git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			165 lines
		
	
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			165 lines
		
	
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2017 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      https://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
#ifndef ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_
 | 
						|
#define ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_
 | 
						|
 | 
						|
#include <cassert>
 | 
						|
#include <cmath>
 | 
						|
#include <istream>
 | 
						|
#include <limits>
 | 
						|
#include <type_traits>
 | 
						|
 | 
						|
#include "absl/meta/type_traits.h"
 | 
						|
#include "absl/random/internal/fast_uniform_bits.h"
 | 
						|
#include "absl/random/internal/generate_real.h"
 | 
						|
#include "absl/random/internal/iostream_state_saver.h"
 | 
						|
 | 
						|
namespace absl {
 | 
						|
ABSL_NAMESPACE_BEGIN
 | 
						|
 | 
						|
// absl::exponential_distribution:
 | 
						|
// Generates a number conforming to an exponential distribution and is
 | 
						|
// equivalent to the standard [rand.dist.pois.exp] distribution.
 | 
						|
template <typename RealType = double>
 | 
						|
class exponential_distribution {
 | 
						|
 public:
 | 
						|
  using result_type = RealType;
 | 
						|
 | 
						|
  class param_type {
 | 
						|
   public:
 | 
						|
    using distribution_type = exponential_distribution;
 | 
						|
 | 
						|
    explicit param_type(result_type lambda = 1) : lambda_(lambda) {
 | 
						|
      assert(lambda > 0);
 | 
						|
      neg_inv_lambda_ = -result_type(1) / lambda_;
 | 
						|
    }
 | 
						|
 | 
						|
    result_type lambda() const { return lambda_; }
 | 
						|
 | 
						|
    friend bool operator==(const param_type& a, const param_type& b) {
 | 
						|
      return a.lambda_ == b.lambda_;
 | 
						|
    }
 | 
						|
 | 
						|
    friend bool operator!=(const param_type& a, const param_type& b) {
 | 
						|
      return !(a == b);
 | 
						|
    }
 | 
						|
 | 
						|
   private:
 | 
						|
    friend class exponential_distribution;
 | 
						|
 | 
						|
    result_type lambda_;
 | 
						|
    result_type neg_inv_lambda_;
 | 
						|
 | 
						|
    static_assert(
 | 
						|
        std::is_floating_point<RealType>::value,
 | 
						|
        "Class-template absl::exponential_distribution<> must be parameterized "
 | 
						|
        "using a floating-point type.");
 | 
						|
  };
 | 
						|
 | 
						|
  exponential_distribution() : exponential_distribution(1) {}
 | 
						|
 | 
						|
  explicit exponential_distribution(result_type lambda) : param_(lambda) {}
 | 
						|
 | 
						|
  explicit exponential_distribution(const param_type& p) : param_(p) {}
 | 
						|
 | 
						|
  void reset() {}
 | 
						|
 | 
						|
  // Generating functions
 | 
						|
  template <typename URBG>
 | 
						|
  result_type operator()(URBG& g) {  // NOLINT(runtime/references)
 | 
						|
    return (*this)(g, param_);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename URBG>
 | 
						|
  result_type operator()(URBG& g,  // NOLINT(runtime/references)
 | 
						|
                         const param_type& p);
 | 
						|
 | 
						|
  param_type param() const { return param_; }
 | 
						|
  void param(const param_type& p) { param_ = p; }
 | 
						|
 | 
						|
  result_type(min)() const { return 0; }
 | 
						|
  result_type(max)() const {
 | 
						|
    return std::numeric_limits<result_type>::infinity();
 | 
						|
  }
 | 
						|
 | 
						|
  result_type lambda() const { return param_.lambda(); }
 | 
						|
 | 
						|
  friend bool operator==(const exponential_distribution& a,
 | 
						|
                         const exponential_distribution& b) {
 | 
						|
    return a.param_ == b.param_;
 | 
						|
  }
 | 
						|
  friend bool operator!=(const exponential_distribution& a,
 | 
						|
                         const exponential_distribution& b) {
 | 
						|
    return a.param_ != b.param_;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  param_type param_;
 | 
						|
  random_internal::FastUniformBits<uint64_t> fast_u64_;
 | 
						|
};
 | 
						|
 | 
						|
// --------------------------------------------------------------------------
 | 
						|
// Implementation details follow
 | 
						|
// --------------------------------------------------------------------------
 | 
						|
 | 
						|
template <typename RealType>
 | 
						|
template <typename URBG>
 | 
						|
typename exponential_distribution<RealType>::result_type
 | 
						|
exponential_distribution<RealType>::operator()(
 | 
						|
    URBG& g,  // NOLINT(runtime/references)
 | 
						|
    const param_type& p) {
 | 
						|
  using random_internal::GenerateNegativeTag;
 | 
						|
  using random_internal::GenerateRealFromBits;
 | 
						|
  using real_type =
 | 
						|
      absl::conditional_t<std::is_same<RealType, float>::value, float, double>;
 | 
						|
 | 
						|
  const result_type u = GenerateRealFromBits<real_type, GenerateNegativeTag,
 | 
						|
                                             false>(fast_u64_(g));  // U(-1, 0)
 | 
						|
 | 
						|
  // log1p(-x) is mathematically equivalent to log(1 - x) but has more
 | 
						|
  // accuracy for x near zero.
 | 
						|
  return p.neg_inv_lambda_ * std::log1p(u);
 | 
						|
}
 | 
						|
 | 
						|
template <typename CharT, typename Traits, typename RealType>
 | 
						|
std::basic_ostream<CharT, Traits>& operator<<(
 | 
						|
    std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
 | 
						|
    const exponential_distribution<RealType>& x) {
 | 
						|
  auto saver = random_internal::make_ostream_state_saver(os);
 | 
						|
  os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);
 | 
						|
  os << x.lambda();
 | 
						|
  return os;
 | 
						|
}
 | 
						|
 | 
						|
template <typename CharT, typename Traits, typename RealType>
 | 
						|
std::basic_istream<CharT, Traits>& operator>>(
 | 
						|
    std::basic_istream<CharT, Traits>& is,    // NOLINT(runtime/references)
 | 
						|
    exponential_distribution<RealType>& x) {  // NOLINT(runtime/references)
 | 
						|
  using result_type = typename exponential_distribution<RealType>::result_type;
 | 
						|
  using param_type = typename exponential_distribution<RealType>::param_type;
 | 
						|
  result_type lambda;
 | 
						|
 | 
						|
  auto saver = random_internal::make_istream_state_saver(is);
 | 
						|
  lambda = random_internal::read_floating_point<result_type>(is);
 | 
						|
  if (!is.fail()) {
 | 
						|
    x.param(param_type(lambda));
 | 
						|
  }
 | 
						|
  return is;
 | 
						|
}
 | 
						|
 | 
						|
ABSL_NAMESPACE_END
 | 
						|
}  // namespace absl
 | 
						|
 | 
						|
#endif  // ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_
 |