git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			1675 lines
		
	
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1675 lines
		
	
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2017 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      https://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
#include "absl/synchronization/mutex.h"
 | 
						|
 | 
						|
#ifdef _WIN32
 | 
						|
#include <windows.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <atomic>
 | 
						|
#include <cstdlib>
 | 
						|
#include <functional>
 | 
						|
#include <memory>
 | 
						|
#include <random>
 | 
						|
#include <string>
 | 
						|
#include <thread>  // NOLINT(build/c++11)
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#include "gtest/gtest.h"
 | 
						|
#include "absl/base/attributes.h"
 | 
						|
#include "absl/base/internal/raw_logging.h"
 | 
						|
#include "absl/base/internal/sysinfo.h"
 | 
						|
#include "absl/memory/memory.h"
 | 
						|
#include "absl/synchronization/internal/thread_pool.h"
 | 
						|
#include "absl/time/clock.h"
 | 
						|
#include "absl/time/time.h"
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// TODO(dmauro): Replace with a commandline flag.
 | 
						|
static constexpr bool kExtendedTest = false;
 | 
						|
 | 
						|
std::unique_ptr<absl::synchronization_internal::ThreadPool> CreatePool(
 | 
						|
    int threads) {
 | 
						|
  return absl::make_unique<absl::synchronization_internal::ThreadPool>(threads);
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<absl::synchronization_internal::ThreadPool>
 | 
						|
CreateDefaultPool() {
 | 
						|
  return CreatePool(kExtendedTest ? 32 : 10);
 | 
						|
}
 | 
						|
 | 
						|
// Hack to schedule a function to run on a thread pool thread after a
 | 
						|
// duration has elapsed.
 | 
						|
static void ScheduleAfter(absl::synchronization_internal::ThreadPool *tp,
 | 
						|
                          absl::Duration after,
 | 
						|
                          const std::function<void()> &func) {
 | 
						|
  tp->Schedule([func, after] {
 | 
						|
    absl::SleepFor(after);
 | 
						|
    func();
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
struct TestContext {
 | 
						|
  int iterations;
 | 
						|
  int threads;
 | 
						|
  int g0;  // global 0
 | 
						|
  int g1;  // global 1
 | 
						|
  absl::Mutex mu;
 | 
						|
  absl::CondVar cv;
 | 
						|
};
 | 
						|
 | 
						|
// To test whether the invariant check call occurs
 | 
						|
static std::atomic<bool> invariant_checked;
 | 
						|
 | 
						|
static bool GetInvariantChecked() {
 | 
						|
  return invariant_checked.load(std::memory_order_relaxed);
 | 
						|
}
 | 
						|
 | 
						|
static void SetInvariantChecked(bool new_value) {
 | 
						|
  invariant_checked.store(new_value, std::memory_order_relaxed);
 | 
						|
}
 | 
						|
 | 
						|
static void CheckSumG0G1(void *v) {
 | 
						|
  TestContext *cxt = static_cast<TestContext *>(v);
 | 
						|
  ABSL_RAW_CHECK(cxt->g0 == -cxt->g1, "Error in CheckSumG0G1");
 | 
						|
  SetInvariantChecked(true);
 | 
						|
}
 | 
						|
 | 
						|
static void TestMu(TestContext *cxt, int c) {
 | 
						|
  for (int i = 0; i != cxt->iterations; i++) {
 | 
						|
    absl::MutexLock l(&cxt->mu);
 | 
						|
    int a = cxt->g0 + 1;
 | 
						|
    cxt->g0 = a;
 | 
						|
    cxt->g1--;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void TestTry(TestContext *cxt, int c) {
 | 
						|
  for (int i = 0; i != cxt->iterations; i++) {
 | 
						|
    do {
 | 
						|
      std::this_thread::yield();
 | 
						|
    } while (!cxt->mu.TryLock());
 | 
						|
    int a = cxt->g0 + 1;
 | 
						|
    cxt->g0 = a;
 | 
						|
    cxt->g1--;
 | 
						|
    cxt->mu.Unlock();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void TestR20ms(TestContext *cxt, int c) {
 | 
						|
  for (int i = 0; i != cxt->iterations; i++) {
 | 
						|
    absl::ReaderMutexLock l(&cxt->mu);
 | 
						|
    absl::SleepFor(absl::Milliseconds(20));
 | 
						|
    cxt->mu.AssertReaderHeld();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void TestRW(TestContext *cxt, int c) {
 | 
						|
  if ((c & 1) == 0) {
 | 
						|
    for (int i = 0; i != cxt->iterations; i++) {
 | 
						|
      absl::WriterMutexLock l(&cxt->mu);
 | 
						|
      cxt->g0++;
 | 
						|
      cxt->g1--;
 | 
						|
      cxt->mu.AssertHeld();
 | 
						|
      cxt->mu.AssertReaderHeld();
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    for (int i = 0; i != cxt->iterations; i++) {
 | 
						|
      absl::ReaderMutexLock l(&cxt->mu);
 | 
						|
      ABSL_RAW_CHECK(cxt->g0 == -cxt->g1, "Error in TestRW");
 | 
						|
      cxt->mu.AssertReaderHeld();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
struct MyContext {
 | 
						|
  int target;
 | 
						|
  TestContext *cxt;
 | 
						|
  bool MyTurn();
 | 
						|
};
 | 
						|
 | 
						|
bool MyContext::MyTurn() {
 | 
						|
  TestContext *cxt = this->cxt;
 | 
						|
  return cxt->g0 == this->target || cxt->g0 == cxt->iterations;
 | 
						|
}
 | 
						|
 | 
						|
static void TestAwait(TestContext *cxt, int c) {
 | 
						|
  MyContext mc;
 | 
						|
  mc.target = c;
 | 
						|
  mc.cxt = cxt;
 | 
						|
  absl::MutexLock l(&cxt->mu);
 | 
						|
  cxt->mu.AssertHeld();
 | 
						|
  while (cxt->g0 < cxt->iterations) {
 | 
						|
    cxt->mu.Await(absl::Condition(&mc, &MyContext::MyTurn));
 | 
						|
    ABSL_RAW_CHECK(mc.MyTurn(), "Error in TestAwait");
 | 
						|
    cxt->mu.AssertHeld();
 | 
						|
    if (cxt->g0 < cxt->iterations) {
 | 
						|
      int a = cxt->g0 + 1;
 | 
						|
      cxt->g0 = a;
 | 
						|
      mc.target += cxt->threads;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void TestSignalAll(TestContext *cxt, int c) {
 | 
						|
  int target = c;
 | 
						|
  absl::MutexLock l(&cxt->mu);
 | 
						|
  cxt->mu.AssertHeld();
 | 
						|
  while (cxt->g0 < cxt->iterations) {
 | 
						|
    while (cxt->g0 != target && cxt->g0 != cxt->iterations) {
 | 
						|
      cxt->cv.Wait(&cxt->mu);
 | 
						|
    }
 | 
						|
    if (cxt->g0 < cxt->iterations) {
 | 
						|
      int a = cxt->g0 + 1;
 | 
						|
      cxt->g0 = a;
 | 
						|
      cxt->cv.SignalAll();
 | 
						|
      target += cxt->threads;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void TestSignal(TestContext *cxt, int c) {
 | 
						|
  ABSL_RAW_CHECK(cxt->threads == 2, "TestSignal should use 2 threads");
 | 
						|
  int target = c;
 | 
						|
  absl::MutexLock l(&cxt->mu);
 | 
						|
  cxt->mu.AssertHeld();
 | 
						|
  while (cxt->g0 < cxt->iterations) {
 | 
						|
    while (cxt->g0 != target && cxt->g0 != cxt->iterations) {
 | 
						|
      cxt->cv.Wait(&cxt->mu);
 | 
						|
    }
 | 
						|
    if (cxt->g0 < cxt->iterations) {
 | 
						|
      int a = cxt->g0 + 1;
 | 
						|
      cxt->g0 = a;
 | 
						|
      cxt->cv.Signal();
 | 
						|
      target += cxt->threads;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void TestCVTimeout(TestContext *cxt, int c) {
 | 
						|
  int target = c;
 | 
						|
  absl::MutexLock l(&cxt->mu);
 | 
						|
  cxt->mu.AssertHeld();
 | 
						|
  while (cxt->g0 < cxt->iterations) {
 | 
						|
    while (cxt->g0 != target && cxt->g0 != cxt->iterations) {
 | 
						|
      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(100));
 | 
						|
    }
 | 
						|
    if (cxt->g0 < cxt->iterations) {
 | 
						|
      int a = cxt->g0 + 1;
 | 
						|
      cxt->g0 = a;
 | 
						|
      cxt->cv.SignalAll();
 | 
						|
      target += cxt->threads;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool G0GE2(TestContext *cxt) { return cxt->g0 >= 2; }
 | 
						|
 | 
						|
static void TestTime(TestContext *cxt, int c, bool use_cv) {
 | 
						|
  ABSL_RAW_CHECK(cxt->iterations == 1, "TestTime should only use 1 iteration");
 | 
						|
  ABSL_RAW_CHECK(cxt->threads > 2, "TestTime should use more than 2 threads");
 | 
						|
  const bool kFalse = false;
 | 
						|
  absl::Condition false_cond(&kFalse);
 | 
						|
  absl::Condition g0ge2(G0GE2, cxt);
 | 
						|
  if (c == 0) {
 | 
						|
    absl::MutexLock l(&cxt->mu);
 | 
						|
 | 
						|
    absl::Time start = absl::Now();
 | 
						|
    if (use_cv) {
 | 
						|
      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1));
 | 
						|
    } else {
 | 
						|
      ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)),
 | 
						|
                     "TestTime failed");
 | 
						|
    }
 | 
						|
    absl::Duration elapsed = absl::Now() - start;
 | 
						|
    ABSL_RAW_CHECK(
 | 
						|
        absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0),
 | 
						|
        "TestTime failed");
 | 
						|
    ABSL_RAW_CHECK(cxt->g0 == 1, "TestTime failed");
 | 
						|
 | 
						|
    start = absl::Now();
 | 
						|
    if (use_cv) {
 | 
						|
      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1));
 | 
						|
    } else {
 | 
						|
      ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)),
 | 
						|
                     "TestTime failed");
 | 
						|
    }
 | 
						|
