 1=true, -1=unknown
 | |
| 
 | |
|   do {  // do/while somewhat faster on AMD
 | |
|     intptr_t v = mu->load(std::memory_order_relaxed);
 | |
|     if ((v & (kMuReader|kMuEvent)) != 0) {  // a reader or tracing -> give up
 | |
|       result = 0;
 | |
|     } else if (((v & kMuWriter) == 0) &&  // no holder -> try to acquire
 | |
|                mu->compare_exchange_strong(v, kMuWriter | v,
 | |
|                                            std::memory_order_acquire,
 | |
|                                            std::memory_order_relaxed)) {
 | |
|       result = 1;
 | |
|     }
 | |
|   } while (result == -1 && --c > 0);
 | |
|   return result == 1;
 | |
| }
 | |
| 
 | |
| ABSL_XRAY_LOG_ARGS(1) void Mutex::Lock() {
 | |
|   ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
 | |
|   GraphId id = DebugOnlyDeadlockCheck(this);
 | |
|   intptr_t v = mu_.load(std::memory_order_relaxed);
 | |
|   // try fast acquire, then spin loop
 | |
|   if ((v & (kMuWriter | kMuReader | kMuEvent)) != 0 ||
 | |
|       !mu_.compare_exchange_strong(v, kMuWriter | v,
 | |
|                                    std::memory_order_acquire,
 | |
|                                    std::memory_order_relaxed)) {
 | |
|     // try spin acquire, then slow loop
 | |
|     if (!TryAcquireWithSpinning(&this->mu_)) {
 | |
|       this->LockSlow(kExclusive, nullptr, 0);
 | |
|     }
 | |
|   }
 | |
|   DebugOnlyLockEnter(this, id);
 | |
|   ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
 | |
| }
 | |
| 
 | |
| ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderLock() {
 | |
|   ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
 | |
|   GraphId id = DebugOnlyDeadlockCheck(this);
 | |
|   intptr_t v = mu_.load(std::memory_order_relaxed);
 | |
|   // try fast acquire, then slow loop
 | |
|   if ((v & (kMuWriter | kMuWait | kMuEvent)) != 0 ||
 | |
|       !mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
 | |
|                                    std::memory_order_acquire,
 | |
|                                    std::memory_order_relaxed)) {
 | |
|     this->LockSlow(kShared, nullptr, 0);
 | |
|   }
 | |
|   DebugOnlyLockEnter(this, id);
 | |
|   ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
 | |
| }
 | |
| 
 | |
| void Mutex::LockWhen(const Condition &cond) {
 | |
|   ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
 | |
|   GraphId id = DebugOnlyDeadlockCheck(this);
 | |
|   this->LockSlow(kExclusive, &cond, 0);
 | |
|   DebugOnlyLockEnter(this, id);
 | |
|   ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
 | |
| }
 | |
| 
 | |
| bool Mutex::LockWhenWithTimeout(const Condition &cond, absl::Duration timeout) {
 | |
|   return LockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
 | |
| }
 | |
| 
 | |
| bool Mutex::LockWhenWithDeadline(const Condition &cond, absl::Time deadline) {
 | |
|   ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
 | |
|   GraphId id = DebugOnlyDeadlockCheck(this);
 | |
|   bool res = LockSlowWithDeadline(kExclusive, &cond,
 | |
|                                   KernelTimeout(deadline), 0);
 | |
|   DebugOnlyLockEnter(this, id);
 | |
|   ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| void Mutex::ReaderLockWhen(const Condition &cond) {
 | |
|   ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
 | |
|   GraphId id = DebugOnlyDeadlockCheck(this);
 | |
|   this->LockSlow(kShared, &cond, 0);
 | |
|   DebugOnlyLockEnter(this, id);
 | |
|   ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
 | |
| }
 | |
| 
 | |
| bool Mutex::ReaderLockWhenWithTimeout(const Condition &cond,
 | |
|                                       absl::Duration timeout) {
 | |
|   return ReaderLockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
 | |
| }
 | |
| 
 | |
| bool Mutex::ReaderLockWhenWithDeadline(const Condition &cond,
 | |
|                                        absl::Time deadline) {
 | |
|   ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
 | |
|   GraphId id = DebugOnlyDeadlockCheck(this);
 | |
|   bool res = LockSlowWithDeadline(kShared, &cond, KernelTimeout(deadline), 0);
 | |
|   DebugOnlyLockEnter(this, id);
 | |
|   ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| void Mutex::Await(const Condition &cond) {
 | |
|   if (cond.Eval()) {    // condition already true; nothing to do
 | |
|     if (kDebugMode) {
 | |
|       this->AssertReaderHeld();
 | |
|     }
 | |
|   } else {              // normal case
 | |
|     ABSL_RAW_CHECK(this->AwaitCommon(cond, KernelTimeout::Never()),
 | |
|                    "condition untrue on return from Await");
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Mutex::AwaitWithTimeout(const Condition &cond, absl::Duration timeout) {
 | |
|   return AwaitWithDeadline(cond, DeadlineFromTimeout(timeout));
 | |
| }
 | |
| 
 | |
| bool Mutex::AwaitWithDeadline(const Condition &cond, absl::Time deadline) {
 | |
|   if (cond.Eval()) {      // condition already true; nothing to do
 | |
|     if (kDebugMode) {
 | |
|       this->AssertReaderHeld();
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   KernelTimeout t{deadline};
 | |
|   bool res = this->AwaitCommon(cond, t);
 | |
|   ABSL_RAW_CHECK(res || t.has_timeout(),
 | |
|                  "condition untrue on return from Await");
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| bool Mutex::AwaitCommon(const Condition &cond, KernelTimeout t) {
 | |
|   this->AssertReaderHeld();
 | |
|   MuHow how =
 | |
|       (mu_.load(std::memory_order_relaxed) & kMuWriter) ? kExclusive : kShared;
 | |
|   ABSL_TSAN_MUTEX_PRE_UNLOCK(this, TsanFlags(how));
 | |
|   SynchWaitParams waitp(
 | |
|       how, &cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
 | |
|       nullptr /*no cv_word*/);
 | |
|   int flags = kMuHasBlocked;
 | |
|   if (!Condition::GuaranteedEqual(&cond, nullptr)) {
 | |
|     flags |= kMuIsCond;
 | |
|   }
 | |
|   this->UnlockSlow(&waitp);
 | |
|   this->Block(waitp.thread);
 | |
|   ABSL_TSAN_MUTEX_POST_UNLOCK(this, TsanFlags(how));
 | |
|   ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how));
 | |
|   this->LockSlowLoop(&waitp, flags);
 | |
|   bool res = waitp.cond != nullptr ||  // => cond known true from LockSlowLoop
 | |
|              EvalConditionAnnotated(&cond, this, true, false, how == kShared);
 | |
|   ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| ABSL_XRAY_LOG_ARGS(1) bool Mutex::TryLock() {
 | |
|   ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock);
 | |
|   intptr_t v = mu_.load(std::memory_order_relaxed);
 | |
|   if ((v & (kMuWriter | kMuReader | kMuEvent)) == 0 &&  // try fast acquire
 | |
|       mu_.compare_exchange_strong(v, kMuWriter | v,
 | |
|                                   std::memory_order_acquire,
 | |
|                                   std::memory_order_relaxed)) {
 | |
|     DebugOnlyLockEnter(this);
 | |
|     ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
 | |
|     return true;
 | |
|   }
 | |
|   if ((v & kMuEvent) != 0) {              // we're recording events
 | |
|     if ((v & kExclusive->slow_need_zero) == 0 &&  // try fast acquire
 | |
|         mu_.compare_exchange_strong(
 | |
|             v, (kExclusive->fast_or | v) + kExclusive->fast_add,
 | |
|             std::memory_order_acquire, std::memory_order_relaxed)) {
 | |
|       DebugOnlyLockEnter(this);
 | |
|       PostSynchEvent(this, SYNCH_EV_TRYLOCK_SUCCESS);
 | |
|       ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
 | |
|       return true;
 | |
|     } else {
 | |
|       PostSynchEvent(this, SYNCH_EV_TRYLOCK_FAILED);
 | |
|     }
 | |
|   }
 | |
|   ABSL_TSAN_MUTEX_POST_LOCK(
 | |
|       this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| ABSL_XRAY_LOG_ARGS(1) bool Mutex::ReaderTryLock() {
 | |
|   ABSL_TSAN_MUTEX_PRE_LOCK(this,
 | |
|                            __tsan_mutex_read_lock | __tsan_mutex_try_lock);
 | |
|   intptr_t v = mu_.load(std::memory_order_relaxed);
 | |
|   // The while-loops (here and below) iterate only if the mutex word keeps
 | |
|   // changing (typically because the reader count changes) under the CAS.  We
 | |
|   // limit the number of attempts to avoid having to think about livelock.
