-- 049ac45508e335c6f010f2d28d71016b9fa65b4e by Derek Mauro <dmauro@google.com>: Fix librt detection PiperOrigin-RevId: 280207723 -- 6382c3a9fb2643af9dc031f92ca846c4a78e249c by Andy Getzendanner <durandal@google.com>: Fix Conan builds Import of https://github.com/abseil/abseil-cpp/pull/400 PiperOrigin-RevId: 280025424 -- aebcd52b1686ac82663a8d0193b60d0122a43372 by Samuel Benzaquen <sbenza@google.com>: Enable the assertion in the iterator's operator== and operator!= PiperOrigin-RevId: 279998951 -- 5b61d909e2159ac6fd45e0e456818db1e725ecd1 by Derek Mauro <dmauro@google.com>: Add best effort support for compiling much of Abseil with MinGW. This involves disabling ABSL_ATTRIBUTE_WEAK and adding link flags. A change to CCTZ is still necessary. Tests were not run yet, but most of them now build. PiperOrigin-RevId: 279966541 -- 4336f8b10cff906e2defdd7d1d449cde4907da5d by Abseil Team <absl-team@google.com>: Add comments and relax memory orders in base_internal::CallOnceImpl. Add a comment to document the memory order guarantee if base_internal::SpinLockWait() is called and returns kOnceDone. Add a comment for the load/store sequence in base_internal::CallOnceImpl based on Mike Burrows' explanation. The atomic load of 'control' in the #ifndef NDEBUG block does not need std::memory_order_acquire. It can use std::memory_order_relaxed. The atomic compare_exchange_strong of 'control' does not need std::memory_order_acquire in the success case. It can use std::memory_order_relaxed. PiperOrigin-RevId: 279814155 -- 407de3a5e9af957cded54a136ca0468bde620d4d by Abseil Team <absl-team@google.com>: Added a script to generate abseil.podspec from all BUILD.bazel files automatically. PiperOrigin-RevId: 279811441 -- 26139497d4a363d6c7bc989c554da593e8819a07 by Derek Mauro <dmauro@google.com>: Add missing copyright and Apache License to //absl/functional/BUILD.bazel PiperOrigin-RevId: 279795227 -- 98ed625b02af6e5834edf52a920d8ca2dab4cd90 by Matt Kulukundis <kfm@google.com>: Switch the implementation of hashtablez to *only* work on platforms that have a PER_THREAD_TLS. The old case is very slow (global mutex) and nobody collects data from that configuration anyway. PiperOrigin-RevId: 279775149 -- 07225900ef672c005c38f467ad3f92f38d0922b3 by Derek Mauro <dmauro@google.com>: Remove the minumum glibc version check PiperOrigin-RevId: 279750412 -- ec09956a951b4f52228ecc81968b8db7ae19ed15 by Derek Mauro <dmauro@google.com>: CMake only: link with -lrt to support older glibc versions PiperOrigin-RevId: 279741661 -- 97b113fb2e8246f6152c36330ba13793b37154b6 by Xiaoyi Zhang <zhangxy@google.com>: Internal change. PiperOrigin-RevId: 279390188 -- ca8f72f2721546cc9b01bd01b2ea144962e6e0c5 by Andy Getzendanner <durandal@google.com>: Expose PutTwoDigits for internal use within Abseil. PiperOrigin-RevId: 279374239 -- 14c6384cc03bbdfdefd2e4b635f104af5dd7e026 by Derek Mauro <dmauro@google.com>: Remove log_severity sources from the base target. They are already compiled as part of a separate library. PiperOrigin-RevId: 279372619 -- 3c5d926c718f8bf394e3bee87b6ba8d94601e0d3 by Abseil Team <absl-team@google.com>: s/indepdent/independent/g in SimpleAtof's documentation. PiperOrigin-RevId: 279350836 -- de2c44be8a8edf9efa1fe2007cba3564f3e5b0b8 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 279346990 -- 2ba078341423fcf6d0ba5ca1831f86570a26e615 by Samuel Benzaquen <sbenza@google.com>: Add hash support for std::wstring, std::u16string and std::u32string. PiperOrigin-RevId: 279320672 -- 3272d3ffcfa55283a04f90e5868701912da95ef7 by Andy Soffer <asoffer@google.com>: Removing a bunch of __restricts that amount to no performance differences. One of these is the cause of https://github.com/abseil/abseil-cpp/issues/396. In particular, in one of the Vector128Store functions, restricts on two pointers that were indeed aliased seems to be the root cause of the issues. Closes #396 PiperOrigin-RevId: 279318999 -- 342f338ab31cc24344d5de8f28cf455bbb629a17 by Jorg Brown <jorg@google.com>: Support uint128 in SimpleAtoi PiperOrigin-RevId: 279234038 -- 81cb0a04cf2dc4515d303679fc60968712191571 by Derek Mauro <dmauro@google.com>: Change the check for futex availability to support older Linux systems PiperOrigin-RevId: 279147079 -- cb4ca4aa4c8d2d710a5d483c56c4ce4f979e14b1 by Abseil Team <absl-team@google.com>: Add IWYU pragma: export for int128 .inc files. PiperOrigin-RevId: 279107098 -- b8df86ef610c366729f07326c726f3e34817b4dd by Abseil Team <absl-team@google.com>: An optimization for Waiter::Post() in the SEM waiter mode. Like the FUTEX waiter mode, Waiter::Post() only needs to call Poke() if it incremented the atomic variable from 0. PiperOrigin-RevId: 279086133 GitOrigin-RevId: 049ac45508e335c6f010f2d28d71016b9fa65b4e Change-Id: I4c1a4073fff62cb6a1fcb1c104aa7d62dad588c2
		
			
				
	
	
		
			1866 lines
		
	
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1866 lines
		
	
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2018 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      https://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
//
 | 
						|
// An open-addressing
 | 
						|
// hashtable with quadratic probing.
 | 
						|
//
 | 
						|
// This is a low level hashtable on top of which different interfaces can be
 | 
						|
// implemented, like flat_hash_set, node_hash_set, string_hash_set, etc.
 | 
						|
//
 | 
						|
// The table interface is similar to that of std::unordered_set. Notable
 | 
						|
// differences are that most member functions support heterogeneous keys when
 | 
						|
// BOTH the hash and eq functions are marked as transparent. They do so by
 | 
						|
// providing a typedef called `is_transparent`.
 | 
						|
//
 | 
						|
// When heterogeneous lookup is enabled, functions that take key_type act as if
 | 
						|
// they have an overload set like:
 | 
						|
//
 | 
						|
//   iterator find(const key_type& key);
 | 
						|
//   template <class K>
 | 
						|
//   iterator find(const K& key);
 | 
						|
//
 | 
						|
//   size_type erase(const key_type& key);
 | 
						|
//   template <class K>
 | 
						|
//   size_type erase(const K& key);
 | 
						|
//
 | 
						|
//   std::pair<iterator, iterator> equal_range(const key_type& key);
 | 
						|
//   template <class K>
 | 
						|
//   std::pair<iterator, iterator> equal_range(const K& key);
 | 
						|
//
 | 
						|
// When heterogeneous lookup is disabled, only the explicit `key_type` overloads
 | 
						|
// exist.
 | 
						|
//
 | 
						|
// find() also supports passing the hash explicitly:
 | 
						|
//
 | 
						|
//   iterator find(const key_type& key, size_t hash);
 | 
						|
//   template <class U>
 | 
						|
//   iterator find(const U& key, size_t hash);
 | 
						|
//
 | 
						|
// In addition the pointer to element and iterator stability guarantees are
 | 
						|
// weaker: all iterators and pointers are invalidated after a new element is
 | 
						|
// inserted.
 | 
						|
//
 | 
						|
// IMPLEMENTATION DETAILS
 | 
						|
//
 | 
						|
// The table stores elements inline in a slot array. In addition to the slot
 | 
						|
// array the table maintains some control state per slot. The extra state is one
 | 
						|
// byte per slot and stores empty or deleted marks, or alternatively 7 bits from
 | 
						|
// the hash of an occupied slot. The table is split into logical groups of
 | 
						|
// slots, like so:
 | 
						|
//
 | 
						|
//      Group 1         Group 2        Group 3
 | 
						|
// +---------------+---------------+---------------+
 | 
						|
// | | | | | | | | | | | | | | | | | | | | | | | | |
 | 
						|
// +---------------+---------------+---------------+
 | 
						|
//
 | 
						|
// On lookup the hash is split into two parts:
 | 
						|
// - H2: 7 bits (those stored in the control bytes)
 | 
						|
// - H1: the rest of the bits
 | 
						|
// The groups are probed using H1. For each group the slots are matched to H2 in
 | 
						|
// parallel. Because H2 is 7 bits (128 states) and the number of slots per group
 | 
						|
// is low (8 or 16) in almost all cases a match in H2 is also a lookup hit.
 | 
						|
//
 | 
						|
// On insert, once the right group is found (as in lookup), its slots are
 | 
						|
// filled in order.
 | 
						|
//
 | 
						|
// On erase a slot is cleared. In case the group did not have any empty slots
 | 
						|
// before the erase, the erased slot is marked as deleted.
 | 
						|
//
 | 
						|
// Groups without empty slots (but maybe with deleted slots) extend the probe
 | 
						|
// sequence. The probing algorithm is quadratic. Given N the number of groups,
 | 
						|
// the probing function for the i'th probe is:
 | 
						|
//
 | 
						|
//   P(0) = H1 % N
 | 
						|
//
 | 
						|
//   P(i) = (P(i - 1) + i) % N
 | 
						|
//
 | 
						|
// This probing function guarantees that after N probes, all the groups of the
 | 
						|
// table will be probed exactly once.
 | 
						|
 | 
						|
#ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
 | 
						|
#define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <cmath>
 | 
						|
#include <cstdint>
 | 
						|
#include <cstring>
 | 
						|
#include <iterator>
 | 
						|
#include <limits>
 | 
						|
#include <memory>
 | 
						|
#include <tuple>
 | 
						|
#include <type_traits>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
#include "absl/base/internal/bits.h"
 | 
						|
#include "absl/base/internal/endian.h"
 | 
						|
#include "absl/base/port.h"
 | 
						|
#include "absl/container/internal/common.h"
 | 
						|
#include "absl/container/internal/compressed_tuple.h"
 | 
						|
#include "absl/container/internal/container_memory.h"
 | 
						|
#include "absl/container/internal/hash_policy_traits.h"
 | 
						|
#include "absl/container/internal/hashtable_debug_hooks.h"
 | 
						|
#include "absl/container/internal/hashtablez_sampler.h"
 | 
						|
#include "absl/container/internal/have_sse.h"
 | 
						|
#include "absl/container/internal/layout.h"
 | 
						|
#include "absl/memory/memory.h"
 | 
						|
#include "absl/meta/type_traits.h"
 | 
						|
#include "absl/utility/utility.h"
 | 
						|
 | 
						|
namespace absl {
 | 
						|
namespace container_internal {
 | 
						|
 | 
						|
template <size_t Width>
 | 
						|
class probe_seq {
 | 
						|
 public:
 | 
						|
  probe_seq(size_t hash, size_t mask) {
 | 
						|
    assert(((mask + 1) & mask) == 0 && "not a mask");
 | 
						|
    mask_ = mask;
 | 
						|
    offset_ = hash & mask_;
 | 
						|
  }
 | 
						|
  size_t offset() const { return offset_; }
 | 
						|
  size_t offset(size_t i) const { return (offset_ + i) & mask_; }
 | 
						|
 | 
						|
  void next() {
 | 
						|
    index_ += Width;
 | 
						|
    offset_ += index_;
 | 
						|
    offset_ &= mask_;
 | 
						|
  }
 | 
						|
  // 0-based probe index. The i-th probe in the probe sequence.
 | 
						|
  size_t index() const { return index_; }
 | 
						|
 | 
						|
 private:
 | 
						|
  size_t mask_;
 | 
						|
  size_t offset_;
 | 
						|
  size_t index_ = 0;
 | 
						|
};
 | 
						|
 | 
						|
template <class ContainerKey, class Hash, class Eq>
 | 
						|
struct RequireUsableKey {
 | 
						|
  template <class PassedKey, class... Args>
 | 
						|
  std::pair<
 | 
						|
      decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())),
 | 
						|
      decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(),
 | 
						|
                                         std::declval<const PassedKey&>()))>*
 | 
						|
  operator()(const PassedKey&, const Args&...) const;
 | 
						|
};
 | 
						|
 | 
						|
template <class E, class Policy, class Hash, class Eq, class... Ts>
 | 
						|
struct IsDecomposable : std::false_type {};
 | 
						|
 | 
						|
template <class Policy, class Hash, class Eq, class... Ts>
 | 
						|
struct IsDecomposable<
 | 
						|
    absl::void_t<decltype(
 | 
						|
        Policy::apply(RequireUsableKey<typename Policy::key_type, Hash, Eq>(),
 | 
						|
                      std::declval<Ts>()...))>,
 | 
						|
    Policy, Hash, Eq, Ts...> : std::true_type {};
 | 
						|
 | 
						|
// TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it.