    elapsed = absl::Now() - start;
 | 
						|
    ABSL_RAW_CHECK(
 | 
						|
        absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0),
 | 
						|
        "TestTime failed");
 | 
						|
    cxt->g0++;
 | 
						|
    if (use_cv) {
 | 
						|
      cxt->cv.Signal();
 | 
						|
    }
 | 
						|
 | 
						|
    start = absl::Now();
 | 
						|
    if (use_cv) {
 | 
						|
      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(4));
 | 
						|
    } else {
 | 
						|
      ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(4)),
 | 
						|
                     "TestTime failed");
 | 
						|
    }
 | 
						|
    elapsed = absl::Now() - start;
 | 
						|
    ABSL_RAW_CHECK(
 | 
						|
        absl::Seconds(3.9) <= elapsed && elapsed <= absl::Seconds(6.0),
 | 
						|
        "TestTime failed");
 | 
						|
    ABSL_RAW_CHECK(cxt->g0 >= 3, "TestTime failed");
 | 
						|
 | 
						|
    start = absl::Now();
 | 
						|
    if (use_cv) {
 | 
						|
      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1));
 | 
						|
    } else {
 | 
						|
      ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)),
 | 
						|
                     "TestTime failed");
 | 
						|
    }
 | 
						|
    elapsed = absl::Now() - start;
 | 
						|
    ABSL_RAW_CHECK(
 | 
						|
        absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0),
 | 
						|
        "TestTime failed");
 | 
						|
    if (use_cv) {
 | 
						|
      cxt->cv.SignalAll();
 | 
						|
    }
 | 
						|
 | 
						|
    start = absl::Now();
 | 
						|
    if (use_cv) {
 | 
						|
      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1));
 | 
						|
    } else {
 | 
						|
      ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)),
 | 
						|
                     "TestTime failed");
 | 
						|
    }
 | 
						|
    elapsed = absl::Now() - start;
 | 
						|
    ABSL_RAW_CHECK(absl::Seconds(0.9) <= elapsed &&
 | 
						|
                   elapsed <= absl::Seconds(2.0), "TestTime failed");
 | 
						|
    ABSL_RAW_CHECK(cxt->g0 == cxt->threads, "TestTime failed");
 | 
						|
 | 
						|
  } else if (c == 1) {
 | 
						|
    absl::MutexLock l(&cxt->mu);
 | 
						|
    const absl::Time start = absl::Now();
 | 
						|
    if (use_cv) {
 | 
						|
      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Milliseconds(500));
 | 
						|
    } else {
 | 
						|
      ABSL_RAW_CHECK(
 | 
						|
          !cxt->mu.AwaitWithTimeout(false_cond, absl::Milliseconds(500)),
 | 
						|
          "TestTime failed");
 | 
						|
    }
 | 
						|
    const absl::Duration elapsed = absl::Now() - start;
 | 
						|
    ABSL_RAW_CHECK(
 | 
						|
        absl::Seconds(0.4) <= elapsed && elapsed <= absl::Seconds(0.9),
 | 
						|
        "TestTime failed");
 | 
						|
    cxt->g0++;
 | 
						|
  } else if (c == 2) {
 | 
						|
    absl::MutexLock l(&cxt->mu);
 | 
						|
    if (use_cv) {
 | 
						|
      while (cxt->g0 < 2) {
 | 
						|
        cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(100));
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      ABSL_RAW_CHECK(cxt->mu.AwaitWithTimeout(g0ge2, absl::Seconds(100)),
 | 
						|
                     "TestTime failed");
 | 
						|
    }
 | 
						|
    cxt->g0++;
 | 
						|
  } else {
 | 
						|
    absl::MutexLock l(&cxt->mu);
 | 
						|
    if (use_cv) {
 | 
						|
      while (cxt->g0 < 2) {
 | 
						|
        cxt->cv.Wait(&cxt->mu);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      cxt->mu.Await(g0ge2);
 | 
						|
    }
 | 
						|
    cxt->g0++;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void TestMuTime(TestContext *cxt, int c) { TestTime(cxt, c, false); }
 | 
						|
 | 
						|
static void TestCVTime(TestContext *cxt, int c) { TestTime(cxt, c, true); }
 | 
						|
 | 
						|
static void EndTest(int *c0, int *c1, absl::Mutex *mu, absl::CondVar *cv,
 | 
						|
                    const std::function<void(int)>& cb) {
 | 
						|
  mu->Lock();
 | 
						|
  int c = (*c0)++;
 | 
						|
  mu->Unlock();
 | 
						|
  cb(c);
 | 
						|
  absl::MutexLock l(mu);
 | 
						|
  (*c1)++;
 | 
						|
  cv->Signal();
 | 
						|
}
 | 
						|
 | 
						|
// Code common to RunTest() and RunTestWithInvariantDebugging().
 | 
						|
static int RunTestCommon(TestContext *cxt, void (*test)(TestContext *cxt, int),
 | 
						|
                         int threads, int iterations, int operations) {
 | 
						|
  absl::Mutex mu2;
 | 
						|
  absl::CondVar cv2;
 | 
						|
  int c0 = 0;
 | 
						|
  int c1 = 0;
 | 
						|
  cxt->g0 = 0;
 | 
						|
  cxt->g1 = 0;
 | 
						|
  cxt->iterations = iterations;
 | 
						|
  cxt->threads = threads;
 | 
						|
  absl::synchronization_internal::ThreadPool tp(threads);
 | 
						|
  for (int i = 0; i != threads; i++) {
 | 
						|
    tp.Schedule(std::bind(&EndTest, &c0, &c1, &mu2, &cv2,
 | 
						|
                          std::function<void(int)>(
 | 
						|
                              std::bind(test, cxt, std::placeholders::_1))));
 | 
						|
  }
 | 
						|
  mu2.Lock();
 | 
						|
  while (c1 != threads) {
 | 
						|
    cv2.Wait(&mu2);
 | 
						|
  }
 | 
						|
  mu2.Unlock();
 | 
						|
  return cxt->g0;
 | 
						|
}
 | 
						|
 | 
						|
// Basis for the parameterized tests configured below.
 | 
						|
static int RunTest(void (*test)(TestContext *cxt, int), int threads,
 | 
						|
                   int iterations, int operations) {
 | 
						|
  TestContext cxt;
 | 
						|
  return RunTestCommon(&cxt, test, threads, iterations, operations);
 | 
						|
}
 | 
						|
 | 
						|
// Like RunTest(), but sets an invariant on the tested Mutex and
 | 
						|
// verifies that the invariant check happened. The invariant function
 | 
						|
// will be passed the TestContext* as its arg and must call
 | 
						|
// SetInvariantChecked(true);
 | 
						|
#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED)
 | 
						|
static int RunTestWithInvariantDebugging(void (*test)(TestContext *cxt, int),
 | 
						|
                                         int threads, int iterations,
 | 
						|
                                         int operations,
 | 
						|
                                         void (*invariant)(void *)) {
 | 
						|
  absl::EnableMutexInvariantDebugging(true);
 | 
						|
  SetInvariantChecked(false);
 | 
						|
  TestContext cxt;
 | 
						|
  cxt.mu.EnableInvariantDebugging(invariant, &cxt);
 | 
						|
  int ret = RunTestCommon(&cxt, test, threads, iterations, operations);
 | 
						|
  ABSL_RAW_CHECK(GetInvariantChecked(), "Invariant not checked");
 | 
						|
  absl::EnableMutexInvariantDebugging(false);  // Restore.
 | 
						|
  return ret;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
// --------------------------------------------------------
 | 
						|
// Test for fix of bug in TryRemove()
 | 
						|
struct TimeoutBugStruct {
 | 
						|
  absl::Mutex mu;
 | 
						|
  bool a;
 | 
						|
  int a_waiter_count;
 | 
						|
};
 | 
						|
 | 
						|
static void WaitForA(TimeoutBugStruct *x) {
 | 
						|
  x->mu.LockWhen(absl::Condition(&x->a));
 | 
						|
  x->a_waiter_count--;
 | 
						|
  x->mu.Unlock();
 | 
						|
}
 | 
						|
 | 
						|
static bool NoAWaiters(TimeoutBugStruct *x) { return x->a_waiter_count == 0; }
 | 
						|
 | 
						|
// Test that a CondVar.Wait(&mutex) can un-block a call to mutex.Await() in
 | 
						|
// another thread.
 | 
						|
TEST(Mutex, CondVarWaitSignalsAwait) {
 | 
						|
  // Use a struct so the lock annotations apply.
 | 
						|
  struct {
 | 
						|
    absl::Mutex barrier_mu;
 | 
						|
    bool barrier ABSL_GUARDED_BY(barrier_mu) = false;
 | 
						|
 | 
						|
    absl::Mutex release_mu;
 | 
						|
    bool release ABSL_GUARDED_BY(release_mu) = false;
 | 
						|
    absl::CondVar released_cv;
 | 
						|
  } state;
 | 
						|
 | 
						|
  auto pool = CreateDefaultPool();
 | 
						|
 | 
						|
  // Thread A.  Sets barrier, waits for release using Mutex::Await, then
 | 
						|
  // signals released_cv.
 | 
						|
  pool->Schedule([&state] {
 | 
						|
    state.release_mu.Lock();
 | 
						|
 | 
						|
    state.barrier_mu.Lock();
 | 
						|
    state.barrier = true;
 | 
						|
    state.barrier_mu.Unlock();
 | 
						|
 | 
						|
    state.release_mu.Await(absl::Condition(&state.release));
 | 
						|
    state.released_cv.Signal();
 | 
						|
    state.release_mu.Unlock();
 | 
						|
  });
 | 
						|
 | 
						|
  state.barrier_mu.LockWhen(absl::Condition(&state.barrier));
 | 
						|
  state.barrier_mu.Unlock();
 | 
						|
  state.release_mu.Lock();
 | 
						|
  // Thread A is now blocked on release by way of Mutex::Await().
 | 
						|
 | 
						|
  // Set release.  Calling released_cv.Wait() should un-block thread A,
 | 
						|
  // which will signal released_cv.  If not, the test will hang.
 | 
						|
  state.release = true;
 | 
						|
  state.released_cv.Wait(&state.release_mu);
 | 
						|
  state.release_mu.Unlock();
 | 
						|
}
 | 
						|
 | 
						|
// Test that a CondVar.WaitWithTimeout(&mutex) can un-block a call to
 | 
						|
// mutex.Await() in another thread.
