git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			241 lines
		
	
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			241 lines
		
	
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//
 | 
						|
// Copyright 2017 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      https://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
//
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// File: optimization.h
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// This header file defines portable macros for performance optimization.
 | 
						|
 | 
						|
#ifndef ABSL_BASE_OPTIMIZATION_H_
 | 
						|
#define ABSL_BASE_OPTIMIZATION_H_
 | 
						|
 | 
						|
#include "absl/base/config.h"
 | 
						|
 | 
						|
// ABSL_BLOCK_TAIL_CALL_OPTIMIZATION
 | 
						|
//
 | 
						|
// Instructs the compiler to avoid optimizing tail-call recursion. Use of this
 | 
						|
// macro is useful when you wish to preserve the existing function order within
 | 
						|
// a stack trace for logging, debugging, or profiling purposes.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   int f() {
 | 
						|
//     int result = g();
 | 
						|
//     ABSL_BLOCK_TAIL_CALL_OPTIMIZATION();
 | 
						|
//     return result;
 | 
						|
//   }
 | 
						|
#if defined(__pnacl__)
 | 
						|
#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; }
 | 
						|
#elif defined(__clang__)
 | 
						|
// Clang will not tail call given inline volatile assembly.
 | 
						|
#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("")
 | 
						|
#elif defined(__GNUC__)
 | 
						|
// GCC will not tail call given inline volatile assembly.
 | 
						|
#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("")
 | 
						|
#elif defined(_MSC_VER)
 | 
						|
#include <intrin.h>
 | 
						|
// The __nop() intrinsic blocks the optimisation.
 | 
						|
#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __nop()
 | 
						|
#else
 | 
						|
#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; }
 | 
						|
#endif
 | 
						|
 | 
						|
// ABSL_CACHELINE_SIZE
 | 
						|
//
 | 
						|
// Explicitly defines the size of the L1 cache for purposes of alignment.
 | 
						|
// Setting the cacheline size allows you to specify that certain objects be
 | 
						|
// aligned on a cacheline boundary with `ABSL_CACHELINE_ALIGNED` declarations.
 | 
						|
// (See below.)
 | 
						|
//
 | 
						|
// NOTE: this macro should be replaced with the following C++17 features, when
 | 
						|
// those are generally available:
 | 
						|
//
 | 
						|
//   * `std::hardware_constructive_interference_size`
 | 
						|
//   * `std::hardware_destructive_interference_size`
 | 
						|
//
 | 
						|
// See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html
 | 
						|
// for more information.
 | 
						|
#if defined(__GNUC__)
 | 
						|
// Cache line alignment
 | 
						|
#if defined(__i386__) || defined(__x86_64__)
 | 
						|
#define ABSL_CACHELINE_SIZE 64
 | 
						|
#elif defined(__powerpc64__)
 | 
						|
#define ABSL_CACHELINE_SIZE 128
 | 
						|
#elif defined(__aarch64__)
 | 
						|
// We would need to read special register ctr_el0 to find out L1 dcache size.
 | 
						|
// This value is a good estimate based on a real aarch64 machine.
 | 
						|
#define ABSL_CACHELINE_SIZE 64
 | 
						|
#elif defined(__arm__)
 | 
						|
// Cache line sizes for ARM: These values are not strictly correct since
 | 
						|
// cache line sizes depend on implementations, not architectures.  There
 | 
						|
// are even implementations with cache line sizes configurable at boot
 | 
						|
// time.
 | 
						|
#if defined(__ARM_ARCH_5T__)
 | 
						|
#define ABSL_CACHELINE_SIZE 32
 | 
						|
#elif defined(__ARM_ARCH_7A__)
 | 
						|
#define ABSL_CACHELINE_SIZE 64
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef ABSL_CACHELINE_SIZE
 | 
						|
// A reasonable default guess.  Note that overestimates tend to waste more
 | 
						|
// space, while underestimates tend to waste more time.