 | |
|   int loop_limit = 5;
 | |
|   while ((v & (kMuWriter|kMuWait|kMuEvent)) == 0 && loop_limit != 0) {
 | |
|     if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
 | |
|                                     std::memory_order_acquire,
 | |
|                                     std::memory_order_relaxed)) {
 | |
|       DebugOnlyLockEnter(this);
 | |
|       ABSL_TSAN_MUTEX_POST_LOCK(
 | |
|           this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
 | |
|       return true;
 | |
|     }
 | |
|     loop_limit--;
 | |
|     v = mu_.load(std::memory_order_relaxed);
 | |
|   }
 | |
|   if ((v & kMuEvent) != 0) {   // we're recording events
 | |
|     loop_limit = 5;
 | |
|     while ((v & kShared->slow_need_zero) == 0 && loop_limit != 0) {
 | |
|       if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
 | |
|                                       std::memory_order_acquire,
 | |
|                                       std::memory_order_relaxed)) {
 | |
|         DebugOnlyLockEnter(this);
 | |
|         PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_SUCCESS);
 | |
|         ABSL_TSAN_MUTEX_POST_LOCK(
 | |
|             this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
 | |
|         return true;
 | |
|       }
 | |
|       loop_limit--;
 | |
|       v = mu_.load(std::memory_order_relaxed);
 | |
|     }
 | |
|     if ((v & kMuEvent) != 0) {
 | |
|       PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_FAILED);
 | |
|     }
 | |
|   }
 | |
|   ABSL_TSAN_MUTEX_POST_LOCK(this,
 | |
|                             __tsan_mutex_read_lock | __tsan_mutex_try_lock |
 | |
|                                 __tsan_mutex_try_lock_failed,
 | |
|                             0);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| ABSL_XRAY_LOG_ARGS(1) void Mutex::Unlock() {
 | |
|   ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0);
 | |
|   DebugOnlyLockLeave(this);
 | |
|   intptr_t v = mu_.load(std::memory_order_relaxed);
 | |
| 
 | |
|   if (kDebugMode && ((v & (kMuWriter | kMuReader)) != kMuWriter)) {
 | |
|     ABSL_RAW_LOG(FATAL, "Mutex unlocked when destroyed or not locked: v=0x%x",
 | |
|                  static_cast<unsigned>(v));
 | |
|   }
 | |
| 
 | |
|   // should_try_cas is whether we'll try a compare-and-swap immediately.
 | |
|   // NOTE: optimized out when kDebugMode is false.
 | |
|   bool should_try_cas = ((v & (kMuEvent | kMuWriter)) == kMuWriter &&
 | |
|                           (v & (kMuWait | kMuDesig)) != kMuWait);
 | |
|   // But, we can use an alternate computation of it, that compilers
 | |
|   // currently don't find on their own.  When that changes, this function
 | |
|   // can be simplified.
 | |
|   intptr_t x = (v ^ (kMuWriter | kMuWait)) & (kMuWriter | kMuEvent);
 | |
|   intptr_t y = (v ^ (kMuWriter | kMuWait)) & (kMuWait | kMuDesig);
 | |
|   // Claim: "x == 0 && y > 0" is equal to should_try_cas.
 | |
|   // Also, because kMuWriter and kMuEvent exceed kMuDesig and kMuWait,
 | |
|   // all possible non-zero values for x exceed all possible values for y.
 | |
|   // Therefore, (x == 0 && y > 0) == (x < y).
 | |
|   if (kDebugMode && should_try_cas != (x < y)) {
 | |
|     // We would usually use PRIdPTR here, but is not correctly implemented
 | |
|     // within the android toolchain.
 | |
|     ABSL_RAW_LOG(FATAL, "internal logic error %llx %llx %llx\n",
 | |
|                  static_cast<long long>(v), static_cast<long long>(x),
 | |
|                  static_cast<long long>(y));
 | |
|   }
 | |
|   if (x < y &&
 | |
|       mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
 | |
|                                   std::memory_order_release,
 | |
|                                   std::memory_order_relaxed)) {
 | |
|     // fast writer release (writer with no waiters or with designated waker)
 | |
|   } else {
 | |
|     this->UnlockSlow(nullptr /*no waitp*/);  // take slow path
 | |
|   }
 | |
|   ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0);
 | |
| }
 | |
| 
 | |
| // Requires v to represent a reader-locked state.
 | |
| static bool ExactlyOneReader(intptr_t v) {
 | |
|   assert((v & (kMuWriter|kMuReader)) == kMuReader);
 | |
|   assert((v & kMuHigh) != 0);
 | |
|   // The more straightforward "(v & kMuHigh) == kMuOne" also works, but
 | |
|   // on some architectures the following generates slightly smaller code.
 | |
|   // It may be faster too.
 | |
|   constexpr intptr_t kMuMultipleWaitersMask = kMuHigh ^ kMuOne;
 | |
|   return (v & kMuMultipleWaitersMask) == 0;
 | |
| }
 | |
| 
 | |
| ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderUnlock() {
 | |
|   ABSL_TSAN_MUTEX_PRE_UNLOCK(this, __tsan_mutex_read_lock);
 | |
|   DebugOnlyLockLeave(this);
 | |
|   intptr_t v = mu_.load(std::memory_order_relaxed);
 | |
|   assert((v & (kMuWriter|kMuReader)) == kMuReader);
 | |
|   if ((v & (kMuReader|kMuWait|kMuEvent)) == kMuReader) {
 | |
|     // fast reader release (reader with no waiters)
 | |
|     intptr_t clear = ExactlyOneReader(v) ? kMuReader|kMuOne : kMuOne;
 | |
|     if (mu_.compare_exchange_strong(v, v - clear,
 | |
|                                     std::memory_order_release,
 | |
|                                     std::memory_order_relaxed)) {
 | |
|       ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   this->UnlockSlow(nullptr /*no waitp*/);  // take slow path
 | |
|   ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
 | |
| }
 | |
| 
 | |
| // The zap_desig_waker bitmask is used to clear the designated waker flag in
 | |
| // the mutex if this thread has blocked, and therefore may be the designated
 | |
| // waker.
 | |
| static const intptr_t zap_desig_waker[] = {
 | |
|     ~static_cast<intptr_t>(0),  // not blocked
 | |
|     ~static_cast<intptr_t>(
 | |
|         kMuDesig)  // blocked; turn off the designated waker bit
 | |
| };
 | |
| 
 | |
| // The ignore_waiting_writers bitmask is used to ignore the existence
 | |
| // of waiting writers if a reader that has already blocked once
 | |
| // wakes up.
 | |
| static const intptr_t ignore_waiting_writers[] = {
 | |
|     ~static_cast<intptr_t>(0),  // not blocked
 | |
|     ~static_cast<intptr_t>(
 | |
|         kMuWrWait)  // blocked; pretend there are no waiting writers
 | |
| };
 | |
| 
 | |
| // Internal version of LockWhen().  See LockSlowWithDeadline()
 | |
| void Mutex::LockSlow(MuHow how, const Condition *cond, int flags) {
 | |
|   ABSL_RAW_CHECK(
 | |
|       this->LockSlowWithDeadline(how, cond, KernelTimeout::Never(), flags),
 | |
|       "condition untrue on return from LockSlow");
 | |
| }
 | |
| 
 | |
| // Compute cond->Eval() and tell race detectors that we do it under mutex mu.
 | |
| static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu,
 | |
|                                           bool locking, bool trylock,
 | |
|                                           bool read_lock) {
 | |
|   // Delicate annotation dance.
 | |
|   // We are currently inside of read/write lock/unlock operation.
 | |
|   // All memory accesses are ignored inside of mutex operations + for unlock
 | |
|   // operation tsan considers that we've already released the mutex.
 | |
|   bool res = false;
 | |
| #ifdef THREAD_SANITIZER
 | |
|   const int flags = read_lock ? __tsan_mutex_read_lock : 0;
 | |
|   const int tryflags = flags | (trylock ? __tsan_mutex_try_lock : 0);
 | |
| #endif
 | |
|   if (locking) {
 | |
|     // For lock we pretend that we have finished the operation,
 | |
|     // evaluate the predicate, then unlock the mutex and start locking it again
 | |
|     // to match the annotation at the end of outer lock operation.
