... notably, this includes Abseil's own StatusOr type, which conflicted with our implementation (that was taken from TensorFlow). Change-Id: Ie7d6764b64055caaeb8dc7b6b9d066291e6b538f
		
			
				
	
	
		
			349 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			349 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2018 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| //
 | |
| // This file provides CityHash64() and related functions.
 | |
| //
 | |
| // It's probably possible to create even faster hash functions by
 | |
| // writing a program that systematically explores some of the space of
 | |
| // possible hash functions, by using SIMD instructions, or by
 | |
| // compromising on hash quality.
 | |
| 
 | |
| #include "absl/hash/internal/city.h"
 | |
| 
 | |
| #include <string.h>  // for memcpy and memset
 | |
| #include <algorithm>
 | |
| 
 | |
| #include "absl/base/config.h"
 | |
| #include "absl/base/internal/endian.h"
 | |
| #include "absl/base/internal/unaligned_access.h"
 | |
| #include "absl/base/optimization.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| namespace hash_internal {
 | |
| 
 | |
| #ifdef ABSL_IS_BIG_ENDIAN
 | |
| #define uint32_in_expected_order(x) (absl::gbswap_32(x))
 | |
| #define uint64_in_expected_order(x) (absl::gbswap_64(x))
 | |
| #else
 | |
| #define uint32_in_expected_order(x) (x)
 | |
| #define uint64_in_expected_order(x) (x)
 | |
| #endif
 | |
| 
 | |
| static uint64_t Fetch64(const char *p) {
 | |
|   return uint64_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD64(p));
 | |
| }
 | |
| 
 | |
| static uint32_t Fetch32(const char *p) {
 | |
|   return uint32_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD32(p));
 | |
| }
 | |
| 
 | |
| // Some primes between 2^63 and 2^64 for various uses.
 | |
| static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
 | |
| static const uint64_t k1 = 0xb492b66fbe98f273ULL;
 | |
| static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
 | |
| 
 | |
| // Magic numbers for 32-bit hashing.  Copied from Murmur3.
 | |
| static const uint32_t c1 = 0xcc9e2d51;
 | |
| static const uint32_t c2 = 0x1b873593;
 | |
| 
 | |
| // A 32-bit to 32-bit integer hash copied from Murmur3.
 | |
| static uint32_t fmix(uint32_t h) {
 | |
|   h ^= h >> 16;
 | |
|   h *= 0x85ebca6b;
 | |
|   h ^= h >> 13;
 | |
|   h *= 0xc2b2ae35;
 | |
|   h ^= h >> 16;
 | |
|   return h;
 | |
| }
 | |
| 
 | |
| static uint32_t Rotate32(uint32_t val, int shift) {
 | |
|   // Avoid shifting by 32: doing so yields an undefined result.
 | |
|   return shift == 0 ? val : ((val >> shift) | (val << (32 - shift)));
 | |
| }
 | |
| 
 | |
| #undef PERMUTE3
 | |
| #define PERMUTE3(a, b, c) \
 | |
|   do {                    \
 | |
|     std::swap(a, b);      \
 | |
|     std::swap(a, c);      \
 | |
|   } while (0)
 | |
| 
 | |
| static uint32_t Mur(uint32_t a, uint32_t h) {
 | |
|   // Helper from Murmur3 for combining two 32-bit values.