 | 
						|
TEST(Mutex, CondVarWaitWithTimeoutSignalsAwait) {
 | 
						|
  // Use a struct so the lock annotations apply.
 | 
						|
  struct {
 | 
						|
    absl::Mutex barrier_mu;
 | 
						|
    bool barrier ABSL_GUARDED_BY(barrier_mu) = false;
 | 
						|
 | 
						|
    absl::Mutex release_mu;
 | 
						|
    bool release ABSL_GUARDED_BY(release_mu) = false;
 | 
						|
    absl::CondVar released_cv;
 | 
						|
  } state;
 | 
						|
 | 
						|
  auto pool = CreateDefaultPool();
 | 
						|
 | 
						|
  // Thread A.  Sets barrier, waits for release using Mutex::Await, then
 | 
						|
  // signals released_cv.
 | 
						|
  pool->Schedule([&state] {
 | 
						|
    state.release_mu.Lock();
 | 
						|
 | 
						|
    state.barrier_mu.Lock();
 | 
						|
    state.barrier = true;
 | 
						|
    state.barrier_mu.Unlock();
 | 
						|
 | 
						|
    state.release_mu.Await(absl::Condition(&state.release));
 | 
						|
    state.released_cv.Signal();
 | 
						|
    state.release_mu.Unlock();
 | 
						|
  });
 | 
						|
 | 
						|
  state.barrier_mu.LockWhen(absl::Condition(&state.barrier));
 | 
						|
  state.barrier_mu.Unlock();
 | 
						|
  state.release_mu.Lock();
 | 
						|
  // Thread A is now blocked on release by way of Mutex::Await().
 | 
						|
 | 
						|
  // Set release.  Calling released_cv.Wait() should un-block thread A,
 | 
						|
  // which will signal released_cv.  If not, the test will hang.
 | 
						|
  state.release = true;
 | 
						|
  EXPECT_TRUE(
 | 
						|
      !state.released_cv.WaitWithTimeout(&state.release_mu, absl::Seconds(10)))
 | 
						|
      << "; Unrecoverable test failure: CondVar::WaitWithTimeout did not "
 | 
						|
         "unblock the absl::Mutex::Await call in another thread.";
 | 
						|
 | 
						|
  state.release_mu.Unlock();
 | 
						|
}
 | 
						|
 | 
						|
// Test for regression of a bug in loop of TryRemove()
 | 
						|
TEST(Mutex, MutexTimeoutBug) {
 | 
						|
  auto tp = CreateDefaultPool();
 | 
						|
 | 
						|
  TimeoutBugStruct x;
 | 
						|
  x.a = false;
 | 
						|
  x.a_waiter_count = 2;
 | 
						|
  tp->Schedule(std::bind(&WaitForA, &x));
 | 
						|
  tp->Schedule(std::bind(&WaitForA, &x));
 | 
						|
  absl::SleepFor(absl::Seconds(1));  // Allow first two threads to hang.
 | 
						|
  // The skip field of the second will point to the first because there are
 | 
						|
  // only two.
 | 
						|
 | 
						|
  // Now cause a thread waiting on an always-false to time out
 | 
						|
  // This would deadlock when the bug was present.
 | 
						|
  bool always_false = false;
 | 
						|
  x.mu.LockWhenWithTimeout(absl::Condition(&always_false),
 | 
						|
                           absl::Milliseconds(500));
 | 
						|
 | 
						|
  // if we get here, the bug is not present.   Cleanup the state.
 | 
						|
 | 
						|
  x.a = true;                                    // wakeup the two waiters on A
 | 
						|
  x.mu.Await(absl::Condition(&NoAWaiters, &x));  // wait for them to exit
 | 
						|
  x.mu.Unlock();
 | 
						|
}
 | 
						|
 | 
						|
struct CondVarWaitDeadlock : testing::TestWithParam<int> {
 | 
						|
  absl::Mutex mu;
 | 
						|
  absl::CondVar cv;
 | 
						|
  bool cond1 = false;
 | 
						|
  bool cond2 = false;
 | 
						|
  bool read_lock1;
 | 
						|
  bool read_lock2;
 | 
						|
  bool signal_unlocked;
 | 
						|
 | 
						|
  CondVarWaitDeadlock() {
 | 
						|
    read_lock1 = GetParam() & (1 << 0);
 | 
						|
    read_lock2 = GetParam() & (1 << 1);
 | 
						|
    signal_unlocked = GetParam() & (1 << 2);
 | 
						|
  }
 | 
						|
 | 
						|
  void Waiter1() {
 | 
						|
    if (read_lock1) {
 | 
						|
      mu.ReaderLock();
 | 
						|
      while (!cond1) {
 | 
						|
        cv.Wait(&mu);
 | 
						|
      }
 | 
						|
      mu.ReaderUnlock();
 | 
						|
    } else {
 | 
						|
      mu.Lock();
 | 
						|
      while (!cond1) {
 | 
						|
        cv.Wait(&mu);
 | 
						|
      }
 | 
						|
      mu.Unlock();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void Waiter2() {
 | 
						|
    if (read_lock2) {
 | 
						|
      mu.ReaderLockWhen(absl::Condition(&cond2));
 | 
						|
      mu.ReaderUnlock();
 | 
						|
    } else {
 | 
						|
      mu.LockWhen(absl::Condition(&cond2));
 | 
						|
      mu.Unlock();
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Test for a deadlock bug in Mutex::Fer().
 | 
						|
// The sequence of events that lead to the deadlock is:
 | 
						|
// 1. waiter1 blocks on cv in read mode (mu bits = 0).
 | 
						|
// 2. waiter2 blocks on mu in either mode (mu bits = kMuWait).
 | 
						|
// 3. main thread locks mu, sets cond1, unlocks mu (mu bits = kMuWait).
 | 
						|
// 4. main thread signals on cv and this eventually calls Mutex::Fer().
 | 
						|
// Currently Fer wakes waiter1 since mu bits = kMuWait (mutex is unlocked).
 | 
						|
// Before the bug fix Fer neither woke waiter1 nor queued it on mutex,
 | 
						|
// which resulted in deadlock.
 | 
						|
TEST_P(CondVarWaitDeadlock, Test) {
 | 
						|
  auto waiter1 = CreatePool(1);
 | 
						|
  auto waiter2 = CreatePool(1);
 | 
						|
  waiter1->Schedule([this] { this->Waiter1(); });
 | 
						|
  waiter2->Schedule([this] { this->Waiter2(); });
 | 
						|
 | 
						|
  // Wait while threads block (best-effort is fine).
 | 
						|
  absl::SleepFor(absl::Milliseconds(100));
 | 
						|
 | 
						|
  // Wake condwaiter.
 | 
						|
  mu.Lock();
 | 
						|
  cond1 = true;
 | 
						|
  if (signal_unlocked) {
 | 
						|
    mu.Unlock();
 | 
						|
    cv.Signal();
 | 
						|
  } else {
 | 
						|
    cv.Signal();
 | 
						|
    mu.Unlock();
 | 
						|
  }
 | 
						|
  waiter1.reset();  // "join" waiter1
 | 
						|
 | 
						|
  // Wake waiter.
 | 
						|
  mu.Lock();
 | 
						|
  cond2 = true;
 | 
						|
  mu.Unlock();
 | 
						|
  waiter2.reset();  // "join" waiter2
 | 
						|
}
 | 
						|
 | 
						|
INSTANTIATE_TEST_SUITE_P(CondVarWaitDeadlockTest, CondVarWaitDeadlock,
 | 
						|
                         ::testing::Range(0, 8),
 | 
						|
                         ::testing::PrintToStringParamName());
 | 
						|
 | 
						|
// --------------------------------------------------------
 | 
						|
// Test for fix of bug in DequeueAllWakeable()
 | 
						|
// Bug was that if there was more than one waiting reader
 | 
						|
// and all should be woken, the most recently blocked one
 | 
						|
// would not be.
 | 
						|
 | 
						|
struct DequeueAllWakeableBugStruct {
 | 
						|
  absl::Mutex mu;
 | 
						|
  absl::Mutex mu2;       // protects all fields below
 | 
						|
  int unfinished_count;  // count of unfinished readers; under mu2
 | 
						|
  bool done1;            // unfinished_count == 0; under mu2
 | 
						|
  int finished_count;    // count of finished readers, under mu2
 | 
						|
  bool done2;            // finished_count == 0; under mu2
 | 
						|
};
 | 
						|
 | 
						|
// Test for regression of a bug in loop of DequeueAllWakeable()
 | 
						|
static void AcquireAsReader(DequeueAllWakeableBugStruct *x) {
 | 
						|
  x->mu.ReaderLock();
 | 
						|
  x->mu2.Lock();
 | 
						|
  x->unfinished_count--;
 | 
						|
  x->done1 = (x->unfinished_count == 0);
 | 
						|
  x->mu2.Unlock();
 | 
						|
  // make sure that both readers acquired mu before we release it.