 | 
						|
#define ABSL_CACHELINE_SIZE 64
 | 
						|
#endif
 | 
						|
 | 
						|
// ABSL_CACHELINE_ALIGNED
 | 
						|
//
 | 
						|
// Indicates that the declared object be cache aligned using
 | 
						|
// `ABSL_CACHELINE_SIZE` (see above). Cacheline aligning objects allows you to
 | 
						|
// load a set of related objects in the L1 cache for performance improvements.
 | 
						|
// Cacheline aligning objects properly allows constructive memory sharing and
 | 
						|
// prevents destructive (or "false") memory sharing.
 | 
						|
//
 | 
						|
// NOTE: this macro should be replaced with usage of `alignas()` using
 | 
						|
// `std::hardware_constructive_interference_size` and/or
 | 
						|
// `std::hardware_destructive_interference_size` when available within C++17.
 | 
						|
//
 | 
						|
// See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html
 | 
						|
// for more information.
 | 
						|
//
 | 
						|
// On some compilers, `ABSL_CACHELINE_ALIGNED` expands to an `__attribute__`
 | 
						|
// or `__declspec` attribute. For compilers where this is not known to work,
 | 
						|
// the macro expands to nothing.
 | 
						|
//
 | 
						|
// No further guarantees are made here. The result of applying the macro
 | 
						|
// to variables and types is always implementation-defined.
 | 
						|
//
 | 
						|
// WARNING: It is easy to use this attribute incorrectly, even to the point
 | 
						|
// of causing bugs that are difficult to diagnose, crash, etc. It does not
 | 
						|
// of itself guarantee that objects are aligned to a cache line.
 | 
						|
//
 | 
						|
// NOTE: Some compilers are picky about the locations of annotations such as
 | 
						|
// this attribute, so prefer to put it at the beginning of your declaration.
 | 
						|
// For example,
 | 
						|
//
 | 
						|
//   ABSL_CACHELINE_ALIGNED static Foo* foo = ...
 | 
						|
//
 | 
						|
//   class ABSL_CACHELINE_ALIGNED Bar { ...
 | 
						|
//
 | 
						|
// Recommendations:
 | 
						|
//
 | 
						|
// 1) Consult compiler documentation; this comment is not kept in sync as
 | 
						|
//    toolchains evolve.
 | 
						|
// 2) Verify your use has the intended effect. This often requires inspecting
 | 
						|
//    the generated machine code.
 | 
						|
// 3) Prefer applying this attribute to individual variables. Avoid
 | 
						|
//    applying it to types. This tends to localize the effect.
 | 
						|
#define ABSL_CACHELINE_ALIGNED __attribute__((aligned(ABSL_CACHELINE_SIZE)))
 | 
						|
#elif defined(_MSC_VER)
 | 
						|
#define ABSL_CACHELINE_SIZE 64
 | 
						|
#define ABSL_CACHELINE_ALIGNED __declspec(align(ABSL_CACHELINE_SIZE))
 | 
						|
#else
 | 
						|
#define ABSL_CACHELINE_SIZE 64
 | 
						|
#define ABSL_CACHELINE_ALIGNED
 | 
						|
#endif
 | 
						|
 | 
						|
// ABSL_PREDICT_TRUE, ABSL_PREDICT_FALSE
 | 
						|
//
 | 
						|
// Enables the compiler to prioritize compilation using static analysis for
 | 
						|
// likely paths within a boolean branch.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   if (ABSL_PREDICT_TRUE(expression)) {
 | 
						|
//     return result;                        // Faster if more likely
 | 
						|
//   } else {
 | 
						|
//     return 0;
 | 
						|
//   }
 | 
						|
//
 | 
						|
// Compilers can use the information that a certain branch is not likely to be
 | 
						|
// taken (for instance, a CHECK failure) to optimize for the common case in
 | 
						|
// the absence of better information (ie. compiling gcc with `-fprofile-arcs`).
 | 
						|
//
 | 
						|
// Recommendation: Modern CPUs dynamically predict branch execution paths,
 | 
						|
// typically with accuracy greater than 97%. As a result, annotating every
 | 
						|
// branch in a codebase is likely counterproductive; however, annotating
 | 
						|
// specific branches that are both hot and consistently mispredicted is likely
 | 
						|
// to yield performance improvements.