 | |
|   a *= c1;
 | |
|   a = Rotate32(a, 17);
 | |
|   a *= c2;
 | |
|   h ^= a;
 | |
|   h = Rotate32(h, 19);
 | |
|   return h * 5 + 0xe6546b64;
 | |
| }
 | |
| 
 | |
| static uint32_t Hash32Len13to24(const char *s, size_t len) {
 | |
|   uint32_t a = Fetch32(s - 4 + (len >> 1));
 | |
|   uint32_t b = Fetch32(s + 4);
 | |
|   uint32_t c = Fetch32(s + len - 8);
 | |
|   uint32_t d = Fetch32(s + (len >> 1));
 | |
|   uint32_t e = Fetch32(s);
 | |
|   uint32_t f = Fetch32(s + len - 4);
 | |
|   uint32_t h = len;
 | |
| 
 | |
|   return fmix(Mur(f, Mur(e, Mur(d, Mur(c, Mur(b, Mur(a, h)))))));
 | |
| }
 | |
| 
 | |
| static uint32_t Hash32Len0to4(const char *s, size_t len) {
 | |
|   uint32_t b = 0;
 | |
|   uint32_t c = 9;
 | |
|   for (size_t i = 0; i < len; i++) {
 | |
|     signed char v = s[i];
 | |
|     b = b * c1 + v;
 | |
|     c ^= b;
 | |
|   }
 | |
|   return fmix(Mur(b, Mur(len, c)));
 | |
| }
 | |
| 
 | |
| static uint32_t Hash32Len5to12(const char *s, size_t len) {
 | |
|   uint32_t a = len, b = len * 5, c = 9, d = b;
 | |
|   a += Fetch32(s);
 | |
|   b += Fetch32(s + len - 4);
 | |
|   c += Fetch32(s + ((len >> 1) & 4));
 | |
|   return fmix(Mur(c, Mur(b, Mur(a, d))));
 | |
| }
 | |
| 
 | |
| uint32_t CityHash32(const char *s, size_t len) {
 | |
|   if (len <= 24) {
 | |
|     return len <= 12
 | |
|                ? (len <= 4 ? Hash32Len0to4(s, len) : Hash32Len5to12(s, len))
 | |
|                : Hash32Len13to24(s, len);
 | |
|   }
 | |
| 
 | |
|   // len > 24
 | |
|   uint32_t h = len, g = c1 * len, f = g;
 | |
| 
 | |
|   uint32_t a0 = Rotate32(Fetch32(s + len - 4) * c1, 17) * c2;
 | |
|   uint32_t a1 = Rotate32(Fetch32(s + len - 8) * c1, 17) * c2;
 | |
|   uint32_t a2 = Rotate32(Fetch32(s + len - 16) * c1, 17) * c2;
 | |
|   uint32_t a3 = Rotate32(Fetch32(s + len - 12) * c1, 17) * c2;
 | |
|   uint32_t a4 = Rotate32(Fetch32(s + len - 20) * c1, 17) * c2;
 | |
|   h ^= a0;
 | |
|   h = Rotate32(h, 19);
 | |
|   h = h * 5 + 0xe6546b64;
 | |
|   h ^= a2;
 | |
|   h = Rotate32(h, 19);
 | |
|   h = h * 5 + 0xe6546b64;
 | |
|   g ^= a1;
 | |
|   g = Rotate32(g, 19);
 | |
|   g = g * 5 + 0xe6546b64;
 | |
|   g ^= a3;
 | |
|   g = Rotate32(g, 19);
 | |
|   g = g * 5 + 0xe6546b64;
 | |
|   f += a4;
 | |
|   f = Rotate32(f, 19);
 | |
|   f = f * 5 + 0xe6546b64;
 | |
|   size_t iters = (len - 1) / 20;
 | |
|   do {
 | |
|     uint32_t b0 = Rotate32(Fetch32(s) * c1, 17) * c2;
 | |
|     uint32_t b1 = Fetch32(s + 4);
 | |
|     uint32_t b2 = Rotate32(Fetch32(s + 8) * c1, 17) * c2;
 | |
|     uint32_t b3 = Rotate32(Fetch32(s + 12) * c1, 17) * c2;
 | |
|     uint32_t b4 = Fetch32(s + 16);
 | |
|     h ^= b0;
 | |
|     h = Rotate32(h, 18);
 | |
|     h = h * 5 + 0xe6546b64;
 | |
|     f += b1;
 | |
|     f = Rotate32(f, 19);
 | |
|     f = f * c1;
 | |
|     g += b2;
 | |
|     g = Rotate32(g, 18);
 | |
|     g = g * 5 + 0xe6546b64;
 | |
|     h ^= b3 + b1;
 | |
|     h = Rotate32(h, 19);
 | |
|     h = h * 5 + 0xe6546b64;
 | |
|     g ^= b4;
 | |
|     g = absl::gbswap_32(g) * 5;
 | |
|     h += b4 * 5;
 | |
|     h = absl::gbswap_32(h);
 | |
|     f += b0;
 | |
|     PERMUTE3(f, h, g);
 | |
|     s += 20;
 | |
|   } while (--iters != 0);
 | |
|   g = Rotate32(g, 11) * c1;
 | |
|   g = Rotate32(g, 17) * c1;
 | |
|   f = Rotate32(f, 11) * c1;
 | |
|   f = Rotate32(f, 17) * c1;
 | |
|   h = Rotate32(h + g, 19);
 | |
|   h = h * 5 + 0xe6546b64;
 | |
|   h = Rotate32(h, 17) * c1;
 | |
|   h = Rotate32(h + f, 19);
 | |
|   h = h * 5 + 0xe6546b64;
 | |
|   h = Rotate32(h, 17) * c1;
 | |
|   return h;
 | |
| }
 | |
| 
 | |
| // Bitwise right rotate.  Normally this will compile to a single
 | |
| // instruction, especially if the shift is a manifest constant.