 | 
						|
  absl::SleepFor(absl::Seconds(2));
 | 
						|
  x->mu.ReaderUnlock();
 | 
						|
 | 
						|
  x->mu2.Lock();
 | 
						|
  x->finished_count--;
 | 
						|
  x->done2 = (x->finished_count == 0);
 | 
						|
  x->mu2.Unlock();
 | 
						|
}
 | 
						|
 | 
						|
// Test for regression of a bug in loop of DequeueAllWakeable()
 | 
						|
TEST(Mutex, MutexReaderWakeupBug) {
 | 
						|
  auto tp = CreateDefaultPool();
 | 
						|
 | 
						|
  DequeueAllWakeableBugStruct x;
 | 
						|
  x.unfinished_count = 2;
 | 
						|
  x.done1 = false;
 | 
						|
  x.finished_count = 2;
 | 
						|
  x.done2 = false;
 | 
						|
  x.mu.Lock();  // acquire mu exclusively
 | 
						|
  // queue two thread that will block on reader locks on x.mu
 | 
						|
  tp->Schedule(std::bind(&AcquireAsReader, &x));
 | 
						|
  tp->Schedule(std::bind(&AcquireAsReader, &x));
 | 
						|
  absl::SleepFor(absl::Seconds(1));  // give time for reader threads to block
 | 
						|
  x.mu.Unlock();                     // wake them up
 | 
						|
 | 
						|
  // both readers should finish promptly
 | 
						|
  EXPECT_TRUE(
 | 
						|
      x.mu2.LockWhenWithTimeout(absl::Condition(&x.done1), absl::Seconds(10)));
 | 
						|
  x.mu2.Unlock();
 | 
						|
 | 
						|
  EXPECT_TRUE(
 | 
						|
      x.mu2.LockWhenWithTimeout(absl::Condition(&x.done2), absl::Seconds(10)));
 | 
						|
  x.mu2.Unlock();
 | 
						|
}
 | 
						|
 | 
						|
struct LockWhenTestStruct {
 | 
						|
  absl::Mutex mu1;
 | 
						|
  bool cond = false;
 | 
						|
 | 
						|
  absl::Mutex mu2;
 | 
						|
  bool waiting = false;
 | 
						|
};
 | 
						|
 | 
						|
static bool LockWhenTestIsCond(LockWhenTestStruct* s) {
 | 
						|
  s->mu2.Lock();
 | 
						|
  s->waiting = true;
 | 
						|
  s->mu2.Unlock();
 | 
						|
  return s->cond;
 | 
						|
}
 | 
						|
 | 
						|
static void LockWhenTestWaitForIsCond(LockWhenTestStruct* s) {
 | 
						|
  s->mu1.LockWhen(absl::Condition(&LockWhenTestIsCond, s));
 | 
						|
  s->mu1.Unlock();
 | 
						|
}
 | 
						|
 | 
						|
TEST(Mutex, LockWhen) {
 | 
						|
  LockWhenTestStruct s;
 | 
						|
 | 
						|
  std::thread t(LockWhenTestWaitForIsCond, &s);
 | 
						|
  s.mu2.LockWhen(absl::Condition(&s.waiting));
 | 
						|
  s.mu2.Unlock();
 | 
						|
 | 
						|
  s.mu1.Lock();
 | 
						|
  s.cond = true;
 | 
						|
  s.mu1.Unlock();
 | 
						|
 | 
						|
  t.join();
 | 
						|
}
 | 
						|
 | 
						|
// --------------------------------------------------------
 | 
						|
// The following test requires Mutex::ReaderLock to be a real shared
 | 
						|
// lock, which is not the case in all builds.
 | 
						|
#if !defined(ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE)
 | 
						|
 | 
						|
// Test for fix of bug in UnlockSlow() that incorrectly decremented the reader
 | 
						|
// count when putting a thread to sleep waiting for a false condition when the
 | 
						|
// lock was not held.
 | 
						|
 | 
						|
// For this bug to strike, we make a thread wait on a free mutex with no
 | 
						|
// waiters by causing its wakeup condition to be false.   Then the
 | 
						|
// next two acquirers must be readers.   The bug causes the lock
 | 
						|
// to be released when one reader unlocks, rather than both.
 | 
						|
 | 
						|
struct ReaderDecrementBugStruct {
 | 
						|
  bool cond;  // to delay first thread (under mu)
 | 
						|
  int done;   // reference count (under mu)
 | 
						|
  absl::Mutex mu;
 | 
						|
 | 
						|
  bool waiting_on_cond;   // under mu2
 | 
						|
  bool have_reader_lock;  // under mu2
 | 
						|
  bool complete;          // under mu2
 | 
						|
  absl::Mutex mu2;        // > mu
 | 
						|
};
 | 
						|
 | 
						|
// L >= mu, L < mu_waiting_on_cond
 | 
						|
static bool IsCond(void *v) {
 | 
						|
  ReaderDecrementBugStruct *x = reinterpret_cast<ReaderDecrementBugStruct *>(v);
 | 
						|
  x->mu2.Lock();
 | 
						|
  x->waiting_on_cond = true;
 | 
						|
  x->mu2.Unlock();
 | 
						|
  return x->cond;
 | 
						|
}
 | 
						|
 | 
						|
// L >= mu
 | 
						|
static bool AllDone(void *v) {
 | 
						|
  ReaderDecrementBugStruct *x = reinterpret_cast<ReaderDecrementBugStruct *>(v);
 | 
						|
  return x->done == 0;
 | 
						|
}
 | 
						|
 | 
						|
// L={}
 | 
						|
static void WaitForCond(ReaderDecrementBugStruct *x) {
 | 
						|
  absl::Mutex dummy;
 | 
						|
  absl::MutexLock l(&dummy);
 | 
						|
  x->mu.LockWhen(absl::Condition(&IsCond, x));
 | 
						|
  x->done--;
 | 
						|
  x->mu.Unlock();
 | 
						|
}
 | 
						|
 | 
						|
// L={}
 | 
						|
static void GetReadLock(ReaderDecrementBugStruct *x) {
 | 
						|
  x->mu.ReaderLock();
 | 
						|
  x->mu2.Lock();
 | 
						|
  x->have_reader_lock = true;
 | 
						|
  x->mu2.Await(absl::Condition(&x->complete));
 | 
						|
  x->mu2.Unlock();
 | 
						|
  x->mu.ReaderUnlock();
 | 
						|
  x->mu.Lock();
 | 
						|
  x->done--;
 | 
						|
  x->mu.Unlock();
 | 
						|
}
 | 
						|
 | 
						|
// Test for reader counter being decremented incorrectly by waiter
 | 
						|
// with false condition.
 | 
						|
TEST(Mutex, MutexReaderDecrementBug) ABSL_NO_THREAD_SAFETY_ANALYSIS {
 | 
						|
  ReaderDecrementBugStruct x;
 | 
						|
  x.cond = false;
 | 
						|
  x.waiting_on_cond = false;
 | 
						|
  x.have_reader_lock = false;
 | 
						|
  x.complete = false;
 | 
						|
  x.done = 2;  // initial ref count
 | 
						|
 | 
						|
  // Run WaitForCond() and wait for it to sleep
 | 
						|
  std::thread thread1(WaitForCond, &x);
 | 
						|
  x.mu2.LockWhen(absl::Condition(&x.waiting_on_cond));
 | 
						|
  x.mu2.Unlock();
 | 
						|
 | 
						|
  // Run GetReadLock(), and wait for it to get the read lock
 | 
						|
  std::thread thread2(GetReadLock, &x);
 | 
						|
  x.mu2.LockWhen(absl::Condition(&x.have_reader_lock));
 | 
						|
  x.mu2.Unlock();
 | 
						|
 | 
						|
  // Get the reader lock ourselves, and release it.
 | 
						|
  x.mu.ReaderLock();
 | 
						|
  x.mu.ReaderUnlock();
 | 
						|
 | 
						|
  // The lock should be held in read mode by GetReadLock().
 | 
						|
  // If we have the bug, the lock will be free.
 | 
						|
  x.mu.AssertReaderHeld();
 | 
						|
 | 
						|
  // Wake up all the threads.
 | 
						|
  x.mu2.Lock();
 | 
						|
  x.complete = true;
 | 
						|
  x.mu2.Unlock();
 | 
						|
 | 
						|
  // TODO(delesley): turn on analysis once lock upgrading is supported.
 | 
						|
  // (This call upgrades the lock from shared to exclusive.)
 | 
						|
  x.mu.Lock();
 | 
						|
  x.cond = true;
 | 
						|
  x.mu.Await(absl::Condition(&AllDone, &x));
 | 
						|
  x.mu.Unlock();
 | 
						|
 | 
						|
  thread1.join();
 | 
						|
  thread2.join();
 | 
						|
}
 | 
						|
#endif  // !ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE
 | 
						|
 | 
						|
// Test that we correctly handle the situation when a lock is
 | 
						|
// held and then destroyed (w/o unlocking).
 | 
						|
#ifdef THREAD_SANITIZER
 | 
						|
// TSAN reports errors when locked Mutexes are destroyed.
 | 
						|
TEST(Mutex, DISABLED_LockedMutexDestructionBug) NO_THREAD_SAFETY_ANALYSIS {
 | 
						|
#else
 | 
						|
TEST(Mutex, LockedMutexDestructionBug) ABSL_NO_THREAD_SAFETY_ANALYSIS {
 | 
						|
#endif
 | 
						|
  for (int i = 0; i != 10; i++) {
 | 
						|
    // Create, lock and destroy 10 locks.
 | 
						|
    const int kNumLocks = 10;
 | 
						|
    auto mu = absl::make_unique<absl::Mutex[]>(kNumLocks);
 | 
						|
    for (int j = 0; j != kNumLocks; j++) {
 | 
						|
      if ((j % 2) == 0) {
 | 
						|
        mu[j].WriterLock();
 | 
						|
      } else {
 | 
						|
        mu[j].ReaderLock();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// --------------------------------------------------------
 | 
						|
// Test for bug with pattern of readers using a condvar.  The bug was that if a
 | 
						|
// reader went to sleep on a condition variable while one or more other readers
 | 
						|
// held the lock, but there were no waiters, the reader count (held in the
 | 
						|
// mutex word) would be lost.  (This is because Enqueue() had at one time
 | 
						|
// always placed the thread on the Mutex queue.  Later (CL 4075610), to
 | 
						|
// tolerate re-entry into Mutex from a Condition predicate, Enqueue() was
 | 
						|
// changed so that it could also place a thread on a condition-variable.  This
 | 
						|
// introduced the case where Enqueue() returned with an empty queue, and this
 | 
						|
// case was handled incorrectly in one place.)