 | 
						|
#if ABSL_HAVE_BUILTIN(__builtin_expect) || \
 | 
						|
    (defined(__GNUC__) && !defined(__clang__))
 | 
						|
#define ABSL_PREDICT_FALSE(x) (__builtin_expect(x, 0))
 | 
						|
#define ABSL_PREDICT_TRUE(x) (__builtin_expect(false || (x), true))
 | 
						|
#else
 | 
						|
#define ABSL_PREDICT_FALSE(x) (x)
 | 
						|
#define ABSL_PREDICT_TRUE(x) (x)
 | 
						|
#endif
 | 
						|
 | 
						|
// ABSL_INTERNAL_ASSUME(cond)
 | 
						|
// Informs the compiler than a condition is always true and that it can assume
 | 
						|
// it to be true for optimization purposes. The call has undefined behavior if
 | 
						|
// the condition is false.
 | 
						|
// In !NDEBUG mode, the condition is checked with an assert().
 | 
						|
// NOTE: The expression must not have side effects, as it will only be evaluated
 | 
						|
// in some compilation modes and not others.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   int x = ...;
 | 
						|
//   ABSL_INTERNAL_ASSUME(x >= 0);
 | 
						|
//   // The compiler can optimize the division to a simple right shift using the
 | 
						|
//   // assumption specified above.
 | 
						|
//   int y = x / 16;
 | 
						|
//
 | 
						|
#if !defined(NDEBUG)
 | 
						|
#define ABSL_INTERNAL_ASSUME(cond) assert(cond)
 | 
						|
#elif ABSL_HAVE_BUILTIN(__builtin_assume)
 | 
						|
#define ABSL_INTERNAL_ASSUME(cond) __builtin_assume(cond)
 | 
						|
#elif defined(__GNUC__) || ABSL_HAVE_BUILTIN(__builtin_unreachable)
 | 
						|
#define ABSL_INTERNAL_ASSUME(cond)        \
 | 
						|
  do {                                    \
 | 
						|
    if (!(cond)) __builtin_unreachable(); \
 | 
						|
  } while (0)
 | 
						|
#elif defined(_MSC_VER)
 | 
						|
#define ABSL_INTERNAL_ASSUME(cond) __assume(cond)
 | 
						|
#else
 | 
						|
#define ABSL_INTERNAL_ASSUME(cond)      \
 | 
						|
  do {                                  \
 | 
						|
    static_cast<void>(false && (cond)); \
 | 
						|
  } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
// ABSL_INTERNAL_UNIQUE_SMALL_NAME(cond)
 | 
						|
// This macro forces small unique name on a static file level symbols like
 | 
						|
// static local variables or static functions. This is intended to be used in
 | 
						|
// macro definitions to optimize the cost of generated code. Do NOT use it on
 | 
						|
// symbols exported from translation unit since it may casue a link time
 | 
						|
// conflict.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
// #define MY_MACRO(txt)
 | 
						|
// namespace {
 | 
						|
//  char VeryVeryLongVarName[] ABSL_INTERNAL_UNIQUE_SMALL_NAME() = txt;
 | 
						|
//  const char* VeryVeryLongFuncName() ABSL_INTERNAL_UNIQUE_SMALL_NAME();
 | 
						|
//  const char* VeryVeryLongFuncName() { return txt; }
 | 
						|
// }
 | 
						|
//
 | 
						|
 | 
						|
#if defined(__GNUC__)
 | 
						|
#define ABSL_INTERNAL_UNIQUE_SMALL_NAME2(x) #x
 | 
						|
#define ABSL_INTERNAL_UNIQUE_SMALL_NAME1(x) ABSL_INTERNAL_UNIQUE_SMALL_NAME2(x)
 | 
						|
#define ABSL_INTERNAL_UNIQUE_SMALL_NAME() \
 | 
						|
  asm(ABSL_INTERNAL_UNIQUE_SMALL_NAME1(.absl.__COUNTER__))
 | 
						|
#else
 | 
						|
#define ABSL_INTERNAL_UNIQUE_SMALL_NAME()
 | 
						|
#endif
 | 
						|
 | 
						|
#endif  // ABSL_BASE_OPTIMIZATION_H_
 |