git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			275 lines
		
	
	
	
		
			9.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			275 lines
		
	
	
	
		
			9.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #ifndef ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_
 | |
| #define ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_
 | |
| 
 | |
| // absl::gaussian_distribution implements the Ziggurat algorithm
 | |
| // for generating random gaussian numbers.
 | |
| //
 | |
| // Implementation based on "The Ziggurat Method for Generating Random Variables"
 | |
| // by George Marsaglia and Wai Wan Tsang: http://www.jstatsoft.org/v05/i08/
 | |
| //
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstdint>
 | |
| #include <istream>
 | |
| #include <limits>
 | |
| #include <type_traits>
 | |
| 
 | |
| #include "absl/base/config.h"
 | |
| #include "absl/random/internal/fast_uniform_bits.h"
 | |
| #include "absl/random/internal/generate_real.h"
 | |
| #include "absl/random/internal/iostream_state_saver.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| namespace random_internal {
 | |
| 
 | |
| // absl::gaussian_distribution_base implements the underlying ziggurat algorithm
 | |
| // using the ziggurat tables generated by the gaussian_distribution_gentables
 | |
| // binary.
 | |
| //
 | |
| // The specific algorithm has some of the improvements suggested by the
 | |
| // 2005 paper, "An Improved Ziggurat Method to Generate Normal Random Samples",
 | |
| // Jurgen A Doornik.  (https://www.doornik.com/research/ziggurat.pdf)
 | |
| class ABSL_DLL gaussian_distribution_base {
 | |
|  public:
 | |
|   template <typename URBG>
 | |
|   inline double zignor(URBG& g);  // NOLINT(runtime/references)
 | |
| 
 | |
|  private:
 | |
|   friend class TableGenerator;
 | |
| 
 | |
|   template <typename URBG>
 | |
|   inline double zignor_fallback(URBG& g,  // NOLINT(runtime/references)
 | |
|                                 bool neg);
 | |
| 
 | |
|   // Constants used for the gaussian distribution.
 | |
|   static constexpr double kR = 3.442619855899;  // Start of the tail.
 | |
|   static constexpr double kRInv = 0.29047645161474317;  // ~= (1.0 / kR) .
 | |
|   static constexpr double kV = 9.91256303526217e-3;
 | |
|   static constexpr uint64_t kMask = 0x07f;
 | |
| 
 | |
|   // The ziggurat tables store the pdf(f) and inverse-pdf(x) for equal-area
 | |
|   // points on one-half of the normal distribution, where the pdf function,
 | |
|   // pdf = e ^ (-1/2 *x^2), assumes that the mean = 0 & stddev = 1.
 | |
|   //
 | |
|   // These tables are just over 2kb in size; larger tables might improve the
 | |
|   // distributions, but also lead to more cache pollution.
 | |
|   //
 | |
|   // x = {3.71308, 3.44261, 3.22308, ..., 0}
 | |
|   // f = {0.00101, 0.00266, 0.00554, ..., 1}
 | |
|   struct Tables {
 | |
|     double x[kMask + 2];
 | |
|     double f[kMask + 2];
 | |
|   };
 | |
|   static const Tables zg_;
 | |
|   random_internal::FastUniformBits<uint64_t> fast_u64_;
 | |
| };
 | |
| 
 | |
| }  // namespace random_internal
 | |
| 
 | |
| // absl::gaussian_distribution:
 | |
| // Generates a number conforming to a Gaussian distribution.
 | |
| template <typename RealType = double>
 | |
| class gaussian_distribution : random_internal::gaussian_distribution_base {
 | |
|  public:
 | |
|   using result_type = RealType;
 | |
| 
 | |
|   class param_type {
 | |
|    public:
 | |
|     using distribution_type = gaussian_distribution;
 | |
| 
 | |
|     explicit param_type(result_type mean = 0, result_type stddev = 1)
 | |
|         : mean_(mean), stddev_(stddev) {}