 | 
						|
 | 
						|
static void ReaderForReaderOnCondVar(absl::Mutex *mu, absl::CondVar *cv,
 | 
						|
                                     int *running) {
 | 
						|
  std::random_device dev;
 | 
						|
  std::mt19937 gen(dev());
 | 
						|
  std::uniform_int_distribution<int> random_millis(0, 15);
 | 
						|
  mu->ReaderLock();
 | 
						|
  while (*running == 3) {
 | 
						|
    absl::SleepFor(absl::Milliseconds(random_millis(gen)));
 | 
						|
    cv->WaitWithTimeout(mu, absl::Milliseconds(random_millis(gen)));
 | 
						|
  }
 | 
						|
  mu->ReaderUnlock();
 | 
						|
  mu->Lock();
 | 
						|
  (*running)--;
 | 
						|
  mu->Unlock();
 | 
						|
}
 | 
						|
 | 
						|
struct True {
 | 
						|
  template <class... Args>
 | 
						|
  bool operator()(Args...) const {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
struct DerivedTrue : True {};
 | 
						|
 | 
						|
TEST(Mutex, FunctorCondition) {
 | 
						|
  {  // Variadic
 | 
						|
    True f;
 | 
						|
    EXPECT_TRUE(absl::Condition(&f).Eval());
 | 
						|
  }
 | 
						|
 | 
						|
  {  // Inherited
 | 
						|
    DerivedTrue g;
 | 
						|
    EXPECT_TRUE(absl::Condition(&g).Eval());
 | 
						|
  }
 | 
						|
 | 
						|
  {  // lambda
 | 
						|
    int value = 3;
 | 
						|
    auto is_zero = [&value] { return value == 0; };
 | 
						|
    absl::Condition c(&is_zero);
 | 
						|
    EXPECT_FALSE(c.Eval());
 | 
						|
    value = 0;
 | 
						|
    EXPECT_TRUE(c.Eval());
 | 
						|
  }
 | 
						|
 | 
						|
  {  // bind
 | 
						|
    int value = 0;
 | 
						|
    auto is_positive = std::bind(std::less<int>(), 0, std::cref(value));
 | 
						|
    absl::Condition c(&is_positive);
 | 
						|
    EXPECT_FALSE(c.Eval());
 | 
						|
    value = 1;
 | 
						|
    EXPECT_TRUE(c.Eval());
 | 
						|
  }
 | 
						|
 | 
						|
  {  // std::function
 | 
						|
    int value = 3;
 | 
						|
    std::function<bool()> is_zero = [&value] { return value == 0; };
 | 
						|
    absl::Condition c(&is_zero);
 | 
						|
    EXPECT_FALSE(c.Eval());
 | 
						|
    value = 0;
 | 
						|
    EXPECT_TRUE(c.Eval());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool IntIsZero(int *x) { return *x == 0; }
 | 
						|
 | 
						|
// Test for reader waiting condition variable when there are other readers
 | 
						|
// but no waiters.
 | 
						|
TEST(Mutex, TestReaderOnCondVar) {
 | 
						|
  auto tp = CreateDefaultPool();
 | 
						|
  absl::Mutex mu;
 | 
						|
  absl::CondVar cv;
 | 
						|
  int running = 3;
 | 
						|
  tp->Schedule(std::bind(&ReaderForReaderOnCondVar, &mu, &cv, &running));
 | 
						|
  tp->Schedule(std::bind(&ReaderForReaderOnCondVar, &mu, &cv, &running));
 | 
						|
  absl::SleepFor(absl::Seconds(2));
 | 
						|
  mu.Lock();
 | 
						|
  running--;
 | 
						|
  mu.Await(absl::Condition(&IntIsZero, &running));
 | 
						|
  mu.Unlock();
 | 
						|
}
 | 
						|
 | 
						|
// --------------------------------------------------------
 | 
						|
struct AcquireFromConditionStruct {
 | 
						|
  absl::Mutex mu0;   // protects value, done
 | 
						|
  int value;         // times condition function is called; under mu0,
 | 
						|
  bool done;         // done with test?  under mu0
 | 
						|
  absl::Mutex mu1;   // used to attempt to mess up state of mu0
 | 
						|
  absl::CondVar cv;  // so the condition function can be invoked from
 | 
						|
                     // CondVar::Wait().
 | 
						|
};
 | 
						|
 | 
						|
static bool ConditionWithAcquire(AcquireFromConditionStruct *x) {
 | 
						|
  x->value++;  // count times this function is called
 | 
						|
 | 
						|
  if (x->value == 2 || x->value == 3) {
 | 
						|
    // On the second and third invocation of this function, sleep for 100ms,
 | 
						|
    // but with the side-effect of altering the state of a Mutex other than
 | 
						|
    // than one for which this is a condition.  The spec now explicitly allows
 | 
						|
    // this side effect; previously it did not.  it was illegal.
 | 
						|
    bool always_false = false;
 | 
						|
    x->mu1.LockWhenWithTimeout(absl::Condition(&always_false),
 | 
						|
                               absl::Milliseconds(100));
 | 
						|
    x->mu1.Unlock();
 | 
						|
  }
 | 
						|
  ABSL_RAW_CHECK(x->value < 4, "should not be invoked a fourth time");
 | 
						|
 | 
						|
  // We arrange for the condition to return true on only the 2nd and 3rd calls.
 | 
						|
  return x->value == 2 || x->value == 3;
 | 
						|
}
 | 
						|
 | 
						|
static void WaitForCond2(AcquireFromConditionStruct *x) {
 | 
						|
  // wait for cond0 to become true
 | 
						|
  x->mu0.LockWhen(absl::Condition(&ConditionWithAcquire, x));
 | 
						|
  x->done = true;
 | 
						|
  x->mu0.Unlock();
 | 
						|
}
 | 
						|
 | 
						|
// Test for Condition whose function acquires other Mutexes
 | 
						|
TEST(Mutex, AcquireFromCondition) {
 | 
						|
  auto tp = CreateDefaultPool();
 | 
						|
 | 
						|
  AcquireFromConditionStruct x;
 | 
						|
  x.value = 0;
 | 
						|
  x.done = false;
 | 
						|
  tp->Schedule(
 | 
						|
      std::bind(&WaitForCond2, &x));  // run WaitForCond2() in a thread T
 | 
						|
  // T will hang because the first invocation of ConditionWithAcquire() will
 | 
						|
  // return false.
 | 
						|
  absl::SleepFor(absl::Milliseconds(500));  // allow T time to hang
 | 
						|
 | 
						|
  x.mu0.Lock();
 | 
						|
  x.cv.WaitWithTimeout(&x.mu0, absl::Milliseconds(500));  // wake T
 | 
						|
  // T will be woken because the Wait() will call ConditionWithAcquire()
 | 
						|
  // for the second time, and it will return true.
 | 
						|
 | 
						|
  x.mu0.Unlock();
 | 
						|
 | 
						|
  // T will then acquire the lock and recheck its own condition.
 | 
						|
  // It will find the condition true, as this is the third invocation,
 | 
						|
  // but the use of another Mutex by the calling function will
 | 
						|
  // cause the old mutex implementation to think that the outer
 | 
						|
  // LockWhen() has timed out because the inner LockWhenWithTimeout() did.
 | 
						|
  // T will then check the condition a fourth time because it finds a
 | 
						|
  // timeout occurred.  This should not happen in the new
 | 
						|
  // implementation that allows the Condition function to use Mutexes.
 | 
						|
 | 
						|
  // It should also succeed, even though the Condition function
 | 
						|
  // is being invoked from CondVar::Wait, and thus this thread
 | 
						|
  // is conceptually waiting both on the condition variable, and on mu2.
 | 
						|
 | 
						|
  x.mu0.LockWhen(absl::Condition(&x.done));
 | 
						|
  x.mu0.Unlock();
 | 
						|
}
 | 
						|
 | 
						|
// The deadlock detector is not part of non-prod builds, so do not test it.
 | 
						|
#if !defined(ABSL_INTERNAL_USE_NONPROD_MUTEX)
 | 
						|
 | 
						|
TEST(Mutex, DeadlockDetector) {
 | 
						|
  absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort);
 | 
						|
 | 
						|
  // check that we can call ForgetDeadlockInfo() on a lock with the lock held
 | 
						|
  absl::Mutex m1;
 | 
						|
  absl::Mutex m2;
 | 
						|
  absl::Mutex m3;
 | 
						|
  absl::Mutex m4;
 | 
						|
 | 
						|
  m1.Lock();  // m1 gets ID1
 | 
						|
  m2.Lock();  // m2 gets ID2
 | 
						|
  m3.Lock();  // m3 gets ID3
 | 
						|
  m3.Unlock();
 | 
						|
  m2.Unlock();
 | 
						|
  // m1 still held
 | 
						|
  m1.ForgetDeadlockInfo();  // m1 loses ID
 | 
						|
  m2.Lock();                // m2 gets ID2
 | 
						|
  m3.Lock();                // m3 gets ID3
 | 
						|
  m4.Lock();                // m4 gets ID4
 | 
						|
  m3.Unlock();
 | 
						|
  m2.Unlock();
 | 
						|
  m4.Unlock();
 | 
						|
  m1.Unlock();
 | 
						|
}
 | 
						|
 | 
						|
// Bazel has a test "warning" file that programs can write to if the
 | 
						|
// test should pass with a warning.  This class disables the warning
 | 
						|
// file until it goes out of scope.
 | 
						|
class ScopedDisableBazelTestWarnings {
 | 
						|
 public:
 | 
						|
  ScopedDisableBazelTestWarnings() {
 | 
						|
#ifdef _WIN32
 | 
						|
    char file[MAX_PATH];
 | 
						|
    if (GetEnvironmentVariableA(kVarName, file, sizeof(file)) < sizeof(file)) {
 | 
						|
      warnings_output_file_ = file;
 | 
						|
      SetEnvironmentVariableA(kVarName, nullptr);
 | 
						|
    }
 | 
						|
#else
 | 
						|
    const char *file = getenv(kVarName);
 | 
						|
    if (file != nullptr) {
 | 
						|
      warnings_output_file_ = file;
 | 
						|
      unsetenv(kVarName);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  ~ScopedDisableBazelTestWarnings() {
 | 
						|
    if (!warnings_output_file_.empty()) {
 | 
						|
#ifdef _WIN32
 | 
						|
      SetEnvironmentVariableA(kVarName, warnings_output_file_.c_str());
 | 
						|
#else
 | 
						|
      setenv(kVarName, warnings_output_file_.c_str(), 0);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  static const char kVarName[];
 | 
						|
  std::string warnings_output_file_;
 | 
						|
};
 | 
						|
const char ScopedDisableBazelTestWarnings::kVarName[] =
 | 
						|
    "TEST_WARNINGS_OUTPUT_FILE";
 | 
						|
 | 
						|
#ifdef THREAD_SANITIZER
 | 
						|
// This test intentionally creates deadlocks to test the deadlock detector.