 | 
						|
template <class T>
 | 
						|
constexpr bool IsNoThrowSwappable() {
 | 
						|
  using std::swap;
 | 
						|
  return noexcept(swap(std::declval<T&>(), std::declval<T&>()));
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
int TrailingZeros(T x) {
 | 
						|
  return sizeof(T) == 8 ? base_internal::CountTrailingZerosNonZero64(
 | 
						|
                              static_cast<uint64_t>(x))
 | 
						|
                        : base_internal::CountTrailingZerosNonZero32(
 | 
						|
                              static_cast<uint32_t>(x));
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
int LeadingZeros(T x) {
 | 
						|
  return sizeof(T) == 8
 | 
						|
             ? base_internal::CountLeadingZeros64(static_cast<uint64_t>(x))
 | 
						|
             : base_internal::CountLeadingZeros32(static_cast<uint32_t>(x));
 | 
						|
}
 | 
						|
 | 
						|
// An abstraction over a bitmask. It provides an easy way to iterate through the
 | 
						|
// indexes of the set bits of a bitmask.  When Shift=0 (platforms with SSE),
 | 
						|
// this is a true bitmask.  On non-SSE, platforms the arithematic used to
 | 
						|
// emulate the SSE behavior works in bytes (Shift=3) and leaves each bytes as
 | 
						|
// either 0x00 or 0x80.
 | 
						|
//
 | 
						|
// For example:
 | 
						|
//   for (int i : BitMask<uint32_t, 16>(0x5)) -> yields 0, 2
 | 
						|
//   for (int i : BitMask<uint64_t, 8, 3>(0x0000000080800000)) -> yields 2, 3
 | 
						|
template <class T, int SignificantBits, int Shift = 0>
 | 
						|
class BitMask {
 | 
						|
  static_assert(std::is_unsigned<T>::value, "");
 | 
						|
  static_assert(Shift == 0 || Shift == 3, "");
 | 
						|
 | 
						|
 public:
 | 
						|
  // These are useful for unit tests (gunit).
 | 
						|
  using value_type = int;
 | 
						|
  using iterator = BitMask;
 | 
						|
  using const_iterator = BitMask;
 | 
						|
 | 
						|
  explicit BitMask(T mask) : mask_(mask) {}
 | 
						|
  BitMask& operator++() {
 | 
						|
    mask_ &= (mask_ - 1);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
  explicit operator bool() const { return mask_ != 0; }
 | 
						|
  int operator*() const { return LowestBitSet(); }
 | 
						|
  int LowestBitSet() const {
 | 
						|
    return container_internal::TrailingZeros(mask_) >> Shift;
 | 
						|
  }
 | 
						|
  int HighestBitSet() const {
 | 
						|
    return (sizeof(T) * CHAR_BIT - container_internal::LeadingZeros(mask_) -
 | 
						|
            1) >>
 | 
						|
           Shift;
 | 
						|
  }
 | 
						|
 | 
						|
  BitMask begin() const { return *this; }
 | 
						|
  BitMask end() const { return BitMask(0); }
 | 
						|
 | 
						|
  int TrailingZeros() const {
 | 
						|
    return container_internal::TrailingZeros(mask_) >> Shift;
 | 
						|
  }
 | 
						|
 | 
						|
  int LeadingZeros() const {
 | 
						|
    constexpr int total_significant_bits = SignificantBits << Shift;
 | 
						|
    constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits;
 | 
						|
    return container_internal::LeadingZeros(mask_ << extra_bits) >> Shift;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  friend bool operator==(const BitMask& a, const BitMask& b) {
 | 
						|
    return a.mask_ == b.mask_;
 | 
						|
  }
 | 
						|
  friend bool operator!=(const BitMask& a, const BitMask& b) {
 | 
						|
    return a.mask_ != b.mask_;
 | 
						|
  }
 | 
						|
 | 
						|
  T mask_;
 | 
						|
};
 | 
						|
 | 
						|
using ctrl_t = signed char;
 | 
						|
using h2_t = uint8_t;
 | 
						|
 | 
						|
// The values here are selected for maximum performance. See the static asserts
 | 
						|
// below for details.
 | 
						|
enum Ctrl : ctrl_t {
 | 
						|
  kEmpty = -128,   // 0b10000000
 | 
						|
  kDeleted = -2,   // 0b11111110
 | 
						|
  kSentinel = -1,  // 0b11111111
 | 
						|
};
 | 
						|
static_assert(
 | 
						|
    kEmpty & kDeleted & kSentinel & 0x80,
 | 
						|
    "Special markers need to have the MSB to make checking for them efficient");
 | 
						|
static_assert(kEmpty < kSentinel && kDeleted < kSentinel,
 | 
						|
              "kEmpty and kDeleted must be smaller than kSentinel to make the "
 | 
						|
              "SIMD test of IsEmptyOrDeleted() efficient");
 | 
						|
static_assert(kSentinel == -1,
 | 
						|
              "kSentinel must be -1 to elide loading it from memory into SIMD "
 | 
						|
              "registers (pcmpeqd xmm, xmm)");
 | 
						|
static_assert(kEmpty == -128,
 | 
						|
              "kEmpty must be -128 to make the SIMD check for its "
 | 
						|
              "existence efficient (psignb xmm, xmm)");
 | 
						|
static_assert(~kEmpty & ~kDeleted & kSentinel & 0x7F,
 | 
						|
              "kEmpty and kDeleted must share an unset bit that is not shared "
 | 
						|
              "by kSentinel to make the scalar test for MatchEmptyOrDeleted() "
 | 
						|
              "efficient");
 | 
						|
static_assert(kDeleted == -2,
 | 
						|
              "kDeleted must be -2 to make the implementation of "
 | 
						|
              "ConvertSpecialToEmptyAndFullToDeleted efficient");
 | 
						|
 | 
						|
// A single block of empty control bytes for tables without any slots allocated.
 | 
						|
// This enables removing a branch in the hot path of find().
 | 
						|
inline ctrl_t* EmptyGroup() {
 | 
						|
  alignas(16) static constexpr ctrl_t empty_group[] = {
 | 
						|
      kSentinel, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty,
 | 
						|
      kEmpty,    kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty};
 | 
						|
  return const_cast<ctrl_t*>(empty_group);
 | 
						|
}
 | 
						|
 | 
						|
// Mixes a randomly generated per-process seed with `hash` and `ctrl` to
 | 
						|
// randomize insertion order within groups.
 | 
						|
bool ShouldInsertBackwards(size_t hash, ctrl_t* ctrl);
 | 
						|
 | 
						|
// Returns a hash seed.
 | 
						|
//
 | 
						|
// The seed consists of the ctrl_ pointer, which adds enough entropy to ensure
 | 
						|
// non-determinism of iteration order in most cases.
 | 
						|
inline size_t HashSeed(const ctrl_t* ctrl) {
 | 
						|
  // The low bits of the pointer have little or no entropy because of
 | 
						|
  // alignment. We shift the pointer to try to use higher entropy bits. A
 | 
						|
  // good number seems to be 12 bits, because that aligns with page size.
 | 
						|
  return reinterpret_cast<uintptr_t>(ctrl) >> 12;
 | 
						|
}
 | 
						|
 | 
						|
inline size_t H1(size_t hash, const ctrl_t* ctrl) {
 | 
						|
  return (hash >> 7) ^ HashSeed(ctrl);
 | 
						|
}
 | 
						|
inline ctrl_t H2(size_t hash) { return hash & 0x7F; }
 | 
						|
 | 
						|
inline bool IsEmpty(ctrl_t c) { return c == kEmpty; }
 | 
						|
inline bool IsFull(ctrl_t c) { return c >= 0; }
 | 
						|
inline bool IsDeleted(ctrl_t c) { return c == kDeleted; }
 | 
						|
inline bool IsEmptyOrDeleted(ctrl_t c) { return c < kSentinel; }
 | 
						|
 | 
						|
#if SWISSTABLE_HAVE_SSE2
 | 
						|
 | 
						|
// https://github.com/abseil/abseil-cpp/issues/209
 | 
						|
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87853
 | 
						|
// _mm_cmpgt_epi8 is broken under GCC with -funsigned-char
 | 
						|
// Work around this by using the portable implementation of Group
 | 
						|
// when using -funsigned-char under GCC.
 | 
						|
inline __m128i _mm_cmpgt_epi8_fixed(__m128i a, __m128i b) {
 | 
						|
#if defined(__GNUC__) && !defined(__clang__)
 | 
						|
  if (std::is_unsigned<char>::value) {
 | 
						|
    const __m128i mask = _mm_set1_epi8(0x80);
 | 
						|
    const __m128i diff = _mm_subs_epi8(b, a);
 | 
						|
    return _mm_cmpeq_epi8(_mm_and_si128(diff, mask), mask);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  return _mm_cmpgt_epi8(a, b);
 | 
						|
}
 | 
						|
 | 
						|
struct GroupSse2Impl {
 | 
						|
  static constexpr size_t kWidth = 16;  // the number of slots per group
 | 
						|
 | 
						|
  explicit GroupSse2Impl(const ctrl_t* pos) {
 | 
						|
    ctrl = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pos));
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns a bitmask representing the positions of slots that match hash.
 | 
						|
  BitMask<uint32_t, kWidth> Match(h2_t hash) const {
 | 
						|
    auto match = _mm_set1_epi8(hash);
 | 
						|
    return BitMask<uint32_t, kWidth>(
 | 
						|
        _mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl)));
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns a bitmask representing the positions of empty slots.
 | 
						|
  BitMask<uint32_t, kWidth> MatchEmpty() const {
 | 
						|
#if SWISSTABLE_HAVE_SSSE3
 | 
						|
    // This only works because kEmpty is -128.
 | 
						|
    return BitMask<uint32_t, kWidth>(
 | 
						|
        _mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl)));
 | 
						|
#else
 | 
						|
    return Match(static_cast<h2_t>(kEmpty));
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns a bitmask representing the positions of empty or deleted slots.
 | 
						|
  BitMask<uint32_t, kWidth> MatchEmptyOrDeleted() const {
 | 
						|
    auto special = _mm_set1_epi8(kSentinel);
 | 
						|
    return BitMask<uint32_t, kWidth>(
 | 
						|
        _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)));
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the number of trailing empty or deleted elements in the group.
 | 
						|
  uint32_t CountLeadingEmptyOrDeleted() const {
 | 
						|
    auto special = _mm_set1_epi8(kSentinel);
 | 
						|
    return TrailingZeros(
 | 
						|
        _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1);
 | 
						|
  }
 | 
						|
 | 
						|
  void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
 | 
						|
    auto msbs = _mm_set1_epi8(static_cast<char>(-128));
 | 
						|
    auto x126 = _mm_set1_epi8(126);
 | 
						|
#if SWISSTABLE_HAVE_SSSE3
 | 
						|
    auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs);
 | 
						|
#else
 | 
						|
    auto zero = _mm_setzero_si128();
 | 
						|
    auto special_mask = _mm_cmpgt_epi8_fixed(zero, ctrl);
 | 
						|
    auto res = _mm_or_si128(msbs, _mm_andnot_si128(special_mask, x126));
 | 
						|
#endif
 | 
						|
    _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), res);
 | 
						|
  }
 | 
						|
 | 
						|
  __m128i ctrl;
 | 
						|
};
 | 
						|
#endif  // SWISSTABLE_HAVE_SSE2
 | 
						|
 | 
						|
struct GroupPortableImpl {
 | 
						|
  static constexpr size_t kWidth = 8;
 | 
						|
 | 
						|
  explicit GroupPortableImpl(const ctrl_t* pos)
 | 
						|
      : ctrl(little_endian::Load64(pos)) {}
 | 
						|
 | 
						|
  BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const {
 | 
						|
    // For the technique, see:
 | 
						|
    // http://graphics.stanford.edu/~seander/bithacks.html##ValueInWord
 | 
						|
    // (Determine if a word has a byte equal to n).
