... notably, this includes Abseil's own StatusOr type, which conflicted with our implementation (that was taken from TensorFlow). Change-Id: Ie7d6764b64055caaeb8dc7b6b9d066291e6b538f
		
			
				
	
	
		
			1003 lines
		
	
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1003 lines
		
	
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2018 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| //
 | |
| // -----------------------------------------------------------------------------
 | |
| // File: hash.h
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| #ifndef ABSL_HASH_INTERNAL_HASH_H_
 | |
| #define ABSL_HASH_INTERNAL_HASH_H_
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <array>
 | |
| #include <cmath>
 | |
| #include <cstring>
 | |
| #include <deque>
 | |
| #include <forward_list>
 | |
| #include <functional>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <list>
 | |
| #include <map>
 | |
| #include <memory>
 | |
| #include <set>
 | |
| #include <string>
 | |
| #include <tuple>
 | |
| #include <type_traits>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| #include "absl/base/internal/endian.h"
 | |
| #include "absl/base/port.h"
 | |
| #include "absl/container/fixed_array.h"
 | |
| #include "absl/meta/type_traits.h"
 | |
| #include "absl/numeric/int128.h"
 | |
| #include "absl/strings/string_view.h"
 | |
| #include "absl/types/optional.h"
 | |
| #include "absl/types/variant.h"
 | |
| #include "absl/utility/utility.h"
 | |
| #include "absl/hash/internal/city.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| namespace hash_internal {
 | |
| 
 | |
| // Internal detail: Large buffers are hashed in smaller chunks.  This function
 | |
| // returns the size of these chunks.
 | |
| constexpr size_t PiecewiseChunkSize() { return 1024; }
 | |
| 
 | |
| // PiecewiseCombiner
 | |
| //
 | |
| // PiecewiseCombiner is an internal-only helper class for hashing a piecewise
 | |
| // buffer of `char` or `unsigned char` as though it were contiguous.  This class
 | |
| // provides two methods:
 | |
| //
 | |
| //   H add_buffer(state, data, size)
 | |
| //   H finalize(state)
 | |
| //
 | |
| // `add_buffer` can be called zero or more times, followed by a single call to
 | |
| // `finalize`.  This will produce the same hash expansion as concatenating each
 | |
| // buffer piece into a single contiguous buffer, and passing this to
 | |
| // `H::combine_contiguous`.
 | |
| //
 | |
| //  Example usage:
 | |
| //    PiecewiseCombiner combiner;
 | |
| //    for (const auto& piece : pieces) {
 | |
| //      state = combiner.add_buffer(std::move(state), piece.data, piece.size);
 | |
| //    }
 | |
| //    return combiner.finalize(std::move(state));
 | |
| class PiecewiseCombiner {
 | |
|  public:
 | |
|   PiecewiseCombiner() : position_(0) {}
 | |
|   PiecewiseCombiner(const PiecewiseCombiner&) = delete;
 | |
|   PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete;
 | |
| 
 | |
|   // PiecewiseCombiner::add_buffer()
 | |
|   //
 | |
|   // Appends the given range of bytes to the sequence to be hashed, which may
 | |
|   // modify the provided hash state.
 | |
|   template <typename H>
 | |
|   H add_buffer(H state, const unsigned char* data, size_t size);
 | |
|   template <typename H>
 | |
|   H add_buffer(H state, const char* data, size_t size) {
 | |
|     return add_buffer(std::move(state),
 | |
|                       reinterpret_cast<const unsigned char*>(data), size);
 | |
|   }
 | |
| 
 | |
|   // PiecewiseCombiner::finalize()
 | |
|   //
 | |
|   // Finishes combining the hash sequence, which may may modify the provided
 | |
|   // hash state.
 | |
|   //
 | |
|   // Once finalize() is called, add_buffer() may no longer be called. The
 | |
|   // resulting hash state will be the same as if the pieces passed to
 | |
|   // add_buffer() were concatenated into a single flat buffer, and then provided
 | |
|   // to H::combine_contiguous().
 | |
|   template <typename H>
 | |
|   H finalize(H state);
 | |
| 
 | |
|  private:
 | |
|   unsigned char buf_[PiecewiseChunkSize()];
 | |
|   size_t position_;
 | |
| };
 | |
| 
 | |
| // HashStateBase
 | |
| //
 | |
| // A hash state object represents an intermediate state in the computation
 | |
| // of an unspecified hash algorithm. `HashStateBase` provides a CRTP style
 | |
| // base class for hash state implementations. Developers adding type support
 | |
| // for `absl::Hash` should not rely on any parts of the state object other than