 | |
|     // Note: we can't simply do POST_LOCK, Eval, PRE_LOCK, because then tsan
 | |
|     // will think the lock acquisition is recursive which will trigger
 | |
|     // deadlock detector.
 | |
|     ABSL_TSAN_MUTEX_POST_LOCK(mu, tryflags, 0);
 | |
|     res = cond->Eval();
 | |
|     // There is no "try" version of Unlock, so use flags instead of tryflags.
 | |
|     ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags);
 | |
|     ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags);
 | |
|     ABSL_TSAN_MUTEX_PRE_LOCK(mu, tryflags);
 | |
|   } else {
 | |
|     // Similarly, for unlock we pretend that we have unlocked the mutex,
 | |
|     // lock the mutex, evaluate the predicate, and start unlocking it again
 | |
|     // to match the annotation at the end of outer unlock operation.
 | |
|     ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags);
 | |
|     ABSL_TSAN_MUTEX_PRE_LOCK(mu, flags);
 | |
|     ABSL_TSAN_MUTEX_POST_LOCK(mu, flags, 0);
 | |
|     res = cond->Eval();
 | |
|     ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags);
 | |
|   }
 | |
|   // Prevent unused param warnings in non-TSAN builds.
 | |
|   static_cast<void>(mu);
 | |
|   static_cast<void>(trylock);
 | |
|   static_cast<void>(read_lock);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| // Compute cond->Eval() hiding it from race detectors.
 | |
| // We are hiding it because inside of UnlockSlow we can evaluate a predicate
 | |
| // that was just added by a concurrent Lock operation; Lock adds the predicate
 | |
| // to the internal Mutex list without actually acquiring the Mutex
 | |
| // (it only acquires the internal spinlock, which is rightfully invisible for
 | |
| // tsan). As the result there is no tsan-visible synchronization between the
 | |
| // addition and this thread. So if we would enable race detection here,
 | |
| // it would race with the predicate initialization.
 | |
| static inline bool EvalConditionIgnored(Mutex *mu, const Condition *cond) {
 | |
|   // Memory accesses are already ignored inside of lock/unlock operations,
 | |
|   // but synchronization operations are also ignored. When we evaluate the
 | |
|   // predicate we must ignore only memory accesses but not synchronization,
 | |
|   // because missed synchronization can lead to false reports later.
 | |
|   // So we "divert" (which un-ignores both memory accesses and synchronization)
 | |
|   // and then separately turn on ignores of memory accesses.
 | |
|   ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
 | |
|   ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
 | |
|   bool res = cond->Eval();
 | |
|   ANNOTATE_IGNORE_READS_AND_WRITES_END();
 | |
|   ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
 | |
|   static_cast<void>(mu);  // Prevent unused param warning in non-TSAN builds.
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| // Internal equivalent of *LockWhenWithDeadline(), where
 | |
| //   "t" represents the absolute timeout; !t.has_timeout() means "forever".
 | |
| //   "how" is "kShared" (for ReaderLockWhen) or "kExclusive" (for LockWhen)
 | |
| // In flags, bits are ored together:
 | |
| // - kMuHasBlocked indicates that the client has already blocked on the call so
 | |
| //   the designated waker bit must be cleared and waiting writers should not
 | |
| //   obstruct this call
 | |
| // - kMuIsCond indicates that this is a conditional acquire (condition variable,
 | |
| //   Await,  LockWhen) so contention profiling should be suppressed.
 | |
| bool Mutex::LockSlowWithDeadline(MuHow how, const Condition *cond,
 | |
|                                  KernelTimeout t, int flags) {
 | |
|   intptr_t v = mu_.load(std::memory_order_relaxed);
 | |
|   bool unlock = false;
 | |
|   if ((v & how->fast_need_zero) == 0 &&  // try fast acquire
 | |
|       mu_.compare_exchange_strong(
 | |
|           v, (how->fast_or | (v & zap_desig_waker[flags & kMuHasBlocked])) +
 | |
|                  how->fast_add,
 | |
|           std::memory_order_acquire, std::memory_order_relaxed)) {
 | |
|     if (cond == nullptr ||
 | |
|         EvalConditionAnnotated(cond, this, true, false, how == kShared)) {
 | |
|       return true;
 | |
|     }
 | |
|     unlock = true;
 | |
|   }
 | |
|   SynchWaitParams waitp(
 | |
|       how, cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
 | |
|       nullptr /*no cv_word*/);
 | |
|   if (!Condition::GuaranteedEqual(cond, nullptr)) {
 | |
|     flags |= kMuIsCond;
 | |
|   }
 | |
|   if (unlock) {
 | |
|     this->UnlockSlow(&waitp);
 | |
|     this->Block(waitp.thread);
 | |
|     flags |= kMuHasBlocked;
 | |
|   }
 | |
|   this->LockSlowLoop(&waitp, flags);
 | |
|   return waitp.cond != nullptr ||  // => cond known true from LockSlowLoop
 | |
|          cond == nullptr ||
 | |
|          EvalConditionAnnotated(cond, this, true, false, how == kShared);
 | |
| }
 | |
| 
 | |
| // RAW_CHECK_FMT() takes a condition, a printf-style format string, and
 | |
| // the printf-style argument list.   The format string must be a literal.
 | |
| // Arguments after the first are not evaluated unless the condition is true.
 | |
| #define RAW_CHECK_FMT(cond, ...)                                   \
 | |
|   do {                                                             \
 | |
|     if (ABSL_PREDICT_FALSE(!(cond))) {                             \
 | |
|       ABSL_RAW_LOG(FATAL, "Check " #cond " failed: " __VA_ARGS__); \
 | |
|     }                                                              \
 | |
|   } while (0)
 | |
| 
 | |
| static void CheckForMutexCorruption(intptr_t v, const char* label) {
 | |
|   // Test for either of two situations that should not occur in v:
 | |
|   //   kMuWriter and kMuReader
 | |
|   //   kMuWrWait and !kMuWait
 | |
|   const uintptr_t w = v ^ kMuWait;
 | |
|   // By flipping that bit, we can now test for:
 | |
|   //   kMuWriter and kMuReader in w
 | |
|   //   kMuWrWait and kMuWait in w
 | |
|   // We've chosen these two pairs of values to be so that they will overlap,
 | |
|   // respectively, when the word is left shifted by three.  This allows us to
 | |
|   // save a branch in the common (correct) case of them not being coincident.
 | |
|   static_assert(kMuReader << 3 == kMuWriter, "must match");
 | |
|   static_assert(kMuWait << 3 == kMuWrWait, "must match");
 | |
|   if (ABSL_PREDICT_TRUE((w & (w << 3) & (kMuWriter | kMuWrWait)) == 0)) return;
 | |
|   RAW_CHECK_FMT((v & (kMuWriter | kMuReader)) != (kMuWriter | kMuReader),
 | |
|                 "%s: Mutex corrupt: both reader and writer lock held: %p",
 | |
|                 label, reinterpret_cast<void *>(v));
 | |
|   RAW_CHECK_FMT((v & (kMuWait | kMuWrWait)) != kMuWrWait,
 | |
|                 "%s: Mutex corrupt: waiting writer with no waiters: %p",
 | |
|                 label, reinterpret_cast<void *>(v));
 | |
|   assert(false);
 | |
| }
 | |
| 
 | |
| void Mutex::LockSlowLoop(SynchWaitParams *waitp, int flags) {
 | |
|   int c = 0;
 | |
|   intptr_t v = mu_.load(std::memory_order_relaxed);
 | |
|   if ((v & kMuEvent) != 0) {
 | |
|     PostSynchEvent(this,
 | |
|          waitp->how == kExclusive?  SYNCH_EV_LOCK: SYNCH_EV_READERLOCK);
 | |
|   }
 | |
|   ABSL_RAW_CHECK(
 | |
|       waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
 | |
|       "detected illegal recursion into Mutex code");
 | |
|   for (;;) {
 | |
|     v = mu_.load(std::memory_order_relaxed);
 | |
|     CheckForMutexCorruption(v, "Lock");
 | |
|     if ((v & waitp->how->slow_need_zero) == 0) {
 | |
|       if (mu_.compare_exchange_strong(
 | |
|               v, (waitp->how->fast_or |
 | |
|                   (v & zap_desig_waker[flags & kMuHasBlocked])) +
 | |
|                      waitp->how->fast_add,
 | |
|               std::memory_order_acquire, std::memory_order_relaxed)) {
 | |
|         if (waitp->cond == nullptr ||
 | |
|             EvalConditionAnnotated(waitp->cond, this, true, false,
 | |
|                                    waitp->how == kShared)) {
 | |
|           break;  // we timed out, or condition true, so return
 | |
|         }
 | |
|         this->UnlockSlow(waitp);  // got lock but condition false
 | |
|         this->Block(waitp->thread);
 | |
|         flags |= kMuHasBlocked;
 | |
|         c = 0;
 | |
|       }
 | |
|     } else {                      // need to access waiter list
 | |
|       bool dowait = false;
 | |
|       if ((v & (kMuSpin|kMuWait)) == 0) {   // no waiters
 | |
|         // This thread tries to become the one and only waiter.