 | 
						|
    //
 | 
						|
    // Caveat: there are false positives but:
 | 
						|
    // - they only occur if there is a real match
 | 
						|
    // - they never occur on kEmpty, kDeleted, kSentinel
 | 
						|
    // - they will be handled gracefully by subsequent checks in code
 | 
						|
    //
 | 
						|
    // Example:
 | 
						|
    //   v = 0x1716151413121110
 | 
						|
    //   hash = 0x12
 | 
						|
    //   retval = (v - lsbs) & ~v & msbs = 0x0000000080800000
 | 
						|
    constexpr uint64_t msbs = 0x8080808080808080ULL;
 | 
						|
    constexpr uint64_t lsbs = 0x0101010101010101ULL;
 | 
						|
    auto x = ctrl ^ (lsbs * hash);
 | 
						|
    return BitMask<uint64_t, kWidth, 3>((x - lsbs) & ~x & msbs);
 | 
						|
  }
 | 
						|
 | 
						|
  BitMask<uint64_t, kWidth, 3> MatchEmpty() const {
 | 
						|
    constexpr uint64_t msbs = 0x8080808080808080ULL;
 | 
						|
    return BitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 6)) & msbs);
 | 
						|
  }
 | 
						|
 | 
						|
  BitMask<uint64_t, kWidth, 3> MatchEmptyOrDeleted() const {
 | 
						|
    constexpr uint64_t msbs = 0x8080808080808080ULL;
 | 
						|
    return BitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 7)) & msbs);
 | 
						|
  }
 | 
						|
 | 
						|
  uint32_t CountLeadingEmptyOrDeleted() const {
 | 
						|
    constexpr uint64_t gaps = 0x00FEFEFEFEFEFEFEULL;
 | 
						|
    return (TrailingZeros(((~ctrl & (ctrl >> 7)) | gaps) + 1) + 7) >> 3;
 | 
						|
  }
 | 
						|
 | 
						|
  void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
 | 
						|
    constexpr uint64_t msbs = 0x8080808080808080ULL;
 | 
						|
    constexpr uint64_t lsbs = 0x0101010101010101ULL;
 | 
						|
    auto x = ctrl & msbs;
 | 
						|
    auto res = (~x + (x >> 7)) & ~lsbs;
 | 
						|
    little_endian::Store64(dst, res);
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t ctrl;
 | 
						|
};
 | 
						|
 | 
						|
#if SWISSTABLE_HAVE_SSE2
 | 
						|
using Group = GroupSse2Impl;
 | 
						|
#else
 | 
						|
using Group = GroupPortableImpl;
 | 
						|
#endif
 | 
						|
 | 
						|
template <class Policy, class Hash, class Eq, class Alloc>
 | 
						|
class raw_hash_set;
 | 
						|
 | 
						|
inline bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; }
 | 
						|
 | 
						|
// PRECONDITION:
 | 
						|
//   IsValidCapacity(capacity)
 | 
						|
//   ctrl[capacity] == kSentinel
 | 
						|
//   ctrl[i] != kSentinel for all i < capacity
 | 
						|
// Applies mapping for every byte in ctrl:
 | 
						|
//   DELETED -> EMPTY
 | 
						|
//   EMPTY -> EMPTY
 | 
						|
//   FULL -> DELETED
 | 
						|
inline void ConvertDeletedToEmptyAndFullToDeleted(
 | 
						|
    ctrl_t* ctrl, size_t capacity) {
 | 
						|
  assert(ctrl[capacity] == kSentinel);
 | 
						|
  assert(IsValidCapacity(capacity));
 | 
						|
  for (ctrl_t* pos = ctrl; pos != ctrl + capacity + 1; pos += Group::kWidth) {
 | 
						|
    Group{pos}.ConvertSpecialToEmptyAndFullToDeleted(pos);
 | 
						|
  }
 | 
						|
  // Copy the cloned ctrl bytes.
 | 
						|
  std::memcpy(ctrl + capacity + 1, ctrl, Group::kWidth);
 | 
						|
  ctrl[capacity] = kSentinel;
 | 
						|
}
 | 
						|
 | 
						|
// Rounds up the capacity to the next power of 2 minus 1, with a minimum of 1.
 | 
						|
inline size_t NormalizeCapacity(size_t n) {
 | 
						|
  return n ? ~size_t{} >> LeadingZeros(n) : 1;
 | 
						|
}
 | 
						|
 | 
						|
// We use 7/8th as maximum load factor.
 | 
						|
// For 16-wide groups, that gives an average of two empty slots per group.
 | 
						|
inline size_t CapacityToGrowth(size_t capacity) {
 | 
						|
  assert(IsValidCapacity(capacity));
 | 
						|
  // `capacity*7/8`
 | 
						|
  if (Group::kWidth == 8 && capacity == 7) {
 | 
						|
    // x-x/8 does not work when x==7.
 | 
						|
    return 6;
 | 
						|
  }
 | 
						|
  return capacity - capacity / 8;
 | 
						|
}
 | 
						|
// From desired "growth" to a lowerbound of the necessary capacity.
 | 
						|
// Might not be a valid one and required NormalizeCapacity().
 | 
						|
inline size_t GrowthToLowerboundCapacity(size_t growth) {
 | 
						|
  // `growth*8/7`
 | 
						|
  if (Group::kWidth == 8 && growth == 7) {
 | 
						|
    // x+(x-1)/7 does not work when x==7.
 | 
						|
    return 8;
 | 
						|
  }
 | 
						|
  return growth + static_cast<size_t>((static_cast<int64_t>(growth) - 1) / 7);
 | 
						|
}
 | 
						|
 | 
						|
// Policy: a policy defines how to perform different operations on
 | 
						|
// the slots of the hashtable (see hash_policy_traits.h for the full interface
 | 
						|
// of policy).
 | 
						|
//
 | 
						|
// Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The
 | 
						|
// functor should accept a key and return size_t as hash. For best performance
 | 
						|
// it is important that the hash function provides high entropy across all bits
 | 
						|
// of the hash.
 | 
						|
//
 | 
						|
// Eq: a (possibly polymorphic) functor that compares two keys for equality. It
 | 
						|
// should accept two (of possibly different type) keys and return a bool: true
 | 
						|
// if they are equal, false if they are not. If two keys compare equal, then
 | 
						|
// their hash values as defined by Hash MUST be equal.
 | 
						|
//
 | 
						|
// Allocator: an Allocator [https://devdocs.io/cpp/concept/allocator] with which
 | 
						|
// the storage of the hashtable will be allocated and the elements will be
 | 
						|
// constructed and destroyed.
 | 
						|
template <class Policy, class Hash, class Eq, class Alloc>
 | 
						|
class raw_hash_set {
 | 
						|
  using PolicyTraits = hash_policy_traits<Policy>;
 | 
						|
  using KeyArgImpl =
 | 
						|
      KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>;
 | 
						|
 | 
						|
 public:
 | 
						|
  using init_type = typename PolicyTraits::init_type;
 | 
						|
  using key_type = typename PolicyTraits::key_type;
 | 
						|
  // TODO(sbenza): Hide slot_type as it is an implementation detail. Needs user
 | 
						|
  // code fixes!
 | 
						|
  using slot_type = typename PolicyTraits::slot_type;
 | 
						|
  using allocator_type = Alloc;
 | 
						|
  using size_type = size_t;
 | 
						|
  using difference_type = ptrdiff_t;
 | 
						|
  using hasher = Hash;
 | 
						|
  using key_equal = Eq;
 | 
						|
  using policy_type = Policy;
 | 
						|
  using value_type = typename PolicyTraits::value_type;
 | 
						|
  using reference = value_type&;
 | 
						|
  using const_reference = const value_type&;
 | 
						|
  using pointer = typename absl::allocator_traits<
 | 
						|
      allocator_type>::template rebind_traits<value_type>::pointer;
 | 
						|
  using const_pointer = typename absl::allocator_traits<
 | 
						|
      allocator_type>::template rebind_traits<value_type>::const_pointer;
 | 
						|
 | 
						|
  // Alias used for heterogeneous lookup functions.
 | 
						|
  // `key_arg<K>` evaluates to `K` when the functors are transparent and to
 | 
						|
  // `key_type` otherwise. It permits template argument deduction on `K` for the
 | 
						|
  // transparent case.
 | 
						|
  template <class K>
 | 
						|
  using key_arg = typename KeyArgImpl::template type<K, key_type>;
 | 
						|
 | 
						|
 private:
 | 
						|
  // Give an early error when key_type is not hashable/eq.
 | 
						|
  auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k));
 | 
						|
  auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k));
 | 
						|
 | 
						|
  using Layout = absl::container_internal::Layout<ctrl_t, slot_type>;
 | 
						|
 | 
						|
  static Layout MakeLayout(size_t capacity) {
 | 
						|
    assert(IsValidCapacity(capacity));
 | 
						|
    return Layout(capacity + Group::kWidth + 1, capacity);
 | 
						|
  }
 | 
						|
 | 
						|
  using AllocTraits = absl::allocator_traits<allocator_type>;
 | 
						|
  using SlotAlloc = typename absl::allocator_traits<
 | 
						|
      allocator_type>::template rebind_alloc<slot_type>;
 | 
						|
  using SlotAllocTraits = typename absl::allocator_traits<
 | 
						|
      allocator_type>::template rebind_traits<slot_type>;
 | 
						|
 | 
						|
  static_assert(std::is_lvalue_reference<reference>::value,
 | 
						|
                "Policy::element() must return a reference");
 | 
						|
 | 
						|
  template <typename T>
 | 
						|
  struct SameAsElementReference
 | 
						|
      : std::is_same<typename std::remove_cv<
 | 
						|
                         typename std::remove_reference<reference>::type>::type,
 | 
						|
                     typename std::remove_cv<
 | 
						|
                         typename std::remove_reference<T>::type>::type> {};
 | 
						|
 | 
						|
  // An enabler for insert(T&&): T must be convertible to init_type or be the
 | 
						|
  // same as [cv] value_type [ref].
 | 
						|
  // Note: we separate SameAsElementReference into its own type to avoid using
 | 
						|
  // reference unless we need to. MSVC doesn't seem to like it in some
 | 
						|
  // cases.
 | 
						|
  template <class T>
 | 
						|
  using RequiresInsertable = typename std::enable_if<
 | 
						|
      absl::disjunction<std::is_convertible<T, init_type>,
 | 
						|
                        SameAsElementReference<T>>::value,
 | 
						|
      int>::type;
 | 
						|
 | 
						|
  // RequiresNotInit is a workaround for gcc prior to 7.1.
 | 
						|
  // See https://godbolt.org/g/Y4xsUh.
 | 
						|
  template <class T>
 | 
						|
  using RequiresNotInit =
 | 
						|
      typename std::enable_if<!std::is_same<T, init_type>::value, int>::type;
 | 
						|
 | 
						|
  template <class... Ts>
 | 
						|
  using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>;
 | 
						|
 | 
						|
 public:
 | 
						|
  static_assert(std::is_same<pointer, value_type*>::value,
 | 
						|
                "Allocators with custom pointer types are not supported");
 | 
						|
  static_assert(std::is_same<const_pointer, const value_type*>::value,
 | 
						|
                "Allocators with custom pointer types are not supported");
 | 
						|
 | 
						|
  class iterator {
 | 
						|
    friend class raw_hash_set;
 | 
						|
 | 
						|
   public:
 | 
						|
    using iterator_category = std::forward_iterator_tag;
 | 
						|
    using value_type = typename raw_hash_set::value_type;
 | 
						|
    using reference =
 | 
						|
        absl::conditional_t<PolicyTraits::constant_iterators::value,
 | 
						|
                            const value_type&, value_type&>;
 | 
						|
    using pointer = absl::remove_reference_t<reference>*;
 | 
						|
    using difference_type = typename raw_hash_set::difference_type;
 | 
						|
 | 
						|
    iterator() {}
 | 
						|
 | 
						|
    // PRECONDITION: not an end() iterator.
 | 
						|
    reference operator*() const {
 | 
						|
      assert_is_full();
 | 
						|
      return PolicyTraits::element(slot_);
 | 
						|
    }
 | 
						|
 | 
						|
    // PRECONDITION: not an end() iterator.
 | 
						|
    pointer operator->() const { return &operator*(); }
 | 
						|
 | 
						|
    // PRECONDITION: not an end() iterator.