 | |
| // the following member functions:
 | |
| //
 | |
| //   * HashStateBase::combine()
 | |
| //   * HashStateBase::combine_contiguous()
 | |
| //
 | |
| // A derived hash state class of type `H` must provide a static member function
 | |
| // with a signature similar to the following:
 | |
| //
 | |
| //    `static H combine_contiguous(H state, const unsigned char*, size_t)`.
 | |
| //
 | |
| // `HashStateBase` will provide a complete implementation for a hash state
 | |
| // object in terms of this method.
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| //   // Use CRTP to define your derived class.
 | |
| //   struct MyHashState : HashStateBase<MyHashState> {
 | |
| //       static H combine_contiguous(H state, const unsigned char*, size_t);
 | |
| //       using MyHashState::HashStateBase::combine;
 | |
| //       using MyHashState::HashStateBase::combine_contiguous;
 | |
| //   };
 | |
| template <typename H>
 | |
| class HashStateBase {
 | |
|  public:
 | |
|   // HashStateBase::combine()
 | |
|   //
 | |
|   // Combines an arbitrary number of values into a hash state, returning the
 | |
|   // updated state.
 | |
|   //
 | |
|   // Each of the value types `T` must be separately hashable by the Abseil
 | |
|   // hashing framework.
 | |
|   //
 | |
|   // NOTE:
 | |
|   //
 | |
|   //   state = H::combine(std::move(state), value1, value2, value3);
 | |
|   //
 | |
|   // is guaranteed to produce the same hash expansion as:
 | |
|   //
 | |
|   //   state = H::combine(std::move(state), value1);
 | |
|   //   state = H::combine(std::move(state), value2);
 | |
|   //   state = H::combine(std::move(state), value3);
 | |
|   template <typename T, typename... Ts>
 | |
|   static H combine(H state, const T& value, const Ts&... values);
 | |
|   static H combine(H state) { return state; }
 | |
| 
 | |
|   // HashStateBase::combine_contiguous()
 | |
|   //
 | |
|   // Combines a contiguous array of `size` elements into a hash state, returning
 | |
|   // the updated state.
 | |
|   //
 | |
|   // NOTE:
 | |
|   //
 | |
|   //   state = H::combine_contiguous(std::move(state), data, size);
 | |
|   //
 | |
|   // is NOT guaranteed to produce the same hash expansion as a for-loop (it may
 | |
|   // perform internal optimizations).  If you need this guarantee, use the
 | |
|   // for-loop instead.
 | |
|   template <typename T>
 | |
|   static H combine_contiguous(H state, const T* data, size_t size);
 | |
| 
 | |
|   using AbslInternalPiecewiseCombiner = PiecewiseCombiner;
 | |
| };
 | |
| 
 | |
| // is_uniquely_represented
 | |
| //
 | |
| // `is_uniquely_represented<T>` is a trait class that indicates whether `T`
 | |
| // is uniquely represented.
 | |
| //
 | |
| // A type is "uniquely represented" if two equal values of that type are
 | |
| // guaranteed to have the same bytes in their underlying storage. In other
 | |
| // words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be
 | |
| // zero. This property cannot be detected automatically, so this trait is false
 | |
| // by default, but can be specialized by types that wish to assert that they are
 | |
| // uniquely represented. This makes them eligible for certain optimizations.
 | |
| //
 | |
| // If you have any doubt whatsoever, do not specialize this template.
 | |
| // The default is completely safe, and merely disables some optimizations
 | |
| // that will not matter for most types. Specializing this template,
 | |
| // on the other hand, can be very hazardous.
 | |
| //
 | |
| // To be uniquely represented, a type must not have multiple ways of
 | |
| // representing the same value; for example, float and double are not
 | |
| // uniquely represented, because they have distinct representations for
 | |
| // +0 and -0. Furthermore, the type's byte representation must consist
 | |
| // solely of user-controlled data, with no padding bits and no compiler-
 | |
| // controlled data such as vptrs or sanitizer metadata. This is usually
 | |
| // very difficult to guarantee, because in most cases the compiler can
 | |
| // insert data and padding bits at its own discretion.
 | |
| //
 | |
| // If you specialize this template for a type `T`, you must do so in the file
 | |
| // that defines that type (or in this file). If you define that specialization
 | |
| // anywhere else, `is_uniquely_represented<T>` could have different meanings
 | |
| // in different places.