 | |
|         PerThreadSynch *new_h = Enqueue(nullptr, waitp, v, flags);
 | |
|         intptr_t nv = (v & zap_desig_waker[flags & kMuHasBlocked] & kMuLow) |
 | |
|                       kMuWait;
 | |
|         ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to empty list failed");
 | |
|         if (waitp->how == kExclusive && (v & kMuReader) != 0) {
 | |
|           nv |= kMuWrWait;
 | |
|         }
 | |
|         if (mu_.compare_exchange_strong(
 | |
|                 v, reinterpret_cast<intptr_t>(new_h) | nv,
 | |
|                 std::memory_order_release, std::memory_order_relaxed)) {
 | |
|           dowait = true;
 | |
|         } else {            // attempted Enqueue() failed
 | |
|           // zero out the waitp field set by Enqueue()
 | |
|           waitp->thread->waitp = nullptr;
 | |
|         }
 | |
|       } else if ((v & waitp->how->slow_inc_need_zero &
 | |
|                   ignore_waiting_writers[flags & kMuHasBlocked]) == 0) {
 | |
|         // This is a reader that needs to increment the reader count,
 | |
|         // but the count is currently held in the last waiter.
 | |
|         if (mu_.compare_exchange_strong(
 | |
|                 v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin |
 | |
|                        kMuReader,
 | |
|                 std::memory_order_acquire, std::memory_order_relaxed)) {
 | |
|           PerThreadSynch *h = GetPerThreadSynch(v);
 | |
|           h->readers += kMuOne;       // inc reader count in waiter
 | |
|           do {                        // release spinlock
 | |
|             v = mu_.load(std::memory_order_relaxed);
 | |
|           } while (!mu_.compare_exchange_weak(v, (v & ~kMuSpin) | kMuReader,
 | |
|                                               std::memory_order_release,
 | |
|                                               std::memory_order_relaxed));
 | |
|           if (waitp->cond == nullptr ||
 | |
|               EvalConditionAnnotated(waitp->cond, this, true, false,
 | |
|                                      waitp->how == kShared)) {
 | |
|             break;  // we timed out, or condition true, so return
 | |
|           }
 | |
|           this->UnlockSlow(waitp);           // got lock but condition false
 | |
|           this->Block(waitp->thread);
 | |
|           flags |= kMuHasBlocked;
 | |
|           c = 0;
 | |
|         }
 | |
|       } else if ((v & kMuSpin) == 0 &&  // attempt to queue ourselves
 | |
|                  mu_.compare_exchange_strong(
 | |
|                      v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin |
 | |
|                             kMuWait,
 | |
|                      std::memory_order_acquire, std::memory_order_relaxed)) {
 | |
|         PerThreadSynch *h = GetPerThreadSynch(v);
 | |
|         PerThreadSynch *new_h = Enqueue(h, waitp, v, flags);
 | |
|         intptr_t wr_wait = 0;
 | |
|         ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to list failed");
 | |
|         if (waitp->how == kExclusive && (v & kMuReader) != 0) {
 | |
|           wr_wait = kMuWrWait;      // give priority to a waiting writer
 | |
|         }
 | |
|         do {                        // release spinlock
 | |
|           v = mu_.load(std::memory_order_relaxed);
 | |
|         } while (!mu_.compare_exchange_weak(
 | |
|             v, (v & (kMuLow & ~kMuSpin)) | kMuWait | wr_wait |
 | |
|             reinterpret_cast<intptr_t>(new_h),
 | |
|             std::memory_order_release, std::memory_order_relaxed));
 | |
|         dowait = true;
 | |
|       }
 | |
|       if (dowait) {
 | |
|         this->Block(waitp->thread);  // wait until removed from list or timeout
 | |
|         flags |= kMuHasBlocked;
 | |
|         c = 0;
 | |
|       }
 | |
|     }
 | |
|     ABSL_RAW_CHECK(
 | |
|         waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
 | |
|         "detected illegal recursion into Mutex code");
 | |
|     c = Delay(c, GENTLE);          // delay, then try again
 | |
|   }
 | |
|   ABSL_RAW_CHECK(
 | |
|       waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
 | |
|       "detected illegal recursion into Mutex code");
 | |
|   if ((v & kMuEvent) != 0) {
 | |
|     PostSynchEvent(this,
 | |
|                    waitp->how == kExclusive? SYNCH_EV_LOCK_RETURNING :
 | |
|                                       SYNCH_EV_READERLOCK_RETURNING);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Unlock this mutex, which is held by the current thread.
 | |
| // If waitp is non-zero, it must be the wait parameters for the current thread
 | |
| // which holds the lock but is not runnable because its condition is false
 | |
| // or it is in the process of blocking on a condition variable; it must requeue
 | |
| // itself on the mutex/condvar to wait for its condition to become true.
 | |
| void Mutex::UnlockSlow(SynchWaitParams *waitp) {
 | |
|   intptr_t v = mu_.load(std::memory_order_relaxed);
 | |
|   this->AssertReaderHeld();
 | |
|   CheckForMutexCorruption(v, "Unlock");
 | |
|   if ((v & kMuEvent) != 0) {
 | |
|     PostSynchEvent(this,
 | |
|                 (v & kMuWriter) != 0? SYNCH_EV_UNLOCK: SYNCH_EV_READERUNLOCK);
 | |
|   }
 | |
|   int c = 0;
 | |
|   // the waiter under consideration to wake, or zero
 | |
|   PerThreadSynch *w = nullptr;
 | |
|   // the predecessor to w or zero
 | |
|   PerThreadSynch *pw = nullptr;
 | |
|   // head of the list searched previously, or zero
 | |
|   PerThreadSynch *old_h = nullptr;
 | |
|   // a condition that's known to be false.
 | |
|   const Condition *known_false = nullptr;
 | |
|   PerThreadSynch *wake_list = kPerThreadSynchNull;   // list of threads to wake
 | |
|   intptr_t wr_wait = 0;        // set to kMuWrWait if we wake a reader and a
 | |
|                                // later writer could have acquired the lock
 | |
|                                // (starvation avoidance)
 | |
|   ABSL_RAW_CHECK(waitp == nullptr || waitp->thread->waitp == nullptr ||
 | |
|                      waitp->thread->suppress_fatal_errors,
 | |
|                  "detected illegal recursion into Mutex code");
 | |
|   // This loop finds threads wake_list to wakeup if any, and removes them from
 | |
|   // the list of waiters.  In addition, it places waitp.thread on the queue of
 | |
|   // waiters if waitp is non-zero.
 | |
|   for (;;) {
 | |
|     v = mu_.load(std::memory_order_relaxed);
 | |
|     if ((v & kMuWriter) != 0 && (v & (kMuWait | kMuDesig)) != kMuWait &&
 | |
|         waitp == nullptr) {
 | |
|       // fast writer release (writer with no waiters or with designated waker)
 | |
|       if (mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
 | |
|                                       std::memory_order_release,
 | |
|                                       std::memory_order_relaxed)) {
 | |
|         return;
 | |
|       }
 | |
|     } else if ((v & (kMuReader | kMuWait)) == kMuReader && waitp == nullptr) {
 | |
|       // fast reader release (reader with no waiters)
 | |
|       intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne;
 | |
|       if (mu_.compare_exchange_strong(v, v - clear,
 | |
|                                       std::memory_order_release,
 | |
|                                       std::memory_order_relaxed)) {
 | |
|         return;
 | |
|       }
 | |
|     } else if ((v & kMuSpin) == 0 &&  // attempt to get spinlock
 | |
|                mu_.compare_exchange_strong(v, v | kMuSpin,
 | |
|                                            std::memory_order_acquire,
 | |
|                                            std::memory_order_relaxed)) {
 | |
|       if ((v & kMuWait) == 0) {       // no one to wake
 | |
|         intptr_t nv;
 | |
|         bool do_enqueue = true;  // always Enqueue() the first time
 | |
|         ABSL_RAW_CHECK(waitp != nullptr,
 | |
|                        "UnlockSlow is confused");  // about to sleep
 | |
|         do {    // must loop to release spinlock as reader count may change
 | |
|           v = mu_.load(std::memory_order_relaxed);
 | |
|           // decrement reader count if there are readers
 | |
|           intptr_t new_readers = (v >= kMuOne)?  v - kMuOne : v;
 | |
|           PerThreadSynch *new_h = nullptr;
 | |
|           if (do_enqueue) {
 | |
|             // If we are enqueuing on a CondVar (waitp->cv_word != nullptr) then
 | |
|             // we must not retry here.  The initial attempt will always have
 | |
|             // succeeded, further attempts would enqueue us against *this due to
 | |
|             // Fer() handling.