 | |
| static uint64_t Rotate(uint64_t val, int shift) {
 | |
|   // Avoid shifting by 64: doing so yields an undefined result.
 | |
|   return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
 | |
| }
 | |
| 
 | |
| static uint64_t ShiftMix(uint64_t val) { return val ^ (val >> 47); }
 | |
| 
 | |
| static uint64_t HashLen16(uint64_t u, uint64_t v, uint64_t mul) {
 | |
|   // Murmur-inspired hashing.
 | |
|   uint64_t a = (u ^ v) * mul;
 | |
|   a ^= (a >> 47);
 | |
|   uint64_t b = (v ^ a) * mul;
 | |
|   b ^= (b >> 47);
 | |
|   b *= mul;
 | |
|   return b;
 | |
| }
 | |
| 
 | |
| static uint64_t HashLen16(uint64_t u, uint64_t v) {
 | |
|   const uint64_t kMul = 0x9ddfea08eb382d69ULL;
 | |
|   return HashLen16(u, v, kMul);
 | |
| }
 | |
| 
 | |
| static uint64_t HashLen0to16(const char *s, size_t len) {
 | |
|   if (len >= 8) {
 | |
|     uint64_t mul = k2 + len * 2;
 | |
|     uint64_t a = Fetch64(s) + k2;
 | |
|     uint64_t b = Fetch64(s + len - 8);
 | |
|     uint64_t c = Rotate(b, 37) * mul + a;
 | |
|     uint64_t d = (Rotate(a, 25) + b) * mul;
 | |
|     return HashLen16(c, d, mul);
 | |
|   }
 | |
|   if (len >= 4) {
 | |
|     uint64_t mul = k2 + len * 2;
 | |
|     uint64_t a = Fetch32(s);
 | |
|     return HashLen16(len + (a << 3), Fetch32(s + len - 4), mul);
 | |
|   }
 | |
|   if (len > 0) {
 | |
|     uint8_t a = s[0];
 | |
|     uint8_t b = s[len >> 1];
 | |
|     uint8_t c = s[len - 1];
 | |
|     uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
 | |
|     uint32_t z = len + (static_cast<uint32_t>(c) << 2);
 | |
|     return ShiftMix(y * k2 ^ z * k0) * k2;
 | |
|   }
 | |
|   return k2;
 | |
| }
 | |
| 
 | |
| // This probably works well for 16-byte strings as well, but it may be overkill
 | |
| // in that case.
 | |
| static uint64_t HashLen17to32(const char *s, size_t len) {
 | |
|   uint64_t mul = k2 + len * 2;
 | |
|   uint64_t a = Fetch64(s) * k1;
 | |
|   uint64_t b = Fetch64(s + 8);
 | |
|   uint64_t c = Fetch64(s + len - 8) * mul;
 | |
|   uint64_t d = Fetch64(s + len - 16) * k2;
 | |
|   return HashLen16(Rotate(a + b, 43) + Rotate(c, 30) + d,
 | |
|                    a + Rotate(b + k2, 18) + c, mul);
 | |
| }
 | |
| 
 | |
| // Return a 16-byte hash for 48 bytes.  Quick and dirty.
 | |
| // Callers do best to use "random-looking" values for a and b.
 | |
| static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(
 | |
|     uint64_t w, uint64_t x, uint64_t y, uint64_t z, uint64_t a, uint64_t b) {
 | |
|   a += w;
 | |
|   b = Rotate(b + a + z, 21);
 | |
|   uint64_t c = a;
 | |
|   a += x;
 | |
|   a += y;
 | |
|   b += Rotate(a, 44);
 | |
|   return std::make_pair(a + z, b + c);
 | |
| }
 | |
| 
 | |
| // Return a 16-byte hash for s[0] ... s[31], a, and b.  Quick and dirty.
