282 lines
		
	
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			282 lines
		
	
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cstdint>
 | |
| #include <limits>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include "benchmark/benchmark.h"
 | |
| #include "absl/base/config.h"
 | |
| #include "absl/numeric/int128.h"
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| constexpr size_t kSampleSize = 1000000;
 | |
| 
 | |
| std::mt19937 MakeRandomEngine() {
 | |
|   std::random_device r;
 | |
|   std::seed_seq seed({r(), r(), r(), r(), r(), r(), r(), r()});
 | |
|   return std::mt19937(seed);
 | |
| }
 | |
| 
 | |
| template <typename T,
 | |
|           typename H = typename std::conditional<
 | |
|               std::numeric_limits<T>::is_signed, int64_t, uint64_t>::type>
 | |
| std::vector<std::pair<T, T>> GetRandomClass128SampleUniformDivisor() {
 | |
|   std::vector<std::pair<T, T>> values;
 | |
|   std::mt19937 random = MakeRandomEngine();
 | |
|   std::uniform_int_distribution<H> uniform_h;
 | |
|   values.reserve(kSampleSize);
 | |
|   for (size_t i = 0; i < kSampleSize; ++i) {
 | |
|     T a{absl::MakeUint128(uniform_h(random), uniform_h(random))};
 | |
|     T b{absl::MakeUint128(uniform_h(random), uniform_h(random))};
 | |
|     values.emplace_back(std::max(a, b), std::max(T(2), std::min(a, b)));
 | |
|   }
 | |
|   return values;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void BM_DivideClass128UniformDivisor(benchmark::State& state) {
 | |
|   auto values = GetRandomClass128SampleUniformDivisor<T>();
 | |
|   while (state.KeepRunningBatch(values.size())) {
 | |
|     for (const auto& pair : values) {
 | |
|       benchmark::DoNotOptimize(pair.first / pair.second);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| BENCHMARK_TEMPLATE(BM_DivideClass128UniformDivisor, absl::uint128);
 | |
| BENCHMARK_TEMPLATE(BM_DivideClass128UniformDivisor, absl::int128);
 | |
| 
 | |
| template <typename T>
 | |
| void BM_RemainderClass128UniformDivisor(benchmark::State& state) {
 | |
|   auto values = GetRandomClass128SampleUniformDivisor<T>();
 | |
|   while (state.KeepRunningBatch(values.size())) {
 | |
|     for (const auto& pair : values) {
 | |
|       benchmark::DoNotOptimize(pair.first % pair.second);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| BENCHMARK_TEMPLATE(BM_RemainderClass128UniformDivisor, absl::uint128);
 | |
| BENCHMARK_TEMPLATE(BM_RemainderClass128UniformDivisor, absl::int128);
 | |
| 
 | |
| template <typename T,
 | |
|           typename H = typename std::conditional<
 | |
|               std::numeric_limits<T>::is_signed, int64_t, uint64_t>::type>
 | |
| std::vector<std::pair<T, H>> GetRandomClass128SampleSmallDivisor() {
 | |
|   std::vector<std::pair<T, H>> values;
 | |
|   std::mt19937 random = MakeRandomEngine();
 | |
|   std::uniform_int_distribution<H> uniform_h;
 | |
|   values.reserve(kSampleSize);
 | |
|   for (size_t i = 0; i < kSampleSize; ++i) {
 | |
|     T a{absl::MakeUint128(uniform_h(random), uniform_h(random))};
 | |
|     H b{std::max(H{2}, uniform_h(random))};
 | |
|     values.emplace_back(std::max(a, T(b)), b);
 | |
|   }
 | |
|   return values;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void BM_DivideClass128SmallDivisor(benchmark::State& state) {
 | |
|   auto values = GetRandomClass128SampleSmallDivisor<T>();
 | |
|   while (state.KeepRunningBatch(values.size())) {
 | |
|     for (const auto& pair : values) {
 | |
|       benchmark::DoNotOptimize(pair.first / pair.second);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| BENCHMARK_TEMPLATE(BM_DivideClass128SmallDivisor, absl::uint128);
 | |
| BENCHMARK_TEMPLATE(BM_DivideClass128SmallDivisor, absl::int128);
 | |
| 
 | |
| template <typename T>
 | |