 | |
|             do_enqueue = (waitp->cv_word == nullptr);
 | |
|             new_h = Enqueue(nullptr, waitp, new_readers, kMuIsCond);
 | |
|           }
 | |
|           intptr_t clear = kMuWrWait | kMuWriter;  // by default clear write bit
 | |
|           if ((v & kMuWriter) == 0 && ExactlyOneReader(v)) {  // last reader
 | |
|             clear = kMuWrWait | kMuReader;                    // clear read bit
 | |
|           }
 | |
|           nv = (v & kMuLow & ~clear & ~kMuSpin);
 | |
|           if (new_h != nullptr) {
 | |
|             nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
 | |
|           } else {  // new_h could be nullptr if we queued ourselves on a
 | |
|                     // CondVar
 | |
|             // In that case, we must place the reader count back in the mutex
 | |
|             // word, as Enqueue() did not store it in the new waiter.
 | |
|             nv |= new_readers & kMuHigh;
 | |
|           }
 | |
|           // release spinlock & our lock; retry if reader-count changed
 | |
|           // (writer count cannot change since we hold lock)
 | |
|         } while (!mu_.compare_exchange_weak(v, nv,
 | |
|                                             std::memory_order_release,
 | |
|                                             std::memory_order_relaxed));
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // There are waiters.
 | |
|       // Set h to the head of the circular waiter list.
 | |
|       PerThreadSynch *h = GetPerThreadSynch(v);
 | |
|       if ((v & kMuReader) != 0 && (h->readers & kMuHigh) > kMuOne) {
 | |
|         // a reader but not the last
 | |
|         h->readers -= kMuOne;  // release our lock
 | |
|         intptr_t nv = v;       // normally just release spinlock
 | |
|         if (waitp != nullptr) {  // but waitp!=nullptr => must queue ourselves
 | |
|           PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
 | |
|           ABSL_RAW_CHECK(new_h != nullptr,
 | |
|                          "waiters disappeared during Enqueue()!");
 | |
|           nv &= kMuLow;
 | |
|           nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
 | |
|         }
 | |
|         mu_.store(nv, std::memory_order_release);  // release spinlock
 | |
|         // can release with a store because there were waiters
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Either we didn't search before, or we marked the queue
 | |
|       // as "maybe_unlocking" and no one else should have changed it.
 | |
|       ABSL_RAW_CHECK(old_h == nullptr || h->maybe_unlocking,
 | |
|                      "Mutex queue changed beneath us");
 | |
| 
 | |
|       // The lock is becoming free, and there's a waiter
 | |
|       if (old_h != nullptr &&
 | |
|           !old_h->may_skip) {                  // we used old_h as a terminator
 | |
|         old_h->may_skip = true;                // allow old_h to skip once more
 | |
|         ABSL_RAW_CHECK(old_h->skip == nullptr, "illegal skip from head");
 | |
|         if (h != old_h && MuSameCondition(old_h, old_h->next)) {
 | |
|           old_h->skip = old_h->next;  // old_h not head & can skip to successor
 | |
|         }
 | |
|       }
 | |
|       if (h->next->waitp->how == kExclusive &&
 | |
|           Condition::GuaranteedEqual(h->next->waitp->cond, nullptr)) {
 | |
|         // easy case: writer with no condition; no need to search
 | |
|         pw = h;                       // wake w, the successor of h (=pw)
 | |
|         w = h->next;
 | |
|         w->wake = true;
 | |
|         // We are waking up a writer.  This writer may be racing against
 | |
|         // an already awake reader for the lock.  We want the
 | |
|         // writer to usually win this race,
 | |
|         // because if it doesn't, we can potentially keep taking a reader
 | |
|         // perpetually and writers will starve.  Worse than
 | |
|         // that, this can also starve other readers if kMuWrWait gets set
 | |
|         // later.
 | |
|         wr_wait = kMuWrWait;
 | |
|       } else if (w != nullptr && (w->waitp->how == kExclusive || h == old_h)) {
 | |
|         // we found a waiter w to wake on a previous iteration and either it's
 | |
|         // a writer, or we've searched the entire list so we have all the
 | |
|         // readers.
 | |
|         if (pw == nullptr) {  // if w's predecessor is unknown, it must be h
 | |
|           pw = h;
 | |
|         }
 | |
|       } else {
 | |
|         // At this point we don't know all the waiters to wake, and the first
 | |
|         // waiter has a condition or is a reader.  We avoid searching over
 | |
|         // waiters we've searched on previous iterations by starting at
 | |
|         // old_h if it's set.  If old_h==h, there's no one to wakeup at all.
 | |
|         if (old_h == h) {      // we've searched before, and nothing's new
 | |
|                                // so there's no one to wake.
 | |
|           intptr_t nv = (v & ~(kMuReader|kMuWriter|kMuWrWait));
 | |
|           h->readers = 0;
 | |
|           h->maybe_unlocking = false;   // finished unlocking
 | |
|           if (waitp != nullptr) {       // we must queue ourselves and sleep
 | |
|             PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
 | |
|             nv &= kMuLow;
 | |
|             if (new_h != nullptr) {
 | |
|               nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
 | |
|             }  // else new_h could be nullptr if we queued ourselves on a
 | |
|                // CondVar
 | |
|           }
 | |
|           // release spinlock & lock
 | |
|           // can release with a store because there were waiters
 | |
|           mu_.store(nv, std::memory_order_release);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         // set up to walk the list
 | |
|         PerThreadSynch *w_walk;   // current waiter during list walk
 | |
|         PerThreadSynch *pw_walk;  // previous waiter during list walk
 | |
|         if (old_h != nullptr) {  // we've searched up to old_h before
 | |
|           pw_walk = old_h;
 | |
|           w_walk = old_h->next;
 | |
|         } else {            // no prior search, start at beginning
 | |
|           pw_walk =
 | |
|               nullptr;  // h->next's predecessor may change; don't record it
 | |
|           w_walk = h->next;
 | |
|         }
 | |
| 
 | |
|         h->may_skip = false;  // ensure we never skip past h in future searches
 | |
|                               // even if other waiters are queued after it.
 | |
|         ABSL_RAW_CHECK(h->skip == nullptr, "illegal skip from head");
 | |
| 
 | |
|         h->maybe_unlocking = true;  // we're about to scan the waiter list
 | |
|                                     // without the spinlock held.
 | |
|                                     // Enqueue must be conservative about
 | |
|                                     // priority queuing.
 | |
| 
 | |
|         // We must release the spinlock to evaluate the conditions.
 | |
|         mu_.store(v, std::memory_order_release);  // release just spinlock
 | |
|         // can release with a store because there were waiters
 | |
| 
 | |
|         // h is the last waiter queued, and w_walk the first unsearched waiter.
 | |
|         // Without the spinlock, the locations mu_ and h->next may now change
 | |
|         // underneath us, but since we hold the lock itself, the only legal
 | |
|         // change is to add waiters between h and w_walk.  Therefore, it's safe
 | |
|         // to walk the path from w_walk to h inclusive. (TryRemove() can remove
 | |
|         // a waiter anywhere, but it acquires both the spinlock and the Mutex)
 | |
| 
 | |
|         old_h = h;        // remember we searched to here
 | |
| 
 | |
|         // Walk the path upto and including h looking for waiters we can wake.