 | |
| 
 | |
|     // Returns the mean distribution parameter.  The mean specifies the location
 | |
|     // of the peak.  The default value is 0.0.
 | |
|     result_type mean() const { return mean_; }
 | |
| 
 | |
|     // Returns the deviation distribution parameter.  The default value is 1.0.
 | |
|     result_type stddev() const { return stddev_; }
 | |
| 
 | |
|     friend bool operator==(const param_type& a, const param_type& b) {
 | |
|       return a.mean_ == b.mean_ && a.stddev_ == b.stddev_;
 | |
|     }
 | |
| 
 | |
|     friend bool operator!=(const param_type& a, const param_type& b) {
 | |
|       return !(a == b);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     result_type mean_;
 | |
|     result_type stddev_;
 | |
| 
 | |
|     static_assert(
 | |
|         std::is_floating_point<RealType>::value,
 | |
|         "Class-template absl::gaussian_distribution<> must be parameterized "
 | |
|         "using a floating-point type.");
 | |
|   };
 | |
| 
 | |
|   gaussian_distribution() : gaussian_distribution(0) {}
 | |
| 
 | |
|   explicit gaussian_distribution(result_type mean, result_type stddev = 1)
 | |
|       : param_(mean, stddev) {}
 | |
| 
 | |
|   explicit gaussian_distribution(const param_type& p) : param_(p) {}
 | |
| 
 | |
|   void reset() {}
 | |
| 
 | |
|   // Generating functions
 | |
|   template <typename URBG>
 | |
|   result_type operator()(URBG& g) {  // NOLINT(runtime/references)
 | |
|     return (*this)(g, param_);
 | |
|   }
 | |
| 
 | |
|   template <typename URBG>
 | |
|   result_type operator()(URBG& g,  // NOLINT(runtime/references)
 | |
|                          const param_type& p);
 | |
| 
 | |
|   param_type param() const { return param_; }
 | |
|   void param(const param_type& p) { param_ = p; }
 | |
| 
 | |
|   result_type(min)() const {
 | |
|     return -std::numeric_limits<result_type>::infinity();
 | |
|   }
 | |
|   result_type(max)() const {
 | |
|     return std::numeric_limits<result_type>::infinity();
 | |
|   }
 | |
| 
 | |
|   result_type mean() const { return param_.mean(); }
 | |
|   result_type stddev() const { return param_.stddev(); }
 | |
| 
 | |
|   friend bool operator==(const gaussian_distribution& a,
 | |
|                          const gaussian_distribution& b) {
 | |
|     return a.param_ == b.param_;
 | |
|   }
 | |
|   friend bool operator!=(const gaussian_distribution& a,
 | |
|                          const gaussian_distribution& b) {
 | |
|     return a.param_ != b.param_;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   param_type param_;
 | |
| };
 | |
| 
 | |
| // --------------------------------------------------------------------------
 | |
| // Implementation details only below
 | |
| // --------------------------------------------------------------------------
 | |
| 
 | |
| template <typename RealType>
 | |
| template <typename URBG>
 | |
| typename gaussian_distribution<RealType>::result_type
 | |
| gaussian_distribution<RealType>::operator()(
 | |
|     URBG& g,  // NOLINT(runtime/references)
 | |
|     const param_type& p) {
 | |
|   return p.mean() + p.stddev() * static_cast<result_type>(zignor(g));
 | |
| }
 | |
| 
 | |
| template <typename CharT, typename Traits, typename RealType>
 | |
| std::basic_ostream<CharT, Traits>& operator<<(
 | |
|     std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
 | |
|     const gaussian_distribution<RealType>& x) {
 | |
|   auto saver = random_internal::make_ostream_state_saver(os);
 | |
|   os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);
 | |
|   os << x.mean() << os.fill() << x.stddev();