 | 
						|
TEST(Mutex, DISABLED_DeadlockDetectorBazelWarning) {
 | 
						|
#else
 | 
						|
TEST(Mutex, DeadlockDetectorBazelWarning) {
 | 
						|
#endif
 | 
						|
  absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kReport);
 | 
						|
 | 
						|
  // Cause deadlock detection to detect something, if it's
 | 
						|
  // compiled in and enabled.  But turn off the bazel warning.
 | 
						|
  ScopedDisableBazelTestWarnings disable_bazel_test_warnings;
 | 
						|
 | 
						|
  absl::Mutex mu0;
 | 
						|
  absl::Mutex mu1;
 | 
						|
  bool got_mu0 = mu0.TryLock();
 | 
						|
  mu1.Lock();  // acquire mu1 while holding mu0
 | 
						|
  if (got_mu0) {
 | 
						|
    mu0.Unlock();
 | 
						|
  }
 | 
						|
  if (mu0.TryLock()) {  // try lock shouldn't cause deadlock detector to fire
 | 
						|
    mu0.Unlock();
 | 
						|
  }
 | 
						|
  mu0.Lock();  // acquire mu0 while holding mu1; should get one deadlock
 | 
						|
               // report here
 | 
						|
  mu0.Unlock();
 | 
						|
  mu1.Unlock();
 | 
						|
 | 
						|
  absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort);
 | 
						|
}
 | 
						|
 | 
						|
// This test is tagged with NO_THREAD_SAFETY_ANALYSIS because the
 | 
						|
// annotation-based static thread-safety analysis is not currently
 | 
						|
// predicate-aware and cannot tell if the two for-loops that acquire and
 | 
						|
// release the locks have the same predicates.
 | 
						|
TEST(Mutex, DeadlockDetectorStessTest) ABSL_NO_THREAD_SAFETY_ANALYSIS {
 | 
						|
  // Stress test: Here we create a large number of locks and use all of them.
 | 
						|
  // If a deadlock detector keeps a full graph of lock acquisition order,
 | 
						|
  // it will likely be too slow for this test to pass.
 | 
						|
  const int n_locks = 1 << 17;
 | 
						|
  auto array_of_locks = absl::make_unique<absl::Mutex[]>(n_locks);
 | 
						|
  for (int i = 0; i < n_locks; i++) {
 | 
						|
    int end = std::min(n_locks, i + 5);
 | 
						|
    // acquire and then release locks i, i+1, ..., i+4
 | 
						|
    for (int j = i; j < end; j++) {
 | 
						|
      array_of_locks[j].Lock();
 | 
						|
    }
 | 
						|
    for (int j = i; j < end; j++) {
 | 
						|
      array_of_locks[j].Unlock();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifdef THREAD_SANITIZER
 | 
						|
// TSAN reports errors when locked Mutexes are destroyed.
 | 
						|
TEST(Mutex, DISABLED_DeadlockIdBug) NO_THREAD_SAFETY_ANALYSIS {
 | 
						|
#else
 | 
						|
TEST(Mutex, DeadlockIdBug) ABSL_NO_THREAD_SAFETY_ANALYSIS {
 | 
						|
#endif
 | 
						|
  // Test a scenario where a cached deadlock graph node id in the
 | 
						|
  // list of held locks is not invalidated when the corresponding
 | 
						|
  // mutex is deleted.
 | 
						|
  absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort);
 | 
						|
  // Mutex that will be destroyed while being held
 | 
						|
  absl::Mutex *a = new absl::Mutex;
 | 
						|
  // Other mutexes needed by test
 | 
						|
  absl::Mutex b, c;
 | 
						|
 | 
						|
  // Hold mutex.
 | 
						|
  a->Lock();
 | 
						|
 | 
						|
  // Force deadlock id assignment by acquiring another lock.
 | 
						|
  b.Lock();
 | 
						|
  b.Unlock();
 | 
						|
 | 
						|
  // Delete the mutex. The Mutex destructor tries to remove held locks,
 | 
						|
  // but the attempt isn't foolproof.  It can fail if:
 | 
						|
  //   (a) Deadlock detection is currently disabled.
 | 
						|
  //   (b) The destruction is from another thread.
 | 
						|
  // We exploit (a) by temporarily disabling deadlock detection.
 | 
						|
  absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kIgnore);
 | 
						|
  delete a;
 | 
						|
  absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort);
 | 
						|
 | 
						|
  // Now acquire another lock which will force a deadlock id assignment.
 | 
						|
  // We should end up getting assigned the same deadlock id that was
 | 
						|
  // freed up when "a" was deleted, which will cause a spurious deadlock
 | 
						|
  // report if the held lock entry for "a" was not invalidated.
 | 
						|
  c.Lock();
 | 
						|
  c.Unlock();
 | 
						|
}
 | 
						|
#endif  // !defined(ABSL_INTERNAL_USE_NONPROD_MUTEX)
 | 
						|
 | 
						|
// --------------------------------------------------------
 | 
						|
// Test for timeouts/deadlines on condition waits that are specified using
 | 
						|
// absl::Duration and absl::Time.  For each waiting function we test with
 | 
						|
// a timeout/deadline that has already expired/passed, one that is infinite
 | 
						|
// and so never expires/passes, and one that will expire/pass in the near
 | 
						|
// future.
 | 
						|
 | 
						|
static absl::Duration TimeoutTestAllowedSchedulingDelay() {
 | 
						|
  // Note: we use a function here because Microsoft Visual Studio fails to
 | 
						|
  // properly initialize constexpr static absl::Duration variables.
 | 
						|
  return absl::Milliseconds(150);
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if `actual_delay` is close enough to `expected_delay` to pass
 | 
						|
// the timeouts/deadlines test.  Otherwise, logs warnings and returns false.
 | 
						|
ABSL_MUST_USE_RESULT
 | 
						|
static bool DelayIsWithinBounds(absl::Duration expected_delay,
 | 
						|
                                absl::Duration actual_delay) {
 | 
						|
  bool pass = true;
 | 
						|
  // Do not allow the observed delay to be less than expected.  This may occur
 | 
						|
  // in practice due to clock skew or when the synchronization primitives use a
 | 
						|
  // different clock than absl::Now(), but these cases should be handled by the
 | 
						|
  // the retry mechanism in each TimeoutTest.
 | 
						|
  if (actual_delay < expected_delay) {
 | 
						|
    ABSL_RAW_LOG(WARNING,
 | 
						|
                 "Actual delay %s was too short, expected %s (difference %s)",
 | 
						|
                 absl::FormatDuration(actual_delay).c_str(),
 | 
						|
                 absl::FormatDuration(expected_delay).c_str(),
 | 
						|
                 absl::FormatDuration(actual_delay - expected_delay).c_str());
 | 
						|
    pass = false;
 | 
						|
  }
 | 
						|
  // If the expected delay is <= zero then allow a small error tolerance, since
 | 
						|
  // we do not expect context switches to occur during test execution.
 | 
						|
  // Otherwise, thread scheduling delays may be substantial in rare cases, so
 | 
						|
  // tolerate up to kTimeoutTestAllowedSchedulingDelay of error.
 | 
						|
  absl::Duration tolerance = expected_delay <= absl::ZeroDuration()
 | 
						|
                                 ? absl::Milliseconds(10)
 | 
						|
                                 : TimeoutTestAllowedSchedulingDelay();
 | 
						|
  if (actual_delay > expected_delay + tolerance) {
 | 
						|
    ABSL_RAW_LOG(WARNING,
 | 
						|
                 "Actual delay %s was too long, expected %s (difference %s)",
 | 
						|
                 absl::FormatDuration(actual_delay).c_str(),
 | 
						|
                 absl::FormatDuration(expected_delay).c_str(),
 | 
						|
                 absl::FormatDuration(actual_delay - expected_delay).c_str());
 | 
						|
    pass = false;
 | 
						|
  }
 | 
						|
  return pass;
 | 
						|
}
 | 
						|
 | 
						|
// Parameters for TimeoutTest, below.
 | 
						|
struct TimeoutTestParam {
 | 
						|
  // The file and line number (used for logging purposes only).
 | 
						|
  const char *from_file;
 | 
						|
  int from_line;
 | 
						|
 | 
						|
  // Should the absolute deadline API based on absl::Time be tested?  If false,
 | 
						|
  // the relative deadline API based on absl::Duration is tested.
 | 
						|
  bool use_absolute_deadline;
 | 
						|
 | 
						|
  // The deadline/timeout used when calling the API being tested
 | 
						|
  // (e.g. Mutex::LockWhenWithDeadline).
 | 
						|
  absl::Duration wait_timeout;
 | 
						|
 | 
						|
  // The delay before the condition will be set true by the test code.  If zero
 | 
						|
  // or negative, the condition is set true immediately (before calling the API
 | 
						|
  // being tested).  Otherwise, if infinite, the condition is never set true.
 | 
						|
  // Otherwise a closure is scheduled for the future that sets the condition
 | 
						|
  // true.
 | 
						|
  absl::Duration satisfy_condition_delay;
 | 
						|
 | 
						|
  // The expected result of the condition after the call to the API being
 | 
						|
  // tested. Generally `true` means the condition was true when the API returns,
 | 
						|
  // `false` indicates an expected timeout.
 | 
						|
  bool expected_result;
 | 
						|
 | 
						|
  // The expected delay before the API under test returns.  This is inherently
 | 
						|
  // flaky, so some slop is allowed (see `DelayIsWithinBounds` above), and the
 | 
						|
  // test keeps trying indefinitely until this constraint passes.
 | 
						|
  absl::Duration expected_delay;
 | 
						|
};
 | 
						|
 | 
						|
// Print a `TimeoutTestParam` to a debug log.
 | 
						|
std::ostream &operator<<(std::ostream &os, const TimeoutTestParam ¶m) {
 | 
						|
  return os << "from: " << param.from_file << ":" << param.from_line
 | 
						|
            << " use_absolute_deadline: "
 | 
						|
            << (param.use_absolute_deadline ? "true" : "false")
 | 
						|
            << " wait_timeout: " << param.wait_timeout
 | 
						|
            << " satisfy_condition_delay: " << param.satisfy_condition_delay
 | 
						|
            << " expected_result: "
 | 
						|
            << (param.expected_result ? "true" : "false")
 | 
						|
            << " expected_delay: " << param.expected_delay;
 | 
						|
}
 | 
						|
 | 
						|
std::string FormatString(const TimeoutTestParam ¶m) {
 | 
						|
  std::ostringstream os;
 | 
						|
  os << param;
 | 
						|
  return os.str();
 | 
						|
}
 | 
						|
 | 
						|
// Like `thread::Executor::ScheduleAt` except:
 | 
						|
// a) Delays zero or negative are executed immediately in the current thread.