 | 
						|
    iterator& operator++() {
 | 
						|
      /* To be enabled: assert_is_full(); */
 | 
						|
      ++ctrl_;
 | 
						|
      ++slot_;
 | 
						|
      skip_empty_or_deleted();
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
    // PRECONDITION: not an end() iterator.
 | 
						|
    iterator operator++(int) {
 | 
						|
      auto tmp = *this;
 | 
						|
      ++*this;
 | 
						|
      return tmp;
 | 
						|
    }
 | 
						|
 | 
						|
    friend bool operator==(const iterator& a, const iterator& b) {
 | 
						|
      a.assert_is_valid();
 | 
						|
      b.assert_is_valid();
 | 
						|
      return a.ctrl_ == b.ctrl_;
 | 
						|
    }
 | 
						|
    friend bool operator!=(const iterator& a, const iterator& b) {
 | 
						|
      return !(a == b);
 | 
						|
    }
 | 
						|
 | 
						|
   private:
 | 
						|
    iterator(ctrl_t* ctrl) : ctrl_(ctrl) {}  // for end()
 | 
						|
    iterator(ctrl_t* ctrl, slot_type* slot) : ctrl_(ctrl), slot_(slot) {}
 | 
						|
 | 
						|
    void assert_is_full() const { assert(IsFull(*ctrl_)); }
 | 
						|
    void assert_is_valid() const {
 | 
						|
      assert(!ctrl_ || IsFull(*ctrl_) || *ctrl_ == kSentinel);
 | 
						|
    }
 | 
						|
 | 
						|
    void skip_empty_or_deleted() {
 | 
						|
      while (IsEmptyOrDeleted(*ctrl_)) {
 | 
						|
        // ctrl is not necessarily aligned to Group::kWidth. It is also likely
 | 
						|
        // to read past the space for ctrl bytes and into slots. This is ok
 | 
						|
        // because ctrl has sizeof() == 1 and slot has sizeof() >= 1 so there
 | 
						|
        // is no way to read outside the combined slot array.
 | 
						|
        uint32_t shift = Group{ctrl_}.CountLeadingEmptyOrDeleted();
 | 
						|
        ctrl_ += shift;
 | 
						|
        slot_ += shift;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    ctrl_t* ctrl_ = nullptr;
 | 
						|
    // To avoid uninitialized member warnings, put slot_ in an anonymous union.
 | 
						|
    // The member is not initialized on singleton and end iterators.
 | 
						|
    union {
 | 
						|
      slot_type* slot_;
 | 
						|
    };
 | 
						|
  };
 | 
						|
 | 
						|
  class const_iterator {
 | 
						|
    friend class raw_hash_set;
 | 
						|
 | 
						|
   public:
 | 
						|
    using iterator_category = typename iterator::iterator_category;
 | 
						|
    using value_type = typename raw_hash_set::value_type;
 | 
						|
    using reference = typename raw_hash_set::const_reference;
 | 
						|
    using pointer = typename raw_hash_set::const_pointer;
 | 
						|
    using difference_type = typename raw_hash_set::difference_type;
 | 
						|
 | 
						|
    const_iterator() {}
 | 
						|
    // Implicit construction from iterator.
 | 
						|
    const_iterator(iterator i) : inner_(std::move(i)) {}
 | 
						|
 | 
						|
    reference operator*() const { return *inner_; }
 | 
						|
    pointer operator->() const { return inner_.operator->(); }
 | 
						|
 | 
						|
    const_iterator& operator++() {
 | 
						|
      ++inner_;
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
    const_iterator operator++(int) { return inner_++; }
 | 
						|
 | 
						|
    friend bool operator==(const const_iterator& a, const const_iterator& b) {
 | 
						|
      return a.inner_ == b.inner_;
 | 
						|
    }
 | 
						|
    friend bool operator!=(const const_iterator& a, const const_iterator& b) {
 | 
						|
      return !(a == b);
 | 
						|
    }
 | 
						|
 | 
						|
   private:
 | 
						|
    const_iterator(const ctrl_t* ctrl, const slot_type* slot)
 | 
						|
        : inner_(const_cast<ctrl_t*>(ctrl), const_cast<slot_type*>(slot)) {}
 | 
						|
 | 
						|
    iterator inner_;
 | 
						|
  };
 | 
						|
 | 
						|
  using node_type = node_handle<Policy, hash_policy_traits<Policy>, Alloc>;
 | 
						|
  using insert_return_type = InsertReturnType<iterator, node_type>;
 | 
						|
 | 
						|
  raw_hash_set() noexcept(
 | 
						|
      std::is_nothrow_default_constructible<hasher>::value&&
 | 
						|
          std::is_nothrow_default_constructible<key_equal>::value&&
 | 
						|
              std::is_nothrow_default_constructible<allocator_type>::value) {}
 | 
						|
 | 
						|
  explicit raw_hash_set(size_t bucket_count, const hasher& hash = hasher(),
 | 
						|
                        const key_equal& eq = key_equal(),
 | 
						|
                        const allocator_type& alloc = allocator_type())
 | 
						|
      : ctrl_(EmptyGroup()), settings_(0, hash, eq, alloc) {
 | 
						|
    if (bucket_count) {
 | 
						|
      capacity_ = NormalizeCapacity(bucket_count);
 | 
						|
      reset_growth_left();
 | 
						|
      initialize_slots();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  raw_hash_set(size_t bucket_count, const hasher& hash,
 | 
						|
               const allocator_type& alloc)
 | 
						|
      : raw_hash_set(bucket_count, hash, key_equal(), alloc) {}
 | 
						|
 | 
						|
  raw_hash_set(size_t bucket_count, const allocator_type& alloc)
 | 
						|
      : raw_hash_set(bucket_count, hasher(), key_equal(), alloc) {}
 | 
						|
 | 
						|
  explicit raw_hash_set(const allocator_type& alloc)
 | 
						|
      : raw_hash_set(0, hasher(), key_equal(), alloc) {}
 | 
						|
 | 
						|
  template <class InputIter>
 | 
						|
  raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0,
 | 
						|
               const hasher& hash = hasher(), const key_equal& eq = key_equal(),
 | 
						|
               const allocator_type& alloc = allocator_type())
 | 
						|
      : raw_hash_set(bucket_count, hash, eq, alloc) {
 | 
						|
    insert(first, last);
 | 
						|
  }
 | 
						|
 | 
						|
  template <class InputIter>
 | 
						|
  raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
 | 
						|
               const hasher& hash, const allocator_type& alloc)
 | 
						|
      : raw_hash_set(first, last, bucket_count, hash, key_equal(), alloc) {}
 | 
						|
 | 
						|
  template <class InputIter>
 | 
						|
  raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
 | 
						|
               const allocator_type& alloc)
 | 
						|
      : raw_hash_set(first, last, bucket_count, hasher(), key_equal(), alloc) {}
 | 
						|
 | 
						|
  template <class InputIter>
 | 
						|
  raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc)
 | 
						|
      : raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {}
 | 
						|
 | 
						|
  // Instead of accepting std::initializer_list<value_type> as the first
 | 
						|
  // argument like std::unordered_set<value_type> does, we have two overloads
 | 
						|
  // that accept std::initializer_list<T> and std::initializer_list<init_type>.
 | 
						|
  // This is advantageous for performance.
 | 
						|
  //
 | 
						|
  //   // Turns {"abc", "def"} into std::initializer_list<std::string>, then
 | 
						|
  //   // copies the strings into the set.
 | 
						|
  //   std::unordered_set<std::string> s = {"abc", "def"};
 | 
						|
  //
 | 
						|
  //   // Turns {"abc", "def"} into std::initializer_list<const char*>, then
 | 
						|
  //   // copies the strings into the set.
 | 
						|
  //   absl::flat_hash_set<std::string> s = {"abc", "def"};
 | 
						|
  //
 | 
						|
  // The same trick is used in insert().
 | 
						|
  //
 | 
						|
  // The enabler is necessary to prevent this constructor from triggering where
 | 
						|
  // the copy constructor is meant to be called.
 | 
						|
  //
 | 
						|
  //   absl::flat_hash_set<int> a, b{a};
 | 
						|
  //
 | 
						|
  // RequiresNotInit<T> is a workaround for gcc prior to 7.1.
 | 
						|
  template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
 | 
						|
  raw_hash_set(std::initializer_list<T> init, size_t bucket_count = 0,
 | 
						|
               const hasher& hash = hasher(), const key_equal& eq = key_equal(),
 | 
						|
               const allocator_type& alloc = allocator_type())
 | 
						|
      : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
 | 
						|
 | 
						|
  raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count = 0,
 | 
						|
               const hasher& hash = hasher(), const key_equal& eq = key_equal(),
 | 
						|
               const allocator_type& alloc = allocator_type())
 | 
						|
      : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
 | 
						|
 | 
						|
  template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
 | 
						|
  raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
 | 
						|
               const hasher& hash, const allocator_type& alloc)
 | 
						|
      : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
 | 
						|
 | 
						|
  raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
 | 
						|
               const hasher& hash, const allocator_type& alloc)
 | 
						|
      : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
 | 
						|
 | 
						|
  template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
 | 
						|
  raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
 | 
						|
               const allocator_type& alloc)
 | 
						|
      : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
 | 
						|
 | 
						|
  raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
 | 
						|
               const allocator_type& alloc)
 | 
						|
      : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
 | 
						|
 | 
						|
  template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
 | 
						|
  raw_hash_set(std::initializer_list<T> init, const allocator_type& alloc)
 | 
						|
      : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
 | 
						|
 | 
						|
  raw_hash_set(std::initializer_list<init_type> init,
 | 
						|
               const allocator_type& alloc)
 | 
						|
      : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
 | 
						|
 | 
						|
  raw_hash_set(const raw_hash_set& that)
 | 
						|
      : raw_hash_set(that, AllocTraits::select_on_container_copy_construction(
 | 
						|
                               that.alloc_ref())) {}
 | 
						|
 | 
						|
  raw_hash_set(const raw_hash_set& that, const allocator_type& a)
 | 
						|
      : raw_hash_set(0, that.hash_ref(), that.eq_ref(), a) {
 | 
						|
    reserve(that.size());
 | 
						|
    // Because the table is guaranteed to be empty, we can do something faster
 | 
						|
    // than a full `insert`.
 | 
						|
    for (const auto& v : that) {
 | 
						|
      const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v);
 | 
						|
      auto target = find_first_non_full(hash);
 | 
						|
      set_ctrl(target.offset, H2(hash));
 | 
						|
      emplace_at(target.offset, v);
 | 
						|
      infoz_.RecordInsert(hash, target.probe_length);
 | 
						|
    }
 | 
						|
    size_ = that.size();
 | 
						|
    growth_left() -= that.size();
 | 
						|
  }
 | 
						|
 | 
						|
  raw_hash_set(raw_hash_set&& that) noexcept(
 | 
						|
      std::is_nothrow_copy_constructible<hasher>::value&&
 | 
						|
          std::is_nothrow_copy_constructible<key_equal>::value&&
 | 
						|
              std::is_nothrow_copy_constructible<allocator_type>::value)
 | 
						|
      : ctrl_(absl::exchange(that.ctrl_, EmptyGroup())),
 | 
						|
        slots_(absl::exchange(that.slots_, nullptr)),
 | 
						|
        size_(absl::exchange(that.size_, 0)),
 | 
						|
        capacity_(absl::exchange(that.capacity_, 0)),
 | 
						|
        infoz_(absl::exchange(that.infoz_, HashtablezInfoHandle())),
 | 
						|
        // Hash, equality and allocator are copied instead of moved because
 | 
						|
        // `that` must be left valid. If Hash is std::function<Key>, moving it
 | 
						|
        // would create a nullptr functor that cannot be called.
 | 
						|
        settings_(that.settings_) {
 | 
						|
    // growth_left was copied above, reset the one from `that`.
 | 
						|
    that.growth_left() = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  raw_hash_set(raw_hash_set&& that, const allocator_type& a)
 | 
						|
      : ctrl_(EmptyGroup()),
 | 
						|
        slots_(nullptr),
 | 
						|
        size_(0),
 | 
						|
        capacity_(0),
 | 
						|
        settings_(0, that.hash_ref(), that.eq_ref(), a) {
 | 
						|
    if (a == that.alloc_ref()) {
 | 
						|
      std::swap(ctrl_, that.ctrl_);
 | 
						|
      std::swap(slots_, that.slots_);
 | 
						|
      std::swap(size_, that.size_);
 | 
						|
      std::swap(capacity_, that.capacity_);
 | 
						|
      std::swap(growth_left(), that.growth_left());
 | 
						|
      std::swap(infoz_, that.infoz_);
 | 
						|
    } else {
 | 
						|
      reserve(that.size());
 | 
						|
      // Note: this will copy elements of dense_set and unordered_set instead of
 | 
						|
      // moving them. This can be fixed if it ever becomes an issue.