 | |
|   return os;
 | |
| }
 | |
| 
 | |
| template <typename CharT, typename Traits, typename RealType>
 | |
| std::basic_istream<CharT, Traits>& operator>>(
 | |
|     std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)
 | |
|     gaussian_distribution<RealType>& x) {   // NOLINT(runtime/references)
 | |
|   using result_type = typename gaussian_distribution<RealType>::result_type;
 | |
|   using param_type = typename gaussian_distribution<RealType>::param_type;
 | |
| 
 | |
|   auto saver = random_internal::make_istream_state_saver(is);
 | |
|   auto mean = random_internal::read_floating_point<result_type>(is);
 | |
|   if (is.fail()) return is;
 | |
|   auto stddev = random_internal::read_floating_point<result_type>(is);
 | |
|   if (!is.fail()) {
 | |
|     x.param(param_type(mean, stddev));
 | |
|   }
 | |
|   return is;
 | |
| }
 | |
| 
 | |
| namespace random_internal {
 | |
| 
 | |
| template <typename URBG>
 | |
| inline double gaussian_distribution_base::zignor_fallback(URBG& g, bool neg) {
 | |
|   using random_internal::GeneratePositiveTag;
 | |
|   using random_internal::GenerateRealFromBits;
 | |
| 
 | |
|   // This fallback path happens approximately 0.05% of the time.
 | |
|   double x, y;
 | |
|   do {
 | |
|     // kRInv = 1/r, U(0, 1)
 | |
|     x = kRInv *
 | |
|         std::log(GenerateRealFromBits<double, GeneratePositiveTag, false>(
 | |
|             fast_u64_(g)));
 | |
|     y = -std::log(
 | |
|         GenerateRealFromBits<double, GeneratePositiveTag, false>(fast_u64_(g)));
 | |
|   } while ((y + y) < (x * x));
 | |
|   return neg ? (x - kR) : (kR - x);
 | |
| }
 | |
| 
 | |
| template <typename URBG>
 | |
| inline double gaussian_distribution_base::zignor(
 | |
|     URBG& g) {  // NOLINT(runtime/references)
 | |
|   using random_internal::GeneratePositiveTag;
 | |
|   using random_internal::GenerateRealFromBits;
 | |
|   using random_internal::GenerateSignedTag;
 | |
| 
 | |
|   while (true) {
 | |
|     // We use a single uint64_t to generate both a double and a strip.
 | |
|     // These bits are unused when the generated double is > 1/2^5.
 | |
|     // This may introduce some bias from the duplicated low bits of small
 | |
|     // values (those smaller than 1/2^5, which all end up on the left tail).
 | |
|     uint64_t bits = fast_u64_(g);
 | |
|     int i = static_cast<int>(bits & kMask);  // pick a random strip
 | |
|     double j = GenerateRealFromBits<double, GenerateSignedTag, false>(
 | |
|         bits);  // U(-1, 1)
 | |
|     const double x = j * zg_.x[i];
 | |
| 
 | |
|     // Retangular box. Handles >97% of all cases.
 | |
|     // For any given box, this handles between 75% and 99% of values.
 | |
|     // Equivalent to U(01) < (x[i+1] / x[i]), and when i == 0, ~93.5%
 | |
|     if (std::abs(x) < zg_.x[i + 1]) {
 | |
|       return x;
 | |
|     }
 | |
| 
 | |
|     // i == 0: Base box. Sample using a ratio of uniforms.
 | |
|     if (i == 0) {
 | |
|       // This path happens about 0.05% of the time.
 | |
|       return zignor_fallback(g, j < 0);
 | |
|     }
 | |
| 
 | |
|     // i > 0: Wedge samples using precomputed values.
 | |
|     double v = GenerateRealFromBits<double, GeneratePositiveTag, false>(
 | |
|         fast_u64_(g));  // U(0, 1)
 | |
|     if ((zg_.f[i + 1] + v * (zg_.f[i] - zg_.f[i + 1])) <
 | |
|         std::exp(-0.5 * x * x)) {
 | |
|       return x;
 | |
|     }
 | |
| 
 | |
|     // The wedge was missed; reject the value and try again.
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace random_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_
 |