 | |
|         while (pw_walk != h) {
 | |
|           w_walk->wake = false;
 | |
|           if (w_walk->waitp->cond ==
 | |
|                   nullptr ||  // no condition => vacuously true OR
 | |
|               (w_walk->waitp->cond != known_false &&
 | |
|                // this thread's condition is not known false, AND
 | |
|                //  is in fact true
 | |
|                EvalConditionIgnored(this, w_walk->waitp->cond))) {
 | |
|             if (w == nullptr) {
 | |
|               w_walk->wake = true;    // can wake this waiter
 | |
|               w = w_walk;
 | |
|               pw = pw_walk;
 | |
|               if (w_walk->waitp->how == kExclusive) {
 | |
|                 wr_wait = kMuWrWait;
 | |
|                 break;                // bail if waking this writer
 | |
|               }
 | |
|             } else if (w_walk->waitp->how == kShared) {  // wake if a reader
 | |
|               w_walk->wake = true;
 | |
|             } else {   // writer with true condition
 | |
|               wr_wait = kMuWrWait;
 | |
|             }
 | |
|           } else {                  // can't wake; condition false
 | |
|             known_false = w_walk->waitp->cond;  // remember last false condition
 | |
|           }
 | |
|           if (w_walk->wake) {   // we're waking reader w_walk
 | |
|             pw_walk = w_walk;   // don't skip similar waiters
 | |
|           } else {              // not waking; skip as much as possible
 | |
|             pw_walk = Skip(w_walk);
 | |
|           }
 | |
|           // If pw_walk == h, then load of pw_walk->next can race with
 | |
|           // concurrent write in Enqueue(). However, at the same time
 | |
|           // we do not need to do the load, because we will bail out
 | |
|           // from the loop anyway.
 | |
|           if (pw_walk != h) {
 | |
|             w_walk = pw_walk->next;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         continue;  // restart for(;;)-loop to wakeup w or to find more waiters
 | |
|       }
 | |
|       ABSL_RAW_CHECK(pw->next == w, "pw not w's predecessor");
 | |
|       // The first (and perhaps only) waiter we've chosen to wake is w, whose
 | |
|       // predecessor is pw.  If w is a reader, we must wake all the other
 | |
|       // waiters with wake==true as well.  We may also need to queue
 | |
|       // ourselves if waitp != null.  The spinlock and the lock are still
 | |
|       // held.
 | |
| 
 | |
|       // This traverses the list in [ pw->next, h ], where h is the head,
 | |
|       // removing all elements with wake==true and placing them in the
 | |
|       // singly-linked list wake_list.  Returns the new head.
 | |
|       h = DequeueAllWakeable(h, pw, &wake_list);
 | |
| 
 | |
|       intptr_t nv = (v & kMuEvent) | kMuDesig;
 | |
|                                              // assume no waiters left,
 | |
|                                              // set kMuDesig for INV1a
 | |
| 
 | |
|       if (waitp != nullptr) {  // we must queue ourselves and sleep
 | |
|         h = Enqueue(h, waitp, v, kMuIsCond);
 | |
|         // h is new last waiter; could be null if we queued ourselves on a
 | |
|         // CondVar
 | |
|       }
 | |
| 
 | |
|       ABSL_RAW_CHECK(wake_list != kPerThreadSynchNull,
 | |
|                      "unexpected empty wake list");
 | |
| 
 | |
|       if (h != nullptr) {  // there are waiters left
 | |
|         h->readers = 0;
 | |
|         h->maybe_unlocking = false;     // finished unlocking
 | |
|         nv |= wr_wait | kMuWait | reinterpret_cast<intptr_t>(h);
 | |
|       }
 | |
| 
 | |
|       // release both spinlock & lock
 | |
|       // can release with a store because there were waiters
 | |
|       mu_.store(nv, std::memory_order_release);
 | |
|       break;  // out of for(;;)-loop
 | |
|     }
 | |
|     c = Delay(c, AGGRESSIVE);  // aggressive here; no one can proceed till we do
 | |
|   }                            // end of for(;;)-loop
 | |
| 
 | |
|   if (wake_list != kPerThreadSynchNull) {
 | |
|     int64_t enqueue_timestamp = wake_list->waitp->contention_start_cycles;
 | |
|     bool cond_waiter = wake_list->cond_waiter;
 | |
|     do {
 | |
|       wake_list = Wakeup(wake_list);              // wake waiters
 | |
|     } while (wake_list != kPerThreadSynchNull);
 | |
|     if (!cond_waiter) {
 | |
|       // Sample lock contention events only if the (first) waiter was trying to
 | |
|       // acquire the lock, not waiting on a condition variable or Condition.
 | |
|       int64_t wait_cycles = base_internal::CycleClock::Now() - enqueue_timestamp;
 | |
|       mutex_tracer("slow release", this, wait_cycles);
 | |
|       ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0);
 | |
|       submit_profile_data(enqueue_timestamp);
 | |
|       ABSL_TSAN_MUTEX_POST_DIVERT(this, 0);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Used by CondVar implementation to reacquire mutex after waking from
 | |
| // condition variable.  This routine is used instead of Lock() because the
 | |
| // waiting thread may have been moved from the condition variable queue to the
 | |
| // mutex queue without a wakeup, by Trans().  In that case, when the thread is
 | |
| // finally woken, the woken thread will believe it has been woken from the
 | |
| // condition variable (i.e. its PC will be in when in the CondVar code), when
 | |
| // in fact it has just been woken from the mutex.  Thus, it must enter the slow
 | |
| // path of the mutex in the same state as if it had just woken from the mutex.
 | |
| // That is, it must ensure to clear kMuDesig (INV1b).
 | |
| void Mutex::Trans(MuHow how) {
 | |
|   this->LockSlow(how, nullptr, kMuHasBlocked | kMuIsCond);
 | |
| }
 | |
| 
 | |
| // Used by CondVar implementation to effectively wake thread w from the
 | |
| // condition variable.  If this mutex is free, we simply wake the thread.
 | |
| // It will later acquire the mutex with high probability.  Otherwise, we
 | |
| // enqueue thread w on this mutex.
 | |
| void Mutex::Fer(PerThreadSynch *w) {
 | |
|   int c = 0;
 | |
|   ABSL_RAW_CHECK(w->waitp->cond == nullptr,
 | |
|                  "Mutex::Fer while waiting on Condition");
 | |
|   ABSL_RAW_CHECK(!w->waitp->timeout.has_timeout(),
 | |
|                  "Mutex::Fer while in timed wait");
 | |
|   ABSL_RAW_CHECK(w->waitp->cv_word == nullptr,
 | |
|                  "Mutex::Fer with pending CondVar queueing");
 | |
|   for (;;) {
 | |
|     intptr_t v = mu_.load(std::memory_order_relaxed);
 | |
|     // Note: must not queue if the mutex is unlocked (nobody will wake it).
 | |
|     // For example, we can have only kMuWait (conditional) or maybe
 | |
|     // kMuWait|kMuWrWait.
 | |
|     // conflicting != 0 implies that the waking thread cannot currently take
 | |
|     // the mutex, which in turn implies that someone else has it and can wake
 | |
|     // us if we queue.
 | |
|     const intptr_t conflicting =
 | |
|         kMuWriter | (w->waitp->how == kShared ? 0 : kMuReader);
 | |
|     if ((v & conflicting) == 0) {
 | |
|       w->next = nullptr;
 | |
|       w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
 | |
|       IncrementSynchSem(this, w);
 | |
|       return;
 | |
|     } else {
 | |
|       if ((v & (kMuSpin|kMuWait)) == 0) {       // no waiters
 | |
|         // This thread tries to become the one and only waiter.