 | 
						|
      for (auto& elem : that) insert(std::move(elem));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  raw_hash_set& operator=(const raw_hash_set& that) {
 | 
						|
    raw_hash_set tmp(that,
 | 
						|
                     AllocTraits::propagate_on_container_copy_assignment::value
 | 
						|
                         ? that.alloc_ref()
 | 
						|
                         : alloc_ref());
 | 
						|
    swap(tmp);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  raw_hash_set& operator=(raw_hash_set&& that) noexcept(
 | 
						|
      absl::allocator_traits<allocator_type>::is_always_equal::value&&
 | 
						|
          std::is_nothrow_move_assignable<hasher>::value&&
 | 
						|
              std::is_nothrow_move_assignable<key_equal>::value) {
 | 
						|
    // TODO(sbenza): We should only use the operations from the noexcept clause
 | 
						|
    // to make sure we actually adhere to that contract.
 | 
						|
    return move_assign(
 | 
						|
        std::move(that),
 | 
						|
        typename AllocTraits::propagate_on_container_move_assignment());
 | 
						|
  }
 | 
						|
 | 
						|
  ~raw_hash_set() { destroy_slots(); }
 | 
						|
 | 
						|
  iterator begin() {
 | 
						|
    auto it = iterator_at(0);
 | 
						|
    it.skip_empty_or_deleted();
 | 
						|
    return it;
 | 
						|
  }
 | 
						|
  iterator end() { return {ctrl_ + capacity_}; }
 | 
						|
 | 
						|
  const_iterator begin() const {
 | 
						|
    return const_cast<raw_hash_set*>(this)->begin();
 | 
						|
  }
 | 
						|
  const_iterator end() const { return const_cast<raw_hash_set*>(this)->end(); }
 | 
						|
  const_iterator cbegin() const { return begin(); }
 | 
						|
  const_iterator cend() const { return end(); }
 | 
						|
 | 
						|
  bool empty() const { return !size(); }
 | 
						|
  size_t size() const { return size_; }
 | 
						|
  size_t capacity() const { return capacity_; }
 | 
						|
  size_t max_size() const { return (std::numeric_limits<size_t>::max)(); }
 | 
						|
 | 
						|
  ABSL_ATTRIBUTE_REINITIALIZES void clear() {
 | 
						|
    // Iterating over this container is O(bucket_count()). When bucket_count()
 | 
						|
    // is much greater than size(), iteration becomes prohibitively expensive.
 | 
						|
    // For clear() it is more important to reuse the allocated array when the
 | 
						|
    // container is small because allocation takes comparatively long time
 | 
						|
    // compared to destruction of the elements of the container. So we pick the
 | 
						|
    // largest bucket_count() threshold for which iteration is still fast and
 | 
						|
    // past that we simply deallocate the array.
 | 
						|
    if (capacity_ > 127) {
 | 
						|
      destroy_slots();
 | 
						|
    } else if (capacity_) {
 | 
						|
      for (size_t i = 0; i != capacity_; ++i) {
 | 
						|
        if (IsFull(ctrl_[i])) {
 | 
						|
          PolicyTraits::destroy(&alloc_ref(), slots_ + i);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      size_ = 0;
 | 
						|
      reset_ctrl();
 | 
						|
      reset_growth_left();
 | 
						|
    }
 | 
						|
    assert(empty());
 | 
						|
    infoz_.RecordStorageChanged(0, capacity_);
 | 
						|
  }
 | 
						|
 | 
						|
  // This overload kicks in when the argument is an rvalue of insertable and
 | 
						|
  // decomposable type other than init_type.
 | 
						|
  //
 | 
						|
  //   flat_hash_map<std::string, int> m;
 | 
						|
  //   m.insert(std::make_pair("abc", 42));
 | 
						|
  // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc
 | 
						|
  // bug.
 | 
						|
  template <class T, RequiresInsertable<T> = 0,
 | 
						|
            class T2 = T,
 | 
						|
            typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0,
 | 
						|
            T* = nullptr>
 | 
						|
  std::pair<iterator, bool> insert(T&& value) {
 | 
						|
    return emplace(std::forward<T>(value));
 | 
						|
  }
 | 
						|
 | 
						|
  // This overload kicks in when the argument is a bitfield or an lvalue of
 | 
						|
  // insertable and decomposable type.
 | 
						|
  //
 | 
						|
  //   union { int n : 1; };
 | 
						|
  //   flat_hash_set<int> s;
 | 
						|
  //   s.insert(n);
 | 
						|
  //
 | 
						|
  //   flat_hash_set<std::string> s;
 | 
						|
  //   const char* p = "hello";
 | 
						|
  //   s.insert(p);
 | 
						|
  //
 | 
						|
  // TODO(romanp): Once we stop supporting gcc 5.1 and below, replace
 | 
						|
  // RequiresInsertable<T> with RequiresInsertable<const T&>.
 | 
						|
  // We are hitting this bug: https://godbolt.org/g/1Vht4f.
 | 
						|
  template <
 | 
						|
      class T, RequiresInsertable<T> = 0,
 | 
						|
      typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
 | 
						|
  std::pair<iterator, bool> insert(const T& value) {
 | 
						|
    return emplace(value);
 | 
						|
  }
 | 
						|
 | 
						|
  // This overload kicks in when the argument is an rvalue of init_type. Its
 | 
						|
  // purpose is to handle brace-init-list arguments.
 | 
						|
  //
 | 
						|
  //   flat_hash_map<std::string, int> s;
 | 
						|
  //   s.insert({"abc", 42});
 | 
						|
  std::pair<iterator, bool> insert(init_type&& value) {
 | 
						|
    return emplace(std::move(value));
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc
 | 
						|
  // bug.
 | 
						|
  template <class T, RequiresInsertable<T> = 0, class T2 = T,
 | 
						|
            typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0,
 | 
						|
            T* = nullptr>
 | 
						|
  iterator insert(const_iterator, T&& value) {
 | 
						|
    return insert(std::forward<T>(value)).first;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO(romanp): Once we stop supporting gcc 5.1 and below, replace
 | 
						|
  // RequiresInsertable<T> with RequiresInsertable<const T&>.
 | 
						|
  // We are hitting this bug: https://godbolt.org/g/1Vht4f.
 | 
						|
  template <
 | 
						|
      class T, RequiresInsertable<T> = 0,
 | 
						|
      typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
 | 
						|
  iterator insert(const_iterator, const T& value) {
 | 
						|
    return insert(value).first;
 | 
						|
  }
 | 
						|
 | 
						|
  iterator insert(const_iterator, init_type&& value) {
 | 
						|
    return insert(std::move(value)).first;
 | 
						|
  }
 | 
						|
 | 
						|
  template <class InputIt>
 | 
						|
  void insert(InputIt first, InputIt last) {
 | 
						|
    for (; first != last; ++first) insert(*first);
 | 
						|
  }
 | 
						|
 | 
						|
  template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0>
 | 
						|
  void insert(std::initializer_list<T> ilist) {
 | 
						|
    insert(ilist.begin(), ilist.end());
 | 
						|
  }
 | 
						|
 | 
						|
  void insert(std::initializer_list<init_type> ilist) {
 | 
						|
    insert(ilist.begin(), ilist.end());
 | 
						|
  }
 | 
						|
 | 
						|
  insert_return_type insert(node_type&& node) {
 | 
						|
    if (!node) return {end(), false, node_type()};
 | 
						|
    const auto& elem = PolicyTraits::element(CommonAccess::GetSlot(node));
 | 
						|
    auto res = PolicyTraits::apply(
 | 
						|
        InsertSlot<false>{*this, std::move(*CommonAccess::GetSlot(node))},
 | 
						|
        elem);
 | 
						|
    if (res.second) {
 | 
						|
      CommonAccess::Reset(&node);
 | 
						|
      return {res.first, true, node_type()};
 | 
						|
    } else {
 | 
						|
      return {res.first, false, std::move(node)};
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  iterator insert(const_iterator, node_type&& node) {
 | 
						|
    return insert(std::move(node)).first;
 | 
						|
  }
 | 
						|
 | 
						|
  // This overload kicks in if we can deduce the key from args. This enables us
 | 
						|
  // to avoid constructing value_type if an entry with the same key already
 | 
						|
  // exists.
 | 
						|
  //
 | 
						|
  // For example:
 | 
						|
  //
 | 
						|
  //   flat_hash_map<std::string, std::string> m = {{"abc", "def"}};
 | 
						|
  //   // Creates no std::string copies and makes no heap allocations.
 | 
						|
  //   m.emplace("abc", "xyz");
 | 
						|
  template <class... Args, typename std::enable_if<
 | 
						|
                               IsDecomposable<Args...>::value, int>::type = 0>
 | 
						|
  std::pair<iterator, bool> emplace(Args&&... args) {
 | 
						|
    return PolicyTraits::apply(EmplaceDecomposable{*this},
 | 
						|
                               std::forward<Args>(args)...);
 | 
						|
  }
 | 
						|
 | 
						|
  // This overload kicks in if we cannot deduce the key from args. It constructs
 | 
						|
  // value_type unconditionally and then either moves it into the table or
 | 
						|
  // destroys.
 | 
						|
  template <class... Args, typename std::enable_if<
 | 
						|
                               !IsDecomposable<Args...>::value, int>::type = 0>
 | 
						|
  std::pair<iterator, bool> emplace(Args&&... args) {
 | 
						|
    typename std::aligned_storage<sizeof(slot_type), alignof(slot_type)>::type
 | 
						|
        raw;
 | 
						|
    slot_type* slot = reinterpret_cast<slot_type*>(&raw);
 | 
						|
 | 
						|
    PolicyTraits::construct(&alloc_ref(), slot, std::forward<Args>(args)...);
 | 
						|
    const auto& elem = PolicyTraits::element(slot);
 | 
						|
    return PolicyTraits::apply(InsertSlot<true>{*this, std::move(*slot)}, elem);
 | 
						|
  }
 | 
						|
 | 
						|
  template <class... Args>
 | 
						|
  iterator emplace_hint(const_iterator, Args&&... args) {
 | 
						|
    return emplace(std::forward<Args>(args)...).first;
 | 
						|
  }
 | 
						|
 | 
						|
  // Extension API: support for lazy emplace.
 | 
						|
  //
 | 
						|
  // Looks up key in the table. If found, returns the iterator to the element.
 | 
						|
  // Otherwise calls f with one argument of type raw_hash_set::constructor. f
 | 
						|
  // MUST call raw_hash_set::constructor with arguments as if a
 | 
						|
  // raw_hash_set::value_type is constructed, otherwise the behavior is
 | 
						|
  // undefined.
 | 
						|
  //
 | 
						|
  // For example:
 | 
						|
  //
 | 
						|
  //   std::unordered_set<ArenaString> s;
 | 
						|
  //   // Makes ArenaStr even if "abc" is in the map.
 | 
						|
  //   s.insert(ArenaString(&arena, "abc"));
 | 
						|
  //
 | 
						|
  //   flat_hash_set<ArenaStr> s;
 | 
						|
  //   // Makes ArenaStr only if "abc" is not in the map.
 | 
						|
  //   s.lazy_emplace("abc", [&](const constructor& ctor) {
 | 
						|
  //     ctor(&arena, "abc");
 | 
						|
  //   });
 | 
						|
  //
 | 
						|
  // WARNING: This API is currently experimental. If there is a way to implement
 | 
						|
  // the same thing with the rest of the API, prefer that.
 | 
						|
  class constructor {
 | 
						|
    friend class raw_hash_set;
 | 
						|
 | 
						|
   public:
 | 
						|
    template <class... Args>
 | 
						|
    void operator()(Args&&... args) const {
 | 
						|
      assert(*slot_);
 | 
						|
      PolicyTraits::construct(alloc_, *slot_, std::forward<Args>(args)...);
 | 
						|
      *slot_ = nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
   private:
 | 
						|
    constructor(allocator_type* a, slot_type** slot) : alloc_(a), slot_(slot) {}
 | 
						|
 | 
						|
    allocator_type* alloc_;
 | 
						|
    slot_type** slot_;
 | 
						|
  };
 | 
						|
 | 
						|
  template <class K = key_type, class F>
 | 
						|
  iterator lazy_emplace(const key_arg<K>& key, F&& f) {
 | 
						|
    auto res = find_or_prepare_insert(key);
 | 
						|
    if (res.second) {
 | 
						|
      slot_type* slot = slots_ + res.first;
 | 
						|
      std::forward<F>(f)(constructor(&alloc_ref(), &slot));
 | 
						|
      assert(!slot);
 | 
						|
    }
 | 
						|
    return iterator_at(res.first);
 | 
						|
  }
 | 
						|
 | 
						|
  // Extension API: support for heterogeneous keys.