| void BM_RemainderClass128SmallDivisor(benchmark::State& state) {
 | |
|   auto values = GetRandomClass128SampleSmallDivisor<T>();
 | |
|   while (state.KeepRunningBatch(values.size())) {
 | |
|     for (const auto& pair : values) {
 | |
|       benchmark::DoNotOptimize(pair.first % pair.second);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| BENCHMARK_TEMPLATE(BM_RemainderClass128SmallDivisor, absl::uint128);
 | |
| BENCHMARK_TEMPLATE(BM_RemainderClass128SmallDivisor, absl::int128);
 | |
| 
 | |
| std::vector<std::pair<absl::uint128, absl::uint128>> GetRandomClass128Sample() {
 | |
|   std::vector<std::pair<absl::uint128, absl::uint128>> values;
 | |
|   std::mt19937 random = MakeRandomEngine();
 | |
|   std::uniform_int_distribution<uint64_t> uniform_uint64;
 | |
|   values.reserve(kSampleSize);
 | |
|   for (size_t i = 0; i < kSampleSize; ++i) {
 | |
|     values.emplace_back(
 | |
|         absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)),
 | |
|         absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)));
 | |
|   }
 | |
|   return values;
 | |
| }
 | |
| 
 | |
| void BM_MultiplyClass128(benchmark::State& state) {
 | |
|   auto values = GetRandomClass128Sample();
 | |
|   while (state.KeepRunningBatch(values.size())) {
 | |
|     for (const auto& pair : values) {
 | |
|       benchmark::DoNotOptimize(pair.first * pair.second);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| BENCHMARK(BM_MultiplyClass128);
 | |
| 
 | |
| void BM_AddClass128(benchmark::State& state) {
 | |
|   auto values = GetRandomClass128Sample();
 | |
|   while (state.KeepRunningBatch(values.size())) {
 | |
|     for (const auto& pair : values) {
 | |
|       benchmark::DoNotOptimize(pair.first + pair.second);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| BENCHMARK(BM_AddClass128);
 | |
| 
 | |
| #ifdef ABSL_HAVE_INTRINSIC_INT128
 | |
| 
 | |
| // Some implementations of <random> do not support __int128 when it is
 | |
| // available, so we make our own uniform_int_distribution-like type.
 | |
| template <typename T,
 | |
|           typename H = typename std::conditional<
 | |
|               std::is_same<T, __int128>::value, int64_t, uint64_t>::type>
 | |
| class UniformIntDistribution128 {
 | |
|  public:
 | |
|   // NOLINTNEXTLINE: mimicking std::uniform_int_distribution API
 | |
|   T operator()(std::mt19937& generator) {
 | |
|     return (static_cast<T>(dist64_(generator)) << 64) | dist64_(generator);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   std::uniform_int_distribution<H> dist64_;
 | |
| };
 | |
| 
 | |
| template <typename T,
 | |
|           typename H = typename std::conditional<
 | |
|               std::is_same<T, __int128>::value, int64_t, uint64_t>::type>
 | |
| std::vector<std::pair<T, T>> GetRandomIntrinsic128SampleUniformDivisor() {
 | |
|   std::vector<std::pair<T, T>> values;
 | |
|   std::mt19937 random = MakeRandomEngine();
 | |
|   UniformIntDistribution128<T> uniform_128;
 | |
|   values.reserve(kSampleSize);
 | |
|   for (size_t i = 0; i < kSampleSize; ++i) {
 | |
|     T a = uniform_128(random);
 | |
|     T b = uniform_128(random);
 | |
|     values.emplace_back(std::max(a, b),
 | |
|                         std::max(static_cast<T>(2), std::min(a, b)));
 | |
|   }
 | |
|   return values;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void BM_DivideIntrinsic128UniformDivisor(benchmark::State& state) {
 | |
|   auto values = GetRandomIntrinsic128SampleUniformDivisor<T>();
 | |
|   while (state.KeepRunningBatch(values.size())) {
 | |
|     for (const auto& pair : values) {
 | |
|       benchmark::DoNotOptimize(pair.first / pair.second);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| BENCHMARK_TEMPLATE(BM_DivideIntrinsic128UniformDivisor, unsigned __int128);
 | |