 | |
|         PerThreadSynch *new_h = Enqueue(nullptr, w->waitp, v, kMuIsCond);
 | |
|         ABSL_RAW_CHECK(new_h != nullptr,
 | |
|                        "Enqueue failed");  // we must queue ourselves
 | |
|         if (mu_.compare_exchange_strong(
 | |
|                 v, reinterpret_cast<intptr_t>(new_h) | (v & kMuLow) | kMuWait,
 | |
|                 std::memory_order_release, std::memory_order_relaxed)) {
 | |
|           return;
 | |
|         }
 | |
|       } else if ((v & kMuSpin) == 0 &&
 | |
|                  mu_.compare_exchange_strong(v, v | kMuSpin | kMuWait)) {
 | |
|         PerThreadSynch *h = GetPerThreadSynch(v);
 | |
|         PerThreadSynch *new_h = Enqueue(h, w->waitp, v, kMuIsCond);
 | |
|         ABSL_RAW_CHECK(new_h != nullptr,
 | |
|                        "Enqueue failed");  // we must queue ourselves
 | |
|         do {
 | |
|           v = mu_.load(std::memory_order_relaxed);
 | |
|         } while (!mu_.compare_exchange_weak(
 | |
|             v,
 | |
|             (v & kMuLow & ~kMuSpin) | kMuWait |
 | |
|                 reinterpret_cast<intptr_t>(new_h),
 | |
|             std::memory_order_release, std::memory_order_relaxed));
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     c = Delay(c, GENTLE);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Mutex::AssertHeld() const {
 | |
|   if ((mu_.load(std::memory_order_relaxed) & kMuWriter) == 0) {
 | |
|     SynchEvent *e = GetSynchEvent(this);
 | |
|     ABSL_RAW_LOG(FATAL, "thread should hold write lock on Mutex %p %s",
 | |
|                  static_cast<const void *>(this),
 | |
|                  (e == nullptr ? "" : e->name));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Mutex::AssertReaderHeld() const {
 | |
|   if ((mu_.load(std::memory_order_relaxed) & (kMuReader | kMuWriter)) == 0) {
 | |
|     SynchEvent *e = GetSynchEvent(this);
 | |
|     ABSL_RAW_LOG(
 | |
|         FATAL, "thread should hold at least a read lock on Mutex %p %s",
 | |
|         static_cast<const void *>(this), (e == nullptr ? "" : e->name));
 | |
|   }
 | |
| }
 | |
| 
 | |
| // -------------------------------- condition variables
 | |
| static const intptr_t kCvSpin = 0x0001L;   // spinlock protects waiter list
 | |
| static const intptr_t kCvEvent = 0x0002L;  // record events
 | |
| 
 | |
| static const intptr_t kCvLow = 0x0003L;  // low order bits of CV
 | |
| 
 | |
| // Hack to make constant values available to gdb pretty printer
 | |
| enum { kGdbCvSpin = kCvSpin, kGdbCvEvent = kCvEvent, kGdbCvLow = kCvLow, };
 | |
| 
 | |
| static_assert(PerThreadSynch::kAlignment > kCvLow,
 | |
|               "PerThreadSynch::kAlignment must be greater than kCvLow");
 | |
| 
 | |
| void CondVar::EnableDebugLog(const char *name) {
 | |
|   SynchEvent *e = EnsureSynchEvent(&this->cv_, name, kCvEvent, kCvSpin);
 | |
|   e->log = true;
 | |
|   UnrefSynchEvent(e);
 | |
| }
 | |
| 
 | |
| CondVar::~CondVar() {
 | |
|   if ((cv_.load(std::memory_order_relaxed) & kCvEvent) != 0) {
 | |
|     ForgetSynchEvent(&this->cv_, kCvEvent, kCvSpin);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // Remove thread s from the list of waiters on this condition variable.
 | |
| void CondVar::Remove(PerThreadSynch *s) {
 | |
|   intptr_t v;
 | |
|   int c = 0;
 | |
|   for (v = cv_.load(std::memory_order_relaxed);;
 | |
|        v = cv_.load(std::memory_order_relaxed)) {
 | |
|     if ((v & kCvSpin) == 0 &&  // attempt to acquire spinlock
 | |
|         cv_.compare_exchange_strong(v, v | kCvSpin,
 | |
|                                     std::memory_order_acquire,
 | |
|                                     std::memory_order_relaxed)) {
 | |
|       PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
 | |
|       if (h != nullptr) {
 | |
|         PerThreadSynch *w = h;
 | |
|         while (w->next != s && w->next != h) {  // search for thread
 | |
|           w = w->next;
 | |
|         }
 | |
|         if (w->next == s) {           // found thread; remove it
 | |
|           w->next = s->next;
 | |
|           if (h == s) {
 | |
|             h = (w == s) ? nullptr : w;
 | |
|           }
 | |
|           s->next = nullptr;
 | |
|           s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
 | |
|         }
 | |
|       }
 | |
|                                       // release spinlock
 | |
|       cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
 | |
|                 std::memory_order_release);
 | |
|       return;
 | |
|     } else {
 | |
|       c = Delay(c, GENTLE);            // try again after a delay
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Queue thread waitp->thread on condition variable word cv_word using
 | |
| // wait parameters waitp.
 | |
| // We split this into a separate routine, rather than simply doing it as part
 | |
| // of WaitCommon().  If we were to queue ourselves on the condition variable
 | |
| // before calling Mutex::UnlockSlow(), the Mutex code might be re-entered (via
 | |
| // the logging code, or via a Condition function) and might potentially attempt
 | |
| // to block this thread.  That would be a problem if the thread were already on
 | |
| // a the condition variable waiter queue.  Thus, we use the waitp->cv_word
 | |
| // to tell the unlock code to call CondVarEnqueue() to queue the thread on the
 | |
| // condition variable queue just before the mutex is to be unlocked, and (most
 | |
| // importantly) after any call to an external routine that might re-enter the
 | |
| // mutex code.
 | |
| static void CondVarEnqueue(SynchWaitParams *waitp) {
 | |
|   // This thread might be transferred to the Mutex queue by Fer() when
 | |
|   // we are woken.  To make sure that is what happens, Enqueue() doesn't
 | |
|   // call CondVarEnqueue() again but instead uses its normal code.  We
 | |
|   // must do this before we queue ourselves so that cv_word will be null
 | |
|   // when seen by the dequeuer, who may wish immediately to requeue
 | |
|   // this thread on another queue.
 | |
|   std::atomic<intptr_t> *cv_word = waitp->cv_word;
 | |
|   waitp->cv_word = nullptr;
 | |
| 
 | |
|   intptr_t v = cv_word->load(std::memory_order_relaxed);
 | |
|   int c = 0;
 | |
|   while ((v & kCvSpin) != 0 ||  // acquire spinlock
 | |
|          !cv_word->compare_exchange_weak(v, v | kCvSpin,
 | |
|                                          std::memory_order_acquire,
 | |
|                                          std::memory_order_relaxed)) {
 | |
|     c = Delay(c, GENTLE);
 | |
|     v = cv_word->load(std::memory_order_relaxed);
 | |
|   }
 | |
|   ABSL_RAW_CHECK(waitp->thread->waitp == nullptr, "waiting when shouldn't be");
 | |
|   waitp->thread->waitp = waitp;      // prepare ourselves for waiting
 | |
|   PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
 | |
|   if (h == nullptr) {  // add this thread to waiter list
 | |
|     waitp->thread->next = waitp->thread;
 | |
|   } else {
 | |
|     waitp->thread->next = h->next;
 | |
|     h->next = waitp->thread;
 | |
|   }
 | |
|   waitp->thread->state.store(PerThreadSynch::kQueued,
 | |
|                              std::memory_order_relaxed);
 | |
|   cv_word->store((v & kCvEvent) | reinterpret_cast<intptr_t>(waitp->thread),
 | |
|                  std::memory_order_release);
 | |
| }
 | |
| 
 | |
| bool CondVar::WaitCommon(Mutex *mutex, KernelTimeout t) {
 | |
|   bool rc = false;          // return value; true iff we timed-out
 | |
| 
 | |
|   intptr_t mutex_v = mutex->mu_.load(std::memory_order_relaxed);
 | |
|   Mutex::MuHow mutex_how = ((mutex_v & kMuWriter) != 0) ? kExclusive : kShared;
 | |
|   ABSL_TSAN_MUTEX_PRE_UNLOCK(mutex, TsanFlags(mutex_how));
 | |
| 
 | |
|   // maybe trace this call
 | |
|   intptr_t v = cv_.load(std::memory_order_relaxed);
 | |
|   cond_var_tracer("Wait", this);
 | |
|   if ((v & kCvEvent) != 0) {
 | |
|     PostSynchEvent(this, SYNCH_EV_WAIT);
 | |
|   }
 | |
| 
 | |
|   // Release mu and wait on condition variable.
 | |
|   SynchWaitParams waitp(mutex_how, nullptr, t, mutex,
 | |
|                         Synch_GetPerThreadAnnotated(mutex), &cv_);
 | |
|   // UnlockSlow() will call CondVarEnqueue() just before releasing the
 | |
|   // Mutex, thus queuing this thread on the condition variable.  See
 | |
|   // CondVarEnqueue() for the reasons.