 | 
						|
  //
 | 
						|
  //   std::unordered_set<std::string> s;
 | 
						|
  //   // Turns "abc" into std::string.
 | 
						|
  //   s.erase("abc");
 | 
						|
  //
 | 
						|
  //   flat_hash_set<std::string> s;
 | 
						|
  //   // Uses "abc" directly without copying it into std::string.
 | 
						|
  //   s.erase("abc");
 | 
						|
  template <class K = key_type>
 | 
						|
  size_type erase(const key_arg<K>& key) {
 | 
						|
    auto it = find(key);
 | 
						|
    if (it == end()) return 0;
 | 
						|
    erase(it);
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Erases the element pointed to by `it`.  Unlike `std::unordered_set::erase`,
 | 
						|
  // this method returns void to reduce algorithmic complexity to O(1).  The
 | 
						|
  // iterator is invalidated, so any increment should be done before calling
 | 
						|
  // erase.  In order to erase while iterating across a map, use the following
 | 
						|
  // idiom (which also works for standard containers):
 | 
						|
  //
 | 
						|
  // for (auto it = m.begin(), end = m.end(); it != end;) {
 | 
						|
  //   // `erase()` will invalidate `it`, so advance `it` first.
 | 
						|
  //   auto copy_it = it++;
 | 
						|
  //   if (<pred>) {
 | 
						|
  //     m.erase(copy_it);
 | 
						|
  //   }
 | 
						|
  // }
 | 
						|
  void erase(const_iterator cit) { erase(cit.inner_); }
 | 
						|
 | 
						|
  // This overload is necessary because otherwise erase<K>(const K&) would be
 | 
						|
  // a better match if non-const iterator is passed as an argument.
 | 
						|
  void erase(iterator it) {
 | 
						|
    it.assert_is_full();
 | 
						|
    PolicyTraits::destroy(&alloc_ref(), it.slot_);
 | 
						|
    erase_meta_only(it);
 | 
						|
  }
 | 
						|
 | 
						|
  iterator erase(const_iterator first, const_iterator last) {
 | 
						|
    while (first != last) {
 | 
						|
      erase(first++);
 | 
						|
    }
 | 
						|
    return last.inner_;
 | 
						|
  }
 | 
						|
 | 
						|
  // Moves elements from `src` into `this`.
 | 
						|
  // If the element already exists in `this`, it is left unmodified in `src`.
 | 
						|
  template <typename H, typename E>
 | 
						|
  void merge(raw_hash_set<Policy, H, E, Alloc>& src) {  // NOLINT
 | 
						|
    assert(this != &src);
 | 
						|
    for (auto it = src.begin(), e = src.end(); it != e;) {
 | 
						|
      auto next = std::next(it);
 | 
						|
      if (PolicyTraits::apply(InsertSlot<false>{*this, std::move(*it.slot_)},
 | 
						|
                              PolicyTraits::element(it.slot_))
 | 
						|
              .second) {
 | 
						|
        src.erase_meta_only(it);
 | 
						|
      }
 | 
						|
      it = next;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename H, typename E>
 | 
						|
  void merge(raw_hash_set<Policy, H, E, Alloc>&& src) {
 | 
						|
    merge(src);
 | 
						|
  }
 | 
						|
 | 
						|
  node_type extract(const_iterator position) {
 | 
						|
    position.inner_.assert_is_full();
 | 
						|
    auto node =
 | 
						|
        CommonAccess::Transfer<node_type>(alloc_ref(), position.inner_.slot_);
 | 
						|
    erase_meta_only(position);
 | 
						|
    return node;
 | 
						|
  }
 | 
						|
 | 
						|
  template <
 | 
						|
      class K = key_type,
 | 
						|
      typename std::enable_if<!std::is_same<K, iterator>::value, int>::type = 0>
 | 
						|
  node_type extract(const key_arg<K>& key) {
 | 
						|
    auto it = find(key);
 | 
						|
    return it == end() ? node_type() : extract(const_iterator{it});
 | 
						|
  }
 | 
						|
 | 
						|
  void swap(raw_hash_set& that) noexcept(
 | 
						|
      IsNoThrowSwappable<hasher>() && IsNoThrowSwappable<key_equal>() &&
 | 
						|
      (!AllocTraits::propagate_on_container_swap::value ||
 | 
						|
       IsNoThrowSwappable<allocator_type>())) {
 | 
						|
    using std::swap;
 | 
						|
    swap(ctrl_, that.ctrl_);
 | 
						|
    swap(slots_, that.slots_);
 | 
						|
    swap(size_, that.size_);
 | 
						|
    swap(capacity_, that.capacity_);
 | 
						|
    swap(growth_left(), that.growth_left());
 | 
						|
    swap(hash_ref(), that.hash_ref());
 | 
						|
    swap(eq_ref(), that.eq_ref());
 | 
						|
    swap(infoz_, that.infoz_);
 | 
						|
    if (AllocTraits::propagate_on_container_swap::value) {
 | 
						|
      swap(alloc_ref(), that.alloc_ref());
 | 
						|
    } else {
 | 
						|
      // If the allocators do not compare equal it is officially undefined
 | 
						|
      // behavior. We choose to do nothing.
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void rehash(size_t n) {
 | 
						|
    if (n == 0 && capacity_ == 0) return;
 | 
						|
    if (n == 0 && size_ == 0) {
 | 
						|
      destroy_slots();
 | 
						|
      infoz_.RecordStorageChanged(0, 0);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // bitor is a faster way of doing `max` here. We will round up to the next
 | 
						|
    // power-of-2-minus-1, so bitor is good enough.
 | 
						|
    auto m = NormalizeCapacity(n | GrowthToLowerboundCapacity(size()));
 | 
						|
    // n == 0 unconditionally rehashes as per the standard.
 | 
						|
    if (n == 0 || m > capacity_) {
 | 
						|
      resize(m);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void reserve(size_t n) { rehash(GrowthToLowerboundCapacity(n)); }
 | 
						|
 | 
						|
  // Extension API: support for heterogeneous keys.
 | 
						|
  //
 | 
						|
  //   std::unordered_set<std::string> s;
 | 
						|
  //   // Turns "abc" into std::string.
 | 
						|
  //   s.count("abc");
 | 
						|
  //
 | 
						|
  //   ch_set<std::string> s;
 | 
						|
  //   // Uses "abc" directly without copying it into std::string.
 | 
						|
  //   s.count("abc");
 | 
						|
  template <class K = key_type>
 | 
						|
  size_t count(const key_arg<K>& key) const {
 | 
						|
    return find(key) == end() ? 0 : 1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Issues CPU prefetch instructions for the memory needed to find or insert
 | 
						|
  // a key.  Like all lookup functions, this support heterogeneous keys.
 | 
						|
  //
 | 
						|
  // NOTE: This is a very low level operation and should not be used without
 | 
						|
  // specific benchmarks indicating its importance.
 | 
						|
  template <class K = key_type>
 | 
						|
  void prefetch(const key_arg<K>& key) const {
 | 
						|
    (void)key;
 | 
						|
#if defined(__GNUC__)
 | 
						|
    auto seq = probe(hash_ref()(key));
 | 
						|
    __builtin_prefetch(static_cast<const void*>(ctrl_ + seq.offset()));
 | 
						|
    __builtin_prefetch(static_cast<const void*>(slots_ + seq.offset()));
 | 
						|
#endif  // __GNUC__
 | 
						|
  }
 | 
						|
 | 
						|
  // The API of find() has two extensions.
 | 
						|
  //
 | 
						|
  // 1. The hash can be passed by the user. It must be equal to the hash of the
 | 
						|
  // key.
 | 
						|
  //
 | 
						|
  // 2. The type of the key argument doesn't have to be key_type. This is so
 | 
						|
  // called heterogeneous key support.
 | 
						|
  template <class K = key_type>
 | 
						|
  iterator find(const key_arg<K>& key, size_t hash) {
 | 
						|
    auto seq = probe(hash);
 | 
						|
    while (true) {
 | 
						|
      Group g{ctrl_ + seq.offset()};
 | 
						|
      for (int i : g.Match(H2(hash))) {
 | 
						|
        if (ABSL_PREDICT_TRUE(PolicyTraits::apply(
 | 
						|
                EqualElement<K>{key, eq_ref()},
 | 
						|
                PolicyTraits::element(slots_ + seq.offset(i)))))
 | 
						|
          return iterator_at(seq.offset(i));
 | 
						|
      }
 | 
						|
      if (ABSL_PREDICT_TRUE(g.MatchEmpty())) return end();
 | 
						|
      seq.next();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  template <class K = key_type>
 | 
						|
  iterator find(const key_arg<K>& key) {
 | 
						|
    return find(key, hash_ref()(key));
 | 
						|
  }
 | 
						|
 | 
						|
  template <class K = key_type>
 | 
						|
  const_iterator find(const key_arg<K>& key, size_t hash) const {
 | 
						|
    return const_cast<raw_hash_set*>(this)->find(key, hash);
 | 
						|
  }
 | 
						|
  template <class K = key_type>
 | 
						|
  const_iterator find(const key_arg<K>& key) const {
 | 
						|
    return find(key, hash_ref()(key));
 | 
						|
  }
 | 
						|
 | 
						|
  template <class K = key_type>
 | 
						|
  bool contains(const key_arg<K>& key) const {
 | 
						|
    return find(key) != end();
 | 
						|
  }
 | 
						|
 | 
						|
  template <class K = key_type>
 | 
						|
  std::pair<iterator, iterator> equal_range(const key_arg<K>& key) {
 | 
						|
    auto it = find(key);
 | 
						|
    if (it != end()) return {it, std::next(it)};
 | 
						|
    return {it, it};
 | 
						|
  }
 | 
						|
  template <class K = key_type>
 | 
						|
  std::pair<const_iterator, const_iterator> equal_range(
 | 
						|
      const key_arg<K>& key) const {
 | 
						|
    auto it = find(key);
 | 
						|
    if (it != end()) return {it, std::next(it)};
 | 
						|
    return {it, it};
 | 
						|
  }
 | 
						|
 | 
						|
  size_t bucket_count() const { return capacity_; }
 | 
						|
  float load_factor() const {
 | 
						|
    return capacity_ ? static_cast<double>(size()) / capacity_ : 0.0;
 | 
						|
  }
 | 
						|
  float max_load_factor() const { return 1.0f; }
 | 
						|
  void max_load_factor(float) {
 | 
						|
    // Does nothing.