 | 
						|
// b) Infinite delays are never scheduled.
 | 
						|
// c) Calls this test's `ScheduleAt` helper instead of using `pool` directly.
 | 
						|
static void RunAfterDelay(absl::Duration delay,
 | 
						|
                          absl::synchronization_internal::ThreadPool *pool,
 | 
						|
                          const std::function<void()> &callback) {
 | 
						|
  if (delay <= absl::ZeroDuration()) {
 | 
						|
    callback();  // immediate
 | 
						|
  } else if (delay != absl::InfiniteDuration()) {
 | 
						|
    ScheduleAfter(pool, delay, callback);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
class TimeoutTest : public ::testing::Test,
 | 
						|
                    public ::testing::WithParamInterface<TimeoutTestParam> {};
 | 
						|
 | 
						|
std::vector<TimeoutTestParam> MakeTimeoutTestParamValues() {
 | 
						|
  // The `finite` delay is a finite, relatively short, delay.  We make it larger
 | 
						|
  // than our allowed scheduling delay (slop factor) to avoid confusion when
 | 
						|
  // diagnosing test failures.  The other constants here have clear meanings.
 | 
						|
  const absl::Duration finite = 3 * TimeoutTestAllowedSchedulingDelay();
 | 
						|
  const absl::Duration never = absl::InfiniteDuration();
 | 
						|
  const absl::Duration negative = -absl::InfiniteDuration();
 | 
						|
  const absl::Duration immediate = absl::ZeroDuration();
 | 
						|
 | 
						|
  // Every test case is run twice; once using the absolute deadline API and once
 | 
						|
  // using the relative timeout API.
 | 
						|
  std::vector<TimeoutTestParam> values;
 | 
						|
  for (bool use_absolute_deadline : {false, true}) {
 | 
						|
    // Tests with a negative timeout (deadline in the past), which should
 | 
						|
    // immediately return current state of the condition.
 | 
						|
 | 
						|
    // The condition is already true:
 | 
						|
    values.push_back(TimeoutTestParam{
 | 
						|
        __FILE__, __LINE__, use_absolute_deadline,
 | 
						|
        negative,   // wait_timeout
 | 
						|
        immediate,  // satisfy_condition_delay
 | 
						|
        true,       // expected_result
 | 
						|
        immediate,  // expected_delay
 | 
						|
    });
 | 
						|
 | 
						|
    // The condition becomes true, but the timeout has already expired:
 | 
						|
    values.push_back(TimeoutTestParam{
 | 
						|
        __FILE__, __LINE__, use_absolute_deadline,
 | 
						|
        negative,  // wait_timeout
 | 
						|
        finite,    // satisfy_condition_delay
 | 
						|
        false,     // expected_result
 | 
						|
        immediate  // expected_delay
 | 
						|
    });
 | 
						|
 | 
						|
    // The condition never becomes true:
 | 
						|
    values.push_back(TimeoutTestParam{
 | 
						|
        __FILE__, __LINE__, use_absolute_deadline,
 | 
						|
        negative,  // wait_timeout
 | 
						|
        never,     // satisfy_condition_delay
 | 
						|
        false,     // expected_result
 | 
						|
        immediate  // expected_delay
 | 
						|
    });
 | 
						|
 | 
						|
    // Tests with an infinite timeout (deadline in the infinite future), which
 | 
						|
    // should only return when the condition becomes true.
 | 
						|
 | 
						|
    // The condition is already true:
 | 
						|
    values.push_back(TimeoutTestParam{
 | 
						|
        __FILE__, __LINE__, use_absolute_deadline,
 | 
						|
        never,      // wait_timeout
 | 
						|
        immediate,  // satisfy_condition_delay
 | 
						|
        true,       // expected_result
 | 
						|
        immediate   // expected_delay
 | 
						|
    });
 | 
						|
 | 
						|
    // The condition becomes true before the (infinite) expiry:
 | 
						|
    values.push_back(TimeoutTestParam{
 | 
						|
        __FILE__, __LINE__, use_absolute_deadline,
 | 
						|
        never,   // wait_timeout
 | 
						|
        finite,  // satisfy_condition_delay
 | 
						|
        true,    // expected_result
 | 
						|
        finite,  // expected_delay
 | 
						|
    });
 | 
						|
 | 
						|
    // Tests with a (small) finite timeout (deadline soon), with the condition
 | 
						|
    // becoming true both before and after its expiry.
 | 
						|
 | 
						|
    // The condition is already true:
 | 
						|
    values.push_back(TimeoutTestParam{
 | 
						|
        __FILE__, __LINE__, use_absolute_deadline,
 | 
						|
        never,      // wait_timeout
 | 
						|
        immediate,  // satisfy_condition_delay
 | 
						|
        true,       // expected_result
 | 
						|
        immediate   // expected_delay
 | 
						|
    });
 | 
						|
 | 
						|
    // The condition becomes true before the expiry:
 | 
						|
    values.push_back(TimeoutTestParam{
 | 
						|
        __FILE__, __LINE__, use_absolute_deadline,
 | 
						|
        finite * 2,  // wait_timeout
 | 
						|
        finite,      // satisfy_condition_delay
 | 
						|
        true,        // expected_result
 | 
						|
        finite       // expected_delay
 | 
						|
    });
 | 
						|
 | 
						|
    // The condition becomes true, but the timeout has already expired:
 | 
						|
    values.push_back(TimeoutTestParam{
 | 
						|
        __FILE__, __LINE__, use_absolute_deadline,
 | 
						|
        finite,      // wait_timeout
 | 
						|
        finite * 2,  // satisfy_condition_delay
 | 
						|
        false,       // expected_result
 | 
						|
        finite       // expected_delay
 | 
						|
    });
 | 
						|
 | 
						|
    // The condition never becomes true:
 | 
						|
    values.push_back(TimeoutTestParam{
 | 
						|
        __FILE__, __LINE__, use_absolute_deadline,
 | 
						|
        finite,  // wait_timeout
 | 
						|
        never,   // satisfy_condition_delay
 | 
						|
        false,   // expected_result
 | 
						|
        finite   // expected_delay
 | 
						|
    });
 | 
						|
  }
 | 
						|
  return values;
 | 
						|
}
 | 
						|
 | 
						|
// Instantiate `TimeoutTest` with `MakeTimeoutTestParamValues()`.
 | 
						|
INSTANTIATE_TEST_SUITE_P(All, TimeoutTest,
 | 
						|
                         testing::ValuesIn(MakeTimeoutTestParamValues()));
 | 
						|
 | 
						|
TEST_P(TimeoutTest, Await) {
 | 
						|
  const TimeoutTestParam params = GetParam();
 | 
						|
  ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str());
 | 
						|
 | 
						|
  // Because this test asserts bounds on scheduling delays it is flaky.  To
 | 
						|
  // compensate it loops forever until it passes.  Failures express as test
 | 
						|
  // timeouts, in which case the test log can be used to diagnose the issue.
 | 
						|
  for (int attempt = 1;; ++attempt) {
 | 
						|
    ABSL_RAW_LOG(INFO, "Attempt %d", attempt);
 | 
						|
 | 
						|
    absl::Mutex mu;
 | 
						|
    bool value = false;  // condition value (under mu)
 | 
						|
 | 
						|
    std::unique_ptr<absl::synchronization_internal::ThreadPool> pool =
 | 
						|
        CreateDefaultPool();
 | 
						|
    RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] {
 | 
						|
      absl::MutexLock l(&mu);
 | 
						|
      value = true;
 | 
						|
    });
 | 
						|
 | 
						|
    absl::MutexLock lock(&mu);
 | 
						|
    absl::Time start_time = absl::Now();
 | 
						|
    absl::Condition cond(&value);
 | 
						|
    bool result =
 | 
						|
        params.use_absolute_deadline
 | 
						|
            ? mu.AwaitWithDeadline(cond, start_time + params.wait_timeout)
 | 
						|
            : mu.AwaitWithTimeout(cond, params.wait_timeout);
 | 
						|
    if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) {
 | 
						|
      EXPECT_EQ(params.expected_result, result);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
TEST_P(TimeoutTest, LockWhen) {
 | 
						|
  const TimeoutTestParam params = GetParam();
 | 
						|
  ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str());
 | 
						|
 | 
						|
  // Because this test asserts bounds on scheduling delays it is flaky.  To
 | 
						|
  // compensate it loops forever until it passes.  Failures express as test
 | 
						|
  // timeouts, in which case the test log can be used to diagnose the issue.
 | 
						|
  for (int attempt = 1;; ++attempt) {
 | 
						|
    ABSL_RAW_LOG(INFO, "Attempt %d", attempt);
 | 
						|
 | 
						|
    absl::Mutex mu;
 | 
						|
    bool value = false;  // condition value (under mu)
 | 
						|
 | 
						|
    std::unique_ptr<absl::synchronization_internal::ThreadPool> pool =
 | 
						|
        CreateDefaultPool();
 | 
						|
    RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] {
 | 
						|
      absl::MutexLock l(&mu);
 | 
						|
      value = true;
 | 
						|
    });
 | 
						|
 | 
						|
    absl::Time start_time = absl::Now();
 | 
						|
    absl::Condition cond(&value);
 | 
						|
    bool result =
 | 
						|
        params.use_absolute_deadline
 | 
						|
            ? mu.LockWhenWithDeadline(cond, start_time + params.wait_timeout)
 | 
						|
            : mu.LockWhenWithTimeout(cond, params.wait_timeout);
 | 
						|
    mu.Unlock();
 | 
						|
 | 
						|
    if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) {
 | 
						|
      EXPECT_EQ(params.expected_result, result);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
TEST_P(TimeoutTest, ReaderLockWhen) {
 | 
						|
  const TimeoutTestParam params = GetParam();
 | 
						|
  ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str());
 | 
						|
 | 
						|
  // Because this test asserts bounds on scheduling delays it is flaky.  To
 | 
						|
  // compensate it loops forever until it passes.  Failures express as test
 | 
						|
  // timeouts, in which case the test log can be used to diagnose the issue.