 | |
|   mutex->UnlockSlow(&waitp);
 | |
| 
 | |
|   // wait for signal
 | |
|   while (waitp.thread->state.load(std::memory_order_acquire) ==
 | |
|          PerThreadSynch::kQueued) {
 | |
|     if (!Mutex::DecrementSynchSem(mutex, waitp.thread, t)) {
 | |
|       this->Remove(waitp.thread);
 | |
|       rc = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ABSL_RAW_CHECK(waitp.thread->waitp != nullptr, "not waiting when should be");
 | |
|   waitp.thread->waitp = nullptr;  // cleanup
 | |
| 
 | |
|   // maybe trace this call
 | |
|   cond_var_tracer("Unwait", this);
 | |
|   if ((v & kCvEvent) != 0) {
 | |
|     PostSynchEvent(this, SYNCH_EV_WAIT_RETURNING);
 | |
|   }
 | |
| 
 | |
|   // From synchronization point of view Wait is unlock of the mutex followed
 | |
|   // by lock of the mutex. We've annotated start of unlock in the beginning
 | |
|   // of the function. Now, finish unlock and annotate lock of the mutex.
 | |
|   // (Trans is effectively lock).
 | |
|   ABSL_TSAN_MUTEX_POST_UNLOCK(mutex, TsanFlags(mutex_how));
 | |
|   ABSL_TSAN_MUTEX_PRE_LOCK(mutex, TsanFlags(mutex_how));
 | |
|   mutex->Trans(mutex_how);  // Reacquire mutex
 | |
|   ABSL_TSAN_MUTEX_POST_LOCK(mutex, TsanFlags(mutex_how), 0);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| bool CondVar::WaitWithTimeout(Mutex *mu, absl::Duration timeout) {
 | |
|   return WaitWithDeadline(mu, DeadlineFromTimeout(timeout));
 | |
| }
 | |
| 
 | |
| bool CondVar::WaitWithDeadline(Mutex *mu, absl::Time deadline) {
 | |
|   return WaitCommon(mu, KernelTimeout(deadline));
 | |
| }
 | |
| 
 | |
| void CondVar::Wait(Mutex *mu) {
 | |
|   WaitCommon(mu, KernelTimeout::Never());
 | |
| }
 | |
| 
 | |
| // Wake thread w
 | |
| // If it was a timed wait, w will be waiting on w->cv
 | |
| // Otherwise, if it was not a Mutex mutex, w will be waiting on w->sem
 | |
| // Otherwise, w is transferred to the Mutex mutex via Mutex::Fer().
 | |
| void CondVar::Wakeup(PerThreadSynch *w) {
 | |
|   if (w->waitp->timeout.has_timeout() || w->waitp->cvmu == nullptr) {
 | |
|     // The waiting thread only needs to observe "w->state == kAvailable" to be
 | |
|     // released, we must cache "cvmu" before clearing "next".
 | |
|     Mutex *mu = w->waitp->cvmu;
 | |
|     w->next = nullptr;
 | |
|     w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
 | |
|     Mutex::IncrementSynchSem(mu, w);
 | |
|   } else {
 | |
|     w->waitp->cvmu->Fer(w);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CondVar::Signal() {
 | |
|   ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0);
 | |
|   intptr_t v;
 | |
|   int c = 0;
 | |
|   for (v = cv_.load(std::memory_order_relaxed); v != 0;
 | |
|        v = cv_.load(std::memory_order_relaxed)) {
 | |
|     if ((v & kCvSpin) == 0 &&  // attempt to acquire spinlock
 | |
|         cv_.compare_exchange_strong(v, v | kCvSpin,
 | |
|                                     std::memory_order_acquire,
 | |
|                                     std::memory_order_relaxed)) {
 | |
|       PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
 | |
|       PerThreadSynch *w = nullptr;
 | |
|       if (h != nullptr) {  // remove first waiter
 | |
|         w = h->next;
 | |
|         if (w == h) {
 | |
|           h = nullptr;
 | |
|         } else {
 | |
|           h->next = w->next;
 | |
|         }
 | |
|       }
 | |
|                                       // release spinlock
 | |
|       cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
 | |
|                 std::memory_order_release);
 | |
|       if (w != nullptr) {
 | |
|         CondVar::Wakeup(w);                // wake waiter, if there was one
 | |
|         cond_var_tracer("Signal wakeup", this);
 | |
|       }
 | |
|       if ((v & kCvEvent) != 0) {
 | |
|         PostSynchEvent(this, SYNCH_EV_SIGNAL);
 | |
|       }
 | |
|       ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
 | |
|       return;
 | |
|     } else {
 | |
|       c = Delay(c, GENTLE);
 | |
|     }
 | |
|   }
 | |
|   ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
 | |
| }
 | |
| 
 | |
| void CondVar::SignalAll () {
 | |
|   ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0);
 | |
|   intptr_t v;
 | |
|   int c = 0;
 | |
|   for (v = cv_.load(std::memory_order_relaxed); v != 0;
 | |
|        v = cv_.load(std::memory_order_relaxed)) {
 | |
|     // empty the list if spinlock free
 | |
|     // We do this by simply setting the list to empty using
 | |
|     // compare and swap.   We then have the entire list in our hands,
 | |
|     // which cannot be changing since we grabbed it while no one
 | |
|     // held the lock.
 | |
|     if ((v & kCvSpin) == 0 &&
 | |
|         cv_.compare_exchange_strong(v, v & kCvEvent, std::memory_order_acquire,
 | |
|                                     std::memory_order_relaxed)) {
 | |
|       PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
 | |
|       if (h != nullptr) {
 | |
|         PerThreadSynch *w;
 | |
|         PerThreadSynch *n = h->next;
 | |
|         do {                          // for every thread, wake it up
 | |
|           w = n;
 | |
|           n = n->next;
 | |
|           CondVar::Wakeup(w);
 | |
|         } while (w != h);
 | |
|         cond_var_tracer("SignalAll wakeup", this);
 | |
|       }
 | |
|       if ((v & kCvEvent) != 0) {
 | |
|         PostSynchEvent(this, SYNCH_EV_SIGNALALL);
 | |
|       }
 | |
|       ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
 | |
|       return;
 | |
|     } else {
 | |
|       c = Delay(c, GENTLE);           // try again after a delay
 | |
|     }
 | |
|   }
 | |
|   ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
 | |
| }
 | |
| 
 | |
| void ReleasableMutexLock::Release() {
 | |
|   ABSL_RAW_CHECK(this->mu_ != nullptr,
 | |
|                  "ReleasableMutexLock::Release may only be called once");
 | |
|   this->mu_->Unlock();
 | |
|   this->mu_ = nullptr;
 | |
| }
 | |
| 
 | |
| #ifdef THREAD_SANITIZER
 | |
| extern "C" void __tsan_read1(void *addr);
 | |
| #else
 | |
| #define __tsan_read1(addr)  // do nothing if TSan not enabled
 | |
| #endif
 | |
| 
 | |
| // A function that just returns its argument, dereferenced
 | |
| static bool Dereference(void *arg) {
 | |
|   // ThreadSanitizer does not instrument this file for memory accesses.
 | |
|   // This function dereferences a user variable that can participate
 | |
|   // in a data race, so we need to manually tell TSan about this memory access.
 | |
|   __tsan_read1(arg);
 | |
|   return *(static_cast<bool *>(arg));
 | |
| }
 | |
| 
 | |
| Condition::Condition() {}   // null constructor, used for kTrue only
 | |
| const Condition Condition::kTrue;
 | |
| 
 | |
| Condition::Condition(bool (*func)(void *), void *arg)
 | |
|     : eval_(&CallVoidPtrFunction),
 | |
|       function_(func),
 | |
|       method_(nullptr),
 | |
|       arg_(arg) {}
 | |
| 
 | |
| bool Condition::CallVoidPtrFunction(const Condition *c) {
 | |
|   return (*c->function_)(c->arg_);
 | |
| }
 | |
| 
 | |
| Condition::Condition(const bool *cond)
 | |
|     : eval_(CallVoidPtrFunction),
 | |
|       function_(Dereference),
 | |
|       method_(nullptr),
 | |
|       // const_cast is safe since Dereference does not modify arg
 | |
|       arg_(const_cast<bool *>(cond)) {}
 | |
| 
 | |
| bool Condition::Eval() const {
 | |
|   // eval_ == null for kTrue
 | |
|   return (this->eval_ == nullptr) || (*this->eval_)(this);
 | |
| }
 | |
| 
 | |
| bool Condition::GuaranteedEqual(const Condition *a, const Condition *b) {
 | |
|   if (a == nullptr) {
 | |
|     return b == nullptr || b->eval_ == nullptr;
 | |
|   }
 | |
|   if (b == nullptr || b->eval_ == nullptr) {
 | |
|     return a->eval_ == nullptr;
 | |
|   }
 | |
|   return a->eval_ == b->eval_ && a->function_ == b->function_ &&
 | |
|          a->arg_ == b->arg_ && a->method_ == b->method_;
 | |
| }
 | |
| 
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 |