 | |
| //
 | |
| // The Enable parameter is meaningless; it is provided as a convenience,
 | |
| // to support certain SFINAE techniques when defining specializations.
 | |
| template <typename T, typename Enable = void>
 | |
| struct is_uniquely_represented : std::false_type {};
 | |
| 
 | |
| // is_uniquely_represented<unsigned char>
 | |
| //
 | |
| // unsigned char is a synonym for "byte", so it is guaranteed to be
 | |
| // uniquely represented.
 | |
| template <>
 | |
| struct is_uniquely_represented<unsigned char> : std::true_type {};
 | |
| 
 | |
| // is_uniquely_represented for non-standard integral types
 | |
| //
 | |
| // Integral types other than bool should be uniquely represented on any
 | |
| // platform that this will plausibly be ported to.
 | |
| template <typename Integral>
 | |
| struct is_uniquely_represented<
 | |
|     Integral, typename std::enable_if<std::is_integral<Integral>::value>::type>
 | |
|     : std::true_type {};
 | |
| 
 | |
| // is_uniquely_represented<bool>
 | |
| //
 | |
| //
 | |
| template <>
 | |
| struct is_uniquely_represented<bool> : std::false_type {};
 | |
| 
 | |
| // hash_bytes()
 | |
| //
 | |
| // Convenience function that combines `hash_state` with the byte representation
 | |
| // of `value`.
 | |
| template <typename H, typename T>
 | |
| H hash_bytes(H hash_state, const T& value) {
 | |
|   const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
 | |
|   return H::combine_contiguous(std::move(hash_state), start, sizeof(value));
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // AbslHashValue for Basic Types
 | |
| // -----------------------------------------------------------------------------
 | |
| 
 | |
| // Note: Default `AbslHashValue` implementations live in `hash_internal`. This
 | |
| // allows us to block lexical scope lookup when doing an unqualified call to
 | |
| // `AbslHashValue` below. User-defined implementations of `AbslHashValue` can
 | |
| // only be found via ADL.
 | |
| 
 | |
| // AbslHashValue() for hashing bool values
 | |
| //
 | |
| // We use SFINAE to ensure that this overload only accepts bool, not types that
 | |
| // are convertible to bool.
 | |
| template <typename H, typename B>
 | |
| typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue(
 | |
|     H hash_state, B value) {
 | |
|   return H::combine(std::move(hash_state),
 | |
|                     static_cast<unsigned char>(value ? 1 : 0));
 | |
| }
 | |
| 
 | |
| // AbslHashValue() for hashing enum values
 | |
| template <typename H, typename Enum>
 | |
| typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue(
 | |
|     H hash_state, Enum e) {
 | |
|   // In practice, we could almost certainly just invoke hash_bytes directly,
 | |
|   // but it's possible that a sanitizer might one day want to
 | |
|   // store data in the unused bits of an enum. To avoid that risk, we
 | |
|   // convert to the underlying type before hashing. Hopefully this will get
 | |
|   // optimized away; if not, we can reopen discussion with c-toolchain-team.
 | |
|   return H::combine(std::move(hash_state),
 | |
|                     static_cast<typename std::underlying_type<Enum>::type>(e));
 | |
| }
 | |
| // AbslHashValue() for hashing floating-point values
 | |
| template <typename H, typename Float>
 | |
| typename std::enable_if<std::is_same<Float, float>::value ||
 | |
|                             std::is_same<Float, double>::value,
 | |
|                         H>::type
 | |
| AbslHashValue(H hash_state, Float value) {
 | |
|   return hash_internal::hash_bytes(std::move(hash_state),
 | |
|                                    value == 0 ? 0 : value);
 | |
| }
 | |
| 
 | |
| // Long double has the property that it might have extra unused bytes in it.
 | |
| // For example, in x86 sizeof(long double)==16 but it only really uses 80-bits
 | |
| // of it. This means we can't use hash_bytes on a long double and have to
 | |
| // convert it to something else first.
 | |
| template <typename H, typename LongDouble>
 | |
| typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type
 | |
| AbslHashValue(H hash_state, LongDouble value) {
 | |
|   const int category = std::fpclassify(value);
 | |
|   switch (category) {
 | |
|     case FP_INFINITE:
 | |
|       // Add the sign bit to differentiate between +Inf and -Inf
 | |
|       hash_state = H::combine(std::move(hash_state), std::signbit(value));
 | |
|       break;
 | |
| 
 