 | 
						|
  for (int attempt = 0;; ++attempt) {
 | 
						|
    ABSL_RAW_LOG(INFO, "Attempt %d", attempt);
 | 
						|
 | 
						|
    absl::Mutex mu;
 | 
						|
    bool value = false;  // condition value (under mu)
 | 
						|
 | 
						|
    std::unique_ptr<absl::synchronization_internal::ThreadPool> pool =
 | 
						|
        CreateDefaultPool();
 | 
						|
    RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] {
 | 
						|
      absl::MutexLock l(&mu);
 | 
						|
      value = true;
 | 
						|
    });
 | 
						|
 | 
						|
    absl::Time start_time = absl::Now();
 | 
						|
    bool result =
 | 
						|
        params.use_absolute_deadline
 | 
						|
            ? mu.ReaderLockWhenWithDeadline(absl::Condition(&value),
 | 
						|
                                            start_time + params.wait_timeout)
 | 
						|
            : mu.ReaderLockWhenWithTimeout(absl::Condition(&value),
 | 
						|
                                           params.wait_timeout);
 | 
						|
    mu.ReaderUnlock();
 | 
						|
 | 
						|
    if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) {
 | 
						|
      EXPECT_EQ(params.expected_result, result);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
TEST_P(TimeoutTest, Wait) {
 | 
						|
  const TimeoutTestParam params = GetParam();
 | 
						|
  ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str());
 | 
						|
 | 
						|
  // Because this test asserts bounds on scheduling delays it is flaky.  To
 | 
						|
  // compensate it loops forever until it passes.  Failures express as test
 | 
						|
  // timeouts, in which case the test log can be used to diagnose the issue.
 | 
						|
  for (int attempt = 0;; ++attempt) {
 | 
						|
    ABSL_RAW_LOG(INFO, "Attempt %d", attempt);
 | 
						|
 | 
						|
    absl::Mutex mu;
 | 
						|
    bool value = false;  // condition value (under mu)
 | 
						|
    absl::CondVar cv;    // signals a change of `value`
 | 
						|
 | 
						|
    std::unique_ptr<absl::synchronization_internal::ThreadPool> pool =
 | 
						|
        CreateDefaultPool();
 | 
						|
    RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] {
 | 
						|
      absl::MutexLock l(&mu);
 | 
						|
      value = true;
 | 
						|
      cv.Signal();
 | 
						|
    });
 | 
						|
 | 
						|
    absl::MutexLock lock(&mu);
 | 
						|
    absl::Time start_time = absl::Now();
 | 
						|
    absl::Duration timeout = params.wait_timeout;
 | 
						|
    absl::Time deadline = start_time + timeout;
 | 
						|
    while (!value) {
 | 
						|
      if (params.use_absolute_deadline ? cv.WaitWithDeadline(&mu, deadline)
 | 
						|
                                       : cv.WaitWithTimeout(&mu, timeout)) {
 | 
						|
        break;  // deadline/timeout exceeded
 | 
						|
      }
 | 
						|
      timeout = deadline - absl::Now();  // recompute
 | 
						|
    }
 | 
						|
    bool result = value;  // note: `mu` is still held
 | 
						|
 | 
						|
    if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) {
 | 
						|
      EXPECT_EQ(params.expected_result, result);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
TEST(Mutex, Logging) {
 | 
						|
  // Allow user to look at logging output
 | 
						|
  absl::Mutex logged_mutex;
 | 
						|
  logged_mutex.EnableDebugLog("fido_mutex");
 | 
						|
  absl::CondVar logged_cv;
 | 
						|
  logged_cv.EnableDebugLog("rover_cv");
 | 
						|
  logged_mutex.Lock();
 | 
						|
  logged_cv.WaitWithTimeout(&logged_mutex, absl::Milliseconds(20));
 | 
						|
  logged_mutex.Unlock();
 | 
						|
  logged_mutex.ReaderLock();
 | 
						|
  logged_mutex.ReaderUnlock();
 | 
						|
  logged_mutex.Lock();
 | 
						|
  logged_mutex.Unlock();
 | 
						|
  logged_cv.Signal();
 | 
						|
  logged_cv.SignalAll();
 | 
						|
}
 | 
						|
 | 
						|
// --------------------------------------------------------
 | 
						|
 | 
						|
// Generate the vector of thread counts for tests parameterized on thread count.
 | 
						|
static std::vector<int> AllThreadCountValues() {
 | 
						|
  if (kExtendedTest) {
 | 
						|
    return {2, 4, 8, 10, 16, 20, 24, 30, 32};
 | 
						|
  }
 | 
						|
  return {2, 4, 10};
 | 
						|
}
 | 
						|
 | 
						|
// A test fixture parameterized by thread count.
 | 
						|
class MutexVariableThreadCountTest : public ::testing::TestWithParam<int> {};
 | 
						|
 | 
						|
// Instantiate the above with AllThreadCountOptions().
 | 
						|
INSTANTIATE_TEST_SUITE_P(ThreadCounts, MutexVariableThreadCountTest,
 | 
						|
                         ::testing::ValuesIn(AllThreadCountValues()),
 | 
						|
                         ::testing::PrintToStringParamName());
 | 
						|
 | 
						|
// Reduces iterations by some factor for slow platforms
 | 
						|
// (determined empirically).
 | 
						|
static int ScaleIterations(int x) {
 | 
						|
  // ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE is set in the implementation
 | 
						|
  // of Mutex that uses either std::mutex or pthread_mutex_t. Use
 | 
						|
  // these as keys to determine the slow implementation.
 | 
						|
#if defined(ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE)
 | 
						|
  return x / 10;
 | 
						|
#else
 | 
						|
  return x;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
TEST_P(MutexVariableThreadCountTest, Mutex) {
 | 
						|
  int threads = GetParam();
 | 
						|
  int iterations = ScaleIterations(10000000) / threads;
 | 
						|
  int operations = threads * iterations;
 | 
						|
  EXPECT_EQ(RunTest(&TestMu, threads, iterations, operations), operations);
 | 
						|
#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED)
 | 
						|
  iterations = std::min(iterations, 10);
 | 
						|
  operations = threads * iterations;
 | 
						|
  EXPECT_EQ(RunTestWithInvariantDebugging(&TestMu, threads, iterations,
 | 
						|
                                          operations, CheckSumG0G1),
 | 
						|
            operations);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
TEST_P(MutexVariableThreadCountTest, Try) {
 | 
						|
  int threads = GetParam();
 | 
						|
  int iterations = 1000000 / threads;
 | 
						|
  int operations = iterations * threads;
 | 
						|
  EXPECT_EQ(RunTest(&TestTry, threads, iterations, operations), operations);
 | 
						|
#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED)
 | 
						|
  iterations = std::min(iterations, 10);
 | 
						|
  operations = threads * iterations;
 | 
						|
  EXPECT_EQ(RunTestWithInvariantDebugging(&TestTry, threads, iterations,
 | 
						|
                                          operations, CheckSumG0G1),
 | 
						|
            operations);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
TEST_P(MutexVariableThreadCountTest, R20ms) {
 | 
						|
  int threads = GetParam();
 | 
						|
  int iterations = 100;
 | 
						|
  int operations = iterations * threads;
 | 
						|
  EXPECT_EQ(RunTest(&TestR20ms, threads, iterations, operations), 0);
 | 
						|
}
 | 
						|
 | 
						|
TEST_P(MutexVariableThreadCountTest, RW) {
 | 
						|
  int threads = GetParam();
 | 
						|
  int iterations = ScaleIterations(20000000) / threads;
 | 
						|
  int operations = iterations * threads;
 | 
						|
  EXPECT_EQ(RunTest(&TestRW, threads, iterations, operations), operations / 2);
 | 
						|
#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED)
 | 
						|
  iterations = std::min(iterations, 10);
 | 
						|
  operations = threads * iterations;
 | 
						|
  EXPECT_EQ(RunTestWithInvariantDebugging(&TestRW, threads, iterations,
 | 
						|
                                          operations, CheckSumG0G1),
 | 
						|
            operations / 2);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
TEST_P(MutexVariableThreadCountTest, Await) {
 | 
						|
  int threads = GetParam();
 | 
						|
  int iterations = ScaleIterations(500000);
 | 
						|
  int operations = iterations;
 | 
						|
  EXPECT_EQ(RunTest(&TestAwait, threads, iterations, operations), operations);
 | 
						|
}
 | 
						|
 | 
						|
TEST_P(MutexVariableThreadCountTest, SignalAll) {
 | 
						|
  int threads = GetParam();
 | 
						|
  int iterations = 200000 / threads;
 | 
						|
  int operations = iterations;
 | 
						|
  EXPECT_EQ(RunTest(&TestSignalAll, threads, iterations, operations),
 | 
						|
            operations);
 | 
						|
}
 | 
						|
 | 
						|
TEST(Mutex, Signal) {
 | 
						|
  int threads = 2;  // TestSignal must use two threads
 | 
						|
  int iterations = 200000;
 | 
						|
  int operations = iterations;
 | 
						|
  EXPECT_EQ(RunTest(&TestSignal, threads, iterations, operations), operations);
 | 
						|
}
 | 
						|
 | 
						|
TEST(Mutex, Timed) {
 | 
						|
  int threads = 10;  // Use a fixed thread count of 10
 | 
						|
  int iterations = 1000;
 | 
						|
  int operations = iterations;
 | 
						|
  EXPECT_EQ(RunTest(&TestCVTimeout, threads, iterations, operations),
 | 
						|
            operations);
 | 
						|
}
 | 
						|
 | 
						|
TEST(Mutex, CVTime) {
 | 
						|
  int threads = 10;  // Use a fixed thread count of 10
 | 
						|
  int iterations = 1;
 | 
						|
  EXPECT_EQ(RunTest(&TestCVTime, threads, iterations, 1),
 | 
						|
            threads * iterations);
 | 
						|
}
 | 
						|
 | 
						|
TEST(Mutex, MuTime) {
 | 
						|
  int threads = 10;  // Use a fixed thread count of 10
 | 
						|
  int iterations = 1;
 | 
						|
  EXPECT_EQ(RunTest(&TestMuTime, threads, iterations, 1), threads * iterations);
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace
 |