 | 
						|
  }
 | 
						|
 | 
						|
  hasher hash_function() const { return hash_ref(); }
 | 
						|
  key_equal key_eq() const { return eq_ref(); }
 | 
						|
  allocator_type get_allocator() const { return alloc_ref(); }
 | 
						|
 | 
						|
  friend bool operator==(const raw_hash_set& a, const raw_hash_set& b) {
 | 
						|
    if (a.size() != b.size()) return false;
 | 
						|
    const raw_hash_set* outer = &a;
 | 
						|
    const raw_hash_set* inner = &b;
 | 
						|
    if (outer->capacity() > inner->capacity()) std::swap(outer, inner);
 | 
						|
    for (const value_type& elem : *outer)
 | 
						|
      if (!inner->has_element(elem)) return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  friend bool operator!=(const raw_hash_set& a, const raw_hash_set& b) {
 | 
						|
    return !(a == b);
 | 
						|
  }
 | 
						|
 | 
						|
  friend void swap(raw_hash_set& a,
 | 
						|
                   raw_hash_set& b) noexcept(noexcept(a.swap(b))) {
 | 
						|
    a.swap(b);
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  template <class Container, typename Enabler>
 | 
						|
  friend struct absl::container_internal::hashtable_debug_internal::
 | 
						|
      HashtableDebugAccess;
 | 
						|
 | 
						|
  struct FindElement {
 | 
						|
    template <class K, class... Args>
 | 
						|
    const_iterator operator()(const K& key, Args&&...) const {
 | 
						|
      return s.find(key);
 | 
						|
    }
 | 
						|
    const raw_hash_set& s;
 | 
						|
  };
 | 
						|
 | 
						|
  struct HashElement {
 | 
						|
    template <class K, class... Args>
 | 
						|
    size_t operator()(const K& key, Args&&...) const {
 | 
						|
      return h(key);
 | 
						|
    }
 | 
						|
    const hasher& h;
 | 
						|
  };
 | 
						|
 | 
						|
  template <class K1>
 | 
						|
  struct EqualElement {
 | 
						|
    template <class K2, class... Args>
 | 
						|
    bool operator()(const K2& lhs, Args&&...) const {
 | 
						|
      return eq(lhs, rhs);
 | 
						|
    }
 | 
						|
    const K1& rhs;
 | 
						|
    const key_equal& eq;
 | 
						|
  };
 | 
						|
 | 
						|
  struct EmplaceDecomposable {
 | 
						|
    template <class K, class... Args>
 | 
						|
    std::pair<iterator, bool> operator()(const K& key, Args&&... args) const {
 | 
						|
      auto res = s.find_or_prepare_insert(key);
 | 
						|
      if (res.second) {
 | 
						|
        s.emplace_at(res.first, std::forward<Args>(args)...);
 | 
						|
      }
 | 
						|
      return {s.iterator_at(res.first), res.second};
 | 
						|
    }
 | 
						|
    raw_hash_set& s;
 | 
						|
  };
 | 
						|
 | 
						|
  template <bool do_destroy>
 | 
						|
  struct InsertSlot {
 | 
						|
    template <class K, class... Args>
 | 
						|
    std::pair<iterator, bool> operator()(const K& key, Args&&...) && {
 | 
						|
      auto res = s.find_or_prepare_insert(key);
 | 
						|
      if (res.second) {
 | 
						|
        PolicyTraits::transfer(&s.alloc_ref(), s.slots_ + res.first, &slot);
 | 
						|
      } else if (do_destroy) {
 | 
						|
        PolicyTraits::destroy(&s.alloc_ref(), &slot);
 | 
						|
      }
 | 
						|
      return {s.iterator_at(res.first), res.second};
 | 
						|
    }
 | 
						|
    raw_hash_set& s;
 | 
						|
    // Constructed slot. Either moved into place or destroyed.
 | 
						|
    slot_type&& slot;
 | 
						|
  };
 | 
						|
 | 
						|
  // "erases" the object from the container, except that it doesn't actually
 | 
						|
  // destroy the object. It only updates all the metadata of the class.
 | 
						|
  // This can be used in conjunction with Policy::transfer to move the object to
 | 
						|
  // another place.
 | 
						|
  void erase_meta_only(const_iterator it) {
 | 
						|
    assert(IsFull(*it.inner_.ctrl_) && "erasing a dangling iterator");
 | 
						|
    --size_;
 | 
						|
    const size_t index = it.inner_.ctrl_ - ctrl_;
 | 
						|
    const size_t index_before = (index - Group::kWidth) & capacity_;
 | 
						|
    const auto empty_after = Group(it.inner_.ctrl_).MatchEmpty();
 | 
						|
    const auto empty_before = Group(ctrl_ + index_before).MatchEmpty();
 | 
						|
 | 
						|
    // We count how many consecutive non empties we have to the right and to the
 | 
						|
    // left of `it`. If the sum is >= kWidth then there is at least one probe
 | 
						|
    // window that might have seen a full group.
 | 
						|
    bool was_never_full =
 | 
						|
        empty_before && empty_after &&
 | 
						|
        static_cast<size_t>(empty_after.TrailingZeros() +
 | 
						|
                            empty_before.LeadingZeros()) < Group::kWidth;
 | 
						|
 | 
						|
    set_ctrl(index, was_never_full ? kEmpty : kDeleted);
 | 
						|
    growth_left() += was_never_full;
 | 
						|
    infoz_.RecordErase();
 | 
						|
  }
 | 
						|
 | 
						|
  void initialize_slots() {
 | 
						|
    assert(capacity_);
 | 
						|
    // Folks with custom allocators often make unwarranted assumptions about the
 | 
						|
    // behavior of their classes vis-a-vis trivial destructability and what
 | 
						|
    // calls they will or wont make.  Avoid sampling for people with custom
 | 
						|
    // allocators to get us out of this mess.  This is not a hard guarantee but
 | 
						|
    // a workaround while we plan the exact guarantee we want to provide.
 | 
						|
    //
 | 
						|
    // People are often sloppy with the exact type of their allocator (sometimes
 | 
						|
    // it has an extra const or is missing the pair, but rebinds made it work
 | 
						|
    // anyway).  To avoid the ambiguity, we work off SlotAlloc which we have
 | 
						|
    // bound more carefully.
 | 
						|
    if (std::is_same<SlotAlloc, std::allocator<slot_type>>::value &&
 | 
						|
        slots_ == nullptr) {
 | 
						|
      infoz_ = Sample();
 | 
						|
    }
 | 
						|
 | 
						|
    auto layout = MakeLayout(capacity_);
 | 
						|
    char* mem = static_cast<char*>(
 | 
						|
        Allocate<Layout::Alignment()>(&alloc_ref(), layout.AllocSize()));
 | 
						|
    ctrl_ = reinterpret_cast<ctrl_t*>(layout.template Pointer<0>(mem));
 | 
						|
    slots_ = layout.template Pointer<1>(mem);
 | 
						|
    reset_ctrl();
 | 
						|
    reset_growth_left();
 | 
						|
    infoz_.RecordStorageChanged(size_, capacity_);
 | 
						|
  }
 | 
						|
 | 
						|
  void destroy_slots() {
 | 
						|
    if (!capacity_) return;
 | 
						|
    for (size_t i = 0; i != capacity_; ++i) {
 | 
						|
      if (IsFull(ctrl_[i])) {
 | 
						|
        PolicyTraits::destroy(&alloc_ref(), slots_ + i);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    auto layout = MakeLayout(capacity_);
 | 
						|
    // Unpoison before returning the memory to the allocator.
 | 
						|
    SanitizerUnpoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_);
 | 
						|
    Deallocate<Layout::Alignment()>(&alloc_ref(), ctrl_, layout.AllocSize());
 | 
						|
    ctrl_ = EmptyGroup();
 | 
						|
    slots_ = nullptr;
 | 
						|
    size_ = 0;
 | 
						|
    capacity_ = 0;
 | 
						|
    growth_left() = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  void resize(size_t new_capacity) {
 | 
						|
    assert(IsValidCapacity(new_capacity));
 | 
						|
    auto* old_ctrl = ctrl_;
 | 
						|
    auto* old_slots = slots_;
 | 
						|
    const size_t old_capacity = capacity_;
 | 
						|
    capacity_ = new_capacity;
 | 
						|
    initialize_slots();
 | 
						|
 | 
						|
    size_t total_probe_length = 0;
 | 
						|
    for (size_t i = 0; i != old_capacity; ++i) {
 | 
						|
      if (IsFull(old_ctrl[i])) {
 | 
						|
        size_t hash = PolicyTraits::apply(HashElement{hash_ref()},
 | 
						|
                                          PolicyTraits::element(old_slots + i));
 | 
						|
        auto target = find_first_non_full(hash);
 | 
						|
        size_t new_i = target.offset;
 | 
						|
        total_probe_length += target.probe_length;
 | 
						|
        set_ctrl(new_i, H2(hash));
 | 
						|
        PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, old_slots + i);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (old_capacity) {
 | 
						|
      SanitizerUnpoisonMemoryRegion(old_slots,
 | 
						|
                                    sizeof(slot_type) * old_capacity);
 | 
						|
      auto layout = MakeLayout(old_capacity);
 | 
						|
      Deallocate<Layout::Alignment()>(&alloc_ref(), old_ctrl,
 | 
						|
                                      layout.AllocSize());
 | 
						|
    }
 | 
						|
    infoz_.RecordRehash(total_probe_length);
 | 
						|
  }
 | 
						|
 | 
						|
  void drop_deletes_without_resize() ABSL_ATTRIBUTE_NOINLINE {
 | 
						|
    assert(IsValidCapacity(capacity_));
 | 
						|
    assert(!is_small());
 | 
						|
    // Algorithm:
 | 
						|
    // - mark all DELETED slots as EMPTY
 | 
						|
    // - mark all FULL slots as DELETED
 | 
						|
    // - for each slot marked as DELETED
 | 
						|
    //     hash = Hash(element)
 | 
						|
    //     target = find_first_non_full(hash)
 | 
						|
    //     if target is in the same group
 | 
						|
    //       mark slot as FULL
 | 
						|
    //     else if target is EMPTY
 | 
						|
    //       transfer element to target
 | 
						|
    //       mark slot as EMPTY
 | 
						|
    //       mark target as FULL
 | 
						|
    //     else if target is DELETED
 | 
						|
    //       swap current element with target element
 | 
						|
    //       mark target as FULL
 | 
						|
    //       repeat procedure for current slot with moved from element (target)
 | 
						|
    ConvertDeletedToEmptyAndFullToDeleted(ctrl_, capacity_);
 | 
						|
    typename std::aligned_storage<sizeof(slot_type), alignof(slot_type)>::type
 | 
						|
        raw;
 | 
						|
    size_t total_probe_length = 0;
 | 
						|
    slot_type* slot = reinterpret_cast<slot_type*>(&raw);
 | 
						|
    for (size_t i = 0; i != capacity_; ++i) {
 | 
						|
      if (!IsDeleted(ctrl_[i])) continue;
 | 
						|
      size_t hash = PolicyTraits::apply(HashElement{hash_ref()},
 | 
						|
                                        PolicyTraits::element(slots_ + i));
 | 
						|
      auto target = find_first_non_full(hash);
 | 
						|
      size_t new_i = target.offset;
 | 
						|
      total_probe_length += target.probe_length;
 | 
						|
 | 
						|
      // Verify if the old and new i fall within the same group wrt the hash.
 | 
						|
      // If they do, we don't need to move the object as it falls already in the
 | 
						|
      // best probe we can.
 | 
						|
      const auto probe_index = [&](size_t pos) {
 | 
						|
        return ((pos - probe(hash).offset()) & capacity_) / Group::kWidth;
 | 
						|
      };
 | 
						|
 | 
						|
      // Element doesn't move.
 | 
						|
      if (ABSL_PREDICT_TRUE(probe_index(new_i) == probe_index(i))) {
 | 
						|
        set_ctrl(i, H2(hash));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (IsEmpty(ctrl_[new_i])) {
 | 
						|
        // Transfer element to the empty spot.
 | 
						|
        // set_ctrl poisons/unpoisons the slots so we have to call it at the
 | 
						|
        // right time.
 | 
						|
        set_ctrl(new_i, H2(hash));
 | 
						|
        PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slots_ + i);
 | 
						|
        set_ctrl(i, kEmpty);
 | 
						|
      } else {
 | 
						|
        assert(IsDeleted(ctrl_[new_i]));
 | 
						|
        set_ctrl(new_i, H2(hash));
 | 
						|
        // Until we are done rehashing, DELETED marks previously FULL slots.
 | 
						|
        // Swap i and new_i elements.
 | 
						|
        PolicyTraits::transfer(&alloc_ref(), slot, slots_ + i);
 | 
						|
        PolicyTraits::transfer(&alloc_ref(), slots_ + i, slots_ + new_i);
 | 
						|
        PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slot);
 | 
						|
        --i;  // repeat
 | 
						|
      }
 | 
						|
    }
 | 
						|
    reset_growth_left();
 | 
						|
    infoz_.RecordRehash(total_probe_length);
 | 
						|
  }
 | 
						|
 | 
						|
  void rehash_and_grow_if_necessary() {
 | 
						|
    if (capacity_ == 0) {
 | 
						|
      resize(1);
 | 
						|
    } else if (size() <= CapacityToGrowth(capacity()) / 2) {
 | 
						|
      // Squash DELETED without growing if there is enough capacity.
 | 
						|
      drop_deletes_without_resize();
 | 
						|
    } else {
 | 
						|
      // Otherwise grow the container.