 | |
| static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(const char *s,
 | |
|                                                             uint64_t a,
 | |
|                                                             uint64_t b) {
 | |
|   return WeakHashLen32WithSeeds(Fetch64(s), Fetch64(s + 8), Fetch64(s + 16),
 | |
|                                 Fetch64(s + 24), a, b);
 | |
| }
 | |
| 
 | |
| // Return an 8-byte hash for 33 to 64 bytes.
 | |
| static uint64_t HashLen33to64(const char *s, size_t len) {
 | |
|   uint64_t mul = k2 + len * 2;
 | |
|   uint64_t a = Fetch64(s) * k2;
 | |
|   uint64_t b = Fetch64(s + 8);
 | |
|   uint64_t c = Fetch64(s + len - 24);
 | |
|   uint64_t d = Fetch64(s + len - 32);
 | |
|   uint64_t e = Fetch64(s + 16) * k2;
 | |
|   uint64_t f = Fetch64(s + 24) * 9;
 | |
|   uint64_t g = Fetch64(s + len - 8);
 | |
|   uint64_t h = Fetch64(s + len - 16) * mul;
 | |
|   uint64_t u = Rotate(a + g, 43) + (Rotate(b, 30) + c) * 9;
 | |
|   uint64_t v = ((a + g) ^ d) + f + 1;
 | |
|   uint64_t w = absl::gbswap_64((u + v) * mul) + h;
 | |
|   uint64_t x = Rotate(e + f, 42) + c;
 | |
|   uint64_t y = (absl::gbswap_64((v + w) * mul) + g) * mul;
 | |
|   uint64_t z = e + f + c;
 | |
|   a = absl::gbswap_64((x + z) * mul + y) + b;
 | |
|   b = ShiftMix((z + a) * mul + d + h) * mul;
 | |
|   return b + x;
 | |
| }
 | |
| 
 | |
| uint64_t CityHash64(const char *s, size_t len) {
 | |
|   if (len <= 32) {
 | |
|     if (len <= 16) {
 | |
|       return HashLen0to16(s, len);
 | |
|     } else {
 | |
|       return HashLen17to32(s, len);
 | |
|     }
 | |
|   } else if (len <= 64) {
 | |
|     return HashLen33to64(s, len);
 | |
|   }
 | |
| 
 | |
|   // For strings over 64 bytes we hash the end first, and then as we
 | |
|   // loop we keep 56 bytes of state: v, w, x, y, and z.
 | |
|   uint64_t x = Fetch64(s + len - 40);
 | |
|   uint64_t y = Fetch64(s + len - 16) + Fetch64(s + len - 56);
 | |
|   uint64_t z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24));
 | |
|   std::pair<uint64_t, uint64_t> v =
 | |
|       WeakHashLen32WithSeeds(s + len - 64, len, z);
 | |
|   std::pair<uint64_t, uint64_t> w =
 | |
|       WeakHashLen32WithSeeds(s + len - 32, y + k1, x);
 | |
|   x = x * k1 + Fetch64(s);
 | |
| 
 | |
|   // Decrease len to the nearest multiple of 64, and operate on 64-byte chunks.
 | |
|   len = (len - 1) & ~static_cast<size_t>(63);
 | |
|   do {
 | |
|     x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
 | |
|     y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
 | |
|     x ^= w.second;
 | |
|     y += v.first + Fetch64(s + 40);
 | |
|     z = Rotate(z + w.first, 33) * k1;
 | |
|     v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
 | |
|     w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
 | |
|     std::swap(z, x);
 | |
|     s += 64;
 | |
|     len -= 64;
 | |
|   } while (len != 0);
 | |
|   return HashLen16(HashLen16(v.first, w.first) + ShiftMix(y) * k1 + z,
 | |
|                    HashLen16(v.second, w.second) + x);
 | |
| }
 | |
| 
 | |
| uint64_t CityHash64WithSeed(const char *s, size_t len, uint64_t seed) {
 | |
|   return CityHash64WithSeeds(s, len, k2, seed);
 | |
| }
 | |
| 
 | |
| uint64_t CityHash64WithSeeds(const char *s, size_t len, uint64_t seed0,
 | |
|                              uint64_t seed1) {
 | |
|   return HashLen16(CityHash64(s, len) - seed0, seed1);
 | |
| }
 | |
| 
 | |
| }  // namespace hash_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 |