| BENCHMARK_TEMPLATE(BM_DivideIntrinsic128UniformDivisor, __int128);
 | |
| 
 | |
| template <typename T>
 | |
| void BM_RemainderIntrinsic128UniformDivisor(benchmark::State& state) {
 | |
|   auto values = GetRandomIntrinsic128SampleUniformDivisor<T>();
 | |
|   while (state.KeepRunningBatch(values.size())) {
 | |
|     for (const auto& pair : values) {
 | |
|       benchmark::DoNotOptimize(pair.first % pair.second);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128UniformDivisor, unsigned __int128);
 | |
| BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128UniformDivisor, __int128);
 | |
| 
 | |
| template <typename T,
 | |
|           typename H = typename std::conditional<
 | |
|               std::is_same<T, __int128>::value, int64_t, uint64_t>::type>
 | |
| std::vector<std::pair<T, H>> GetRandomIntrinsic128SampleSmallDivisor() {
 | |
|   std::vector<std::pair<T, H>> values;
 | |
|   std::mt19937 random = MakeRandomEngine();
 | |
|   UniformIntDistribution128<T> uniform_int128;
 | |
|   std::uniform_int_distribution<H> uniform_int64;
 | |
|   values.reserve(kSampleSize);
 | |
|   for (size_t i = 0; i < kSampleSize; ++i) {
 | |
|     T a = uniform_int128(random);
 | |
|     H b = std::max(H{2}, uniform_int64(random));
 | |
|     values.emplace_back(std::max(a, static_cast<T>(b)), b);
 | |
|   }
 | |
|   return values;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void BM_DivideIntrinsic128SmallDivisor(benchmark::State& state) {
 | |
|   auto values = GetRandomIntrinsic128SampleSmallDivisor<T>();
 | |
|   while (state.KeepRunningBatch(values.size())) {
 | |
|     for (const auto& pair : values) {
 | |
|       benchmark::DoNotOptimize(pair.first / pair.second);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| BENCHMARK_TEMPLATE(BM_DivideIntrinsic128SmallDivisor, unsigned __int128);
 | |
| BENCHMARK_TEMPLATE(BM_DivideIntrinsic128SmallDivisor, __int128);
 | |
| 
 | |
| template <typename T>
 | |
| void BM_RemainderIntrinsic128SmallDivisor(benchmark::State& state) {
 | |
|   auto values = GetRandomIntrinsic128SampleSmallDivisor<T>();
 | |
|   while (state.KeepRunningBatch(values.size())) {
 | |
|     for (const auto& pair : values) {
 | |
|       benchmark::DoNotOptimize(pair.first % pair.second);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128SmallDivisor, unsigned __int128);
 | |
| BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128SmallDivisor, __int128);
 | |
| 
 | |
| std::vector<std::pair<unsigned __int128, unsigned __int128>>
 | |
|       GetRandomIntrinsic128Sample() {
 | |
|   std::vector<std::pair<unsigned __int128, unsigned __int128>> values;
 | |
|   std::mt19937 random = MakeRandomEngine();
 | |
|   UniformIntDistribution128<unsigned __int128> uniform_uint128;
 | |
|   values.reserve(kSampleSize);
 | |
|   for (size_t i = 0; i < kSampleSize; ++i) {
 | |
|     values.emplace_back(uniform_uint128(random), uniform_uint128(random));
 | |
|   }
 | |
|   return values;
 | |
| }
 | |
| 
 | |
| void BM_MultiplyIntrinsic128(benchmark::State& state) {
 | |
|   auto values = GetRandomIntrinsic128Sample();
 | |
|   while (state.KeepRunningBatch(values.size())) {
 | |
|     for (const auto& pair : values) {
 | |
|       benchmark::DoNotOptimize(pair.first * pair.second);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| BENCHMARK(BM_MultiplyIntrinsic128);
 | |
| 
 | |
| void BM_AddIntrinsic128(benchmark::State& state) {
 | |
|   auto values = GetRandomIntrinsic128Sample();
 | |
|   while (state.KeepRunningBatch(values.size())) {
 | |
|     for (const auto& pair : values) {
 | |
|       benchmark::DoNotOptimize(pair.first + pair.second);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| BENCHMARK(BM_AddIntrinsic128);
 | |
| 
 | |
| #endif  // ABSL_HAVE_INTRINSIC_INT128
 | |
| 
 | |
| }  // namespace
 |