 | 
						|
      resize(capacity_ * 2 + 1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool has_element(const value_type& elem) const {
 | 
						|
    size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, elem);
 | 
						|
    auto seq = probe(hash);
 | 
						|
    while (true) {
 | 
						|
      Group g{ctrl_ + seq.offset()};
 | 
						|
      for (int i : g.Match(H2(hash))) {
 | 
						|
        if (ABSL_PREDICT_TRUE(PolicyTraits::element(slots_ + seq.offset(i)) ==
 | 
						|
                              elem))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
      if (ABSL_PREDICT_TRUE(g.MatchEmpty())) return false;
 | 
						|
      seq.next();
 | 
						|
      assert(seq.index() < capacity_ && "full table!");
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Probes the raw_hash_set with the probe sequence for hash and returns the
 | 
						|
  // pointer to the first empty or deleted slot.
 | 
						|
  // NOTE: this function must work with tables having both kEmpty and kDelete
 | 
						|
  // in one group. Such tables appears during drop_deletes_without_resize.
 | 
						|
  //
 | 
						|
  // This function is very useful when insertions happen and:
 | 
						|
  // - the input is already a set
 | 
						|
  // - there are enough slots
 | 
						|
  // - the element with the hash is not in the table
 | 
						|
  struct FindInfo {
 | 
						|
    size_t offset;
 | 
						|
    size_t probe_length;
 | 
						|
  };
 | 
						|
  FindInfo find_first_non_full(size_t hash) {
 | 
						|
    auto seq = probe(hash);
 | 
						|
    while (true) {
 | 
						|
      Group g{ctrl_ + seq.offset()};
 | 
						|
      auto mask = g.MatchEmptyOrDeleted();
 | 
						|
      if (mask) {
 | 
						|
#if !defined(NDEBUG)
 | 
						|
        // We want to add entropy even when ASLR is not enabled.
 | 
						|
        // In debug build we will randomly insert in either the front or back of
 | 
						|
        // the group.
 | 
						|
        // TODO(kfm,sbenza): revisit after we do unconditional mixing
 | 
						|
        if (!is_small() && ShouldInsertBackwards(hash, ctrl_)) {
 | 
						|
          return {seq.offset(mask.HighestBitSet()), seq.index()};
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        return {seq.offset(mask.LowestBitSet()), seq.index()};
 | 
						|
      }
 | 
						|
      assert(seq.index() < capacity_ && "full table!");
 | 
						|
      seq.next();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO(alkis): Optimize this assuming *this and that don't overlap.
 | 
						|
  raw_hash_set& move_assign(raw_hash_set&& that, std::true_type) {
 | 
						|
    raw_hash_set tmp(std::move(that));
 | 
						|
    swap(tmp);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
  raw_hash_set& move_assign(raw_hash_set&& that, std::false_type) {
 | 
						|
    raw_hash_set tmp(std::move(that), alloc_ref());
 | 
						|
    swap(tmp);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
 protected:
 | 
						|
  template <class K>
 | 
						|
  std::pair<size_t, bool> find_or_prepare_insert(const K& key) {
 | 
						|
    auto hash = hash_ref()(key);
 | 
						|
    auto seq = probe(hash);
 | 
						|
    while (true) {
 | 
						|
      Group g{ctrl_ + seq.offset()};
 | 
						|
      for (int i : g.Match(H2(hash))) {
 | 
						|
        if (ABSL_PREDICT_TRUE(PolicyTraits::apply(
 | 
						|
                EqualElement<K>{key, eq_ref()},
 | 
						|
                PolicyTraits::element(slots_ + seq.offset(i)))))
 | 
						|
          return {seq.offset(i), false};
 | 
						|
      }
 | 
						|
      if (ABSL_PREDICT_TRUE(g.MatchEmpty())) break;
 | 
						|
      seq.next();
 | 
						|
    }
 | 
						|
    return {prepare_insert(hash), true};
 | 
						|
  }
 | 
						|
 | 
						|
  size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE {
 | 
						|
    auto target = find_first_non_full(hash);
 | 
						|
    if (ABSL_PREDICT_FALSE(growth_left() == 0 &&
 | 
						|
                           !IsDeleted(ctrl_[target.offset]))) {
 | 
						|
      rehash_and_grow_if_necessary();
 | 
						|
      target = find_first_non_full(hash);
 | 
						|
    }
 | 
						|
    ++size_;
 | 
						|
    growth_left() -= IsEmpty(ctrl_[target.offset]);
 | 
						|
    set_ctrl(target.offset, H2(hash));
 | 
						|
    infoz_.RecordInsert(hash, target.probe_length);
 | 
						|
    return target.offset;
 | 
						|
  }
 | 
						|
 | 
						|
  // Constructs the value in the space pointed by the iterator. This only works
 | 
						|
  // after an unsuccessful find_or_prepare_insert() and before any other
 | 
						|
  // modifications happen in the raw_hash_set.
 | 
						|
  //
 | 
						|
  // PRECONDITION: i is an index returned from find_or_prepare_insert(k), where
 | 
						|
  // k is the key decomposed from `forward<Args>(args)...`, and the bool
 | 
						|
  // returned by find_or_prepare_insert(k) was true.
 | 
						|
  // POSTCONDITION: *m.iterator_at(i) == value_type(forward<Args>(args)...).
 | 
						|
  template <class... Args>
 | 
						|
  void emplace_at(size_t i, Args&&... args) {
 | 
						|
    PolicyTraits::construct(&alloc_ref(), slots_ + i,
 | 
						|
                            std::forward<Args>(args)...);
 | 
						|
 | 
						|
    assert(PolicyTraits::apply(FindElement{*this}, *iterator_at(i)) ==
 | 
						|
               iterator_at(i) &&
 | 
						|
           "constructed value does not match the lookup key");
 | 
						|
  }
 | 
						|
 | 
						|
  iterator iterator_at(size_t i) { return {ctrl_ + i, slots_ + i}; }
 | 
						|
  const_iterator iterator_at(size_t i) const { return {ctrl_ + i, slots_ + i}; }
 | 
						|
 | 
						|
 private:
 | 
						|
  friend struct RawHashSetTestOnlyAccess;
 | 
						|
 | 
						|
  probe_seq<Group::kWidth> probe(size_t hash) const {
 | 
						|
    return probe_seq<Group::kWidth>(H1(hash, ctrl_), capacity_);
 | 
						|
  }
 | 
						|
 | 
						|
  // Reset all ctrl bytes back to kEmpty, except the sentinel.
 | 
						|
  void reset_ctrl() {
 | 
						|
    std::memset(ctrl_, kEmpty, capacity_ + Group::kWidth);
 | 
						|
    ctrl_[capacity_] = kSentinel;
 | 
						|
    SanitizerPoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_);
 | 
						|
  }
 | 
						|
 | 
						|
  void reset_growth_left() {
 | 
						|
    growth_left() = CapacityToGrowth(capacity()) - size_;
 | 
						|
  }
 | 
						|
 | 
						|
  // Sets the control byte, and if `i < Group::kWidth`, set the cloned byte at
 | 
						|
  // the end too.
 | 
						|
  void set_ctrl(size_t i, ctrl_t h) {
 | 
						|
    assert(i < capacity_);
 | 
						|
 | 
						|
    if (IsFull(h)) {
 | 
						|
      SanitizerUnpoisonObject(slots_ + i);
 | 
						|
    } else {
 | 
						|
      SanitizerPoisonObject(slots_ + i);
 | 
						|
    }
 | 
						|
 | 
						|
    ctrl_[i] = h;
 | 
						|
    ctrl_[((i - Group::kWidth) & capacity_) + 1 +
 | 
						|
          ((Group::kWidth - 1) & capacity_)] = h;
 | 
						|
  }
 | 
						|
 | 
						|
  size_t& growth_left() { return settings_.template get<0>(); }
 | 
						|
 | 
						|
  // The representation of the object has two modes:
 | 
						|
  //  - small: For capacities < kWidth-1
 | 
						|
  //  - large: For the rest.
 | 
						|
  //
 | 
						|
  // Differences:
 | 
						|
  //  - In small mode we are able to use the whole capacity. The extra control
 | 
						|
  //  bytes give us at least one "empty" control byte to stop the iteration.
 | 
						|
  //  This is important to make 1 a valid capacity.
 | 
						|
  //
 | 
						|
  //  - In small mode only the first `capacity()` control bytes after the
 | 
						|
  //  sentinel are valid. The rest contain dummy kEmpty values that do not
 | 
						|
  //  represent a real slot. This is important to take into account on
 | 
						|
  //  find_first_non_full(), where we never try ShouldInsertBackwards() for
 | 
						|
  //  small tables.
 | 
						|
  bool is_small() const { return capacity_ < Group::kWidth - 1; }
 | 
						|
 | 
						|
  hasher& hash_ref() { return settings_.template get<1>(); }
 | 
						|
  const hasher& hash_ref() const { return settings_.template get<1>(); }
 | 
						|
  key_equal& eq_ref() { return settings_.template get<2>(); }
 | 
						|
  const key_equal& eq_ref() const { return settings_.template get<2>(); }
 | 
						|
  allocator_type& alloc_ref() { return settings_.template get<3>(); }
 | 
						|
  const allocator_type& alloc_ref() const {
 | 
						|
    return settings_.template get<3>();
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO(alkis): Investigate removing some of these fields:
 | 
						|
  // - ctrl/slots can be derived from each other
 | 
						|
  // - size can be moved into the slot array
 | 
						|
  ctrl_t* ctrl_ = EmptyGroup();    // [(capacity + 1) * ctrl_t]
 | 
						|
  slot_type* slots_ = nullptr;     // [capacity * slot_type]
 | 
						|
  size_t size_ = 0;                // number of full slots
 | 
						|
  size_t capacity_ = 0;            // total number of slots
 | 
						|
  HashtablezInfoHandle infoz_;
 | 
						|
  absl::container_internal::CompressedTuple<size_t /* growth_left */, hasher,
 | 
						|
                                            key_equal, allocator_type>
 | 
						|
      settings_{0, hasher{}, key_equal{}, allocator_type{}};
 | 
						|
};
 | 
						|
 | 
						|
namespace hashtable_debug_internal {
 | 
						|
template <typename Set>
 | 
						|
struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> {
 | 
						|
  using Traits = typename Set::PolicyTraits;
 | 
						|
  using Slot = typename Traits::slot_type;
 | 
						|
 | 
						|
  static size_t GetNumProbes(const Set& set,
 | 
						|
                             const typename Set::key_type& key) {
 | 
						|
    size_t num_probes = 0;
 | 
						|
    size_t hash = set.hash_ref()(key);
 | 
						|
    auto seq = set.probe(hash);
 | 
						|
    while (true) {
 | 
						|
      container_internal::Group g{set.ctrl_ + seq.offset()};
 | 
						|
      for (int i : g.Match(container_internal::H2(hash))) {
 | 
						|
        if (Traits::apply(
 | 
						|
                typename Set::template EqualElement<typename Set::key_type>{
 | 
						|
                    key, set.eq_ref()},
 | 
						|
                Traits::element(set.slots_ + seq.offset(i))))
 | 
						|
          return num_probes;
 | 
						|
        ++num_probes;
 | 
						|
      }
 | 
						|
      if (g.MatchEmpty()) return num_probes;
 | 
						|
      seq.next();
 | 
						|
      ++num_probes;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  static size_t AllocatedByteSize(const Set& c) {
 | 
						|
    size_t capacity = c.capacity_;
 | 
						|
    if (capacity == 0) return 0;
 | 
						|
    auto layout = Set::MakeLayout(capacity);
 | 
						|
    size_t m = layout.AllocSize();
 | 
						|
 | 
						|
    size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
 | 
						|
    if (per_slot != ~size_t{}) {
 | 
						|
      m += per_slot * c.size();
 | 
						|
    } else {
 | 
						|
      for (size_t i = 0; i != capacity; ++i) {
 | 
						|
        if (container_internal::IsFull(c.ctrl_[i])) {
 | 
						|
          m += Traits::space_used(c.slots_ + i);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return m;
 | 
						|
  }
 | 
						|
 | 
						|
  static size_t LowerBoundAllocatedByteSize(size_t size) {
 | 
						|
    size_t capacity = GrowthToLowerboundCapacity(size);
 | 
						|
    if (capacity == 0) return 0;
 | 
						|
    auto layout = Set::MakeLayout(NormalizeCapacity(capacity));
 | 
						|
    size_t m = layout.AllocSize();
 | 
						|
    size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
 | 
						|
    if (per_slot != ~size_t{}) {
 | 
						|
      m += per_slot * size;
 | 
						|
    }
 | 
						|
    return m;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace hashtable_debug_internal
 | 
						|
}  // namespace container_internal
 | 
						|
}  // namespace absl
 | 
						|
 | 
						|
#endif  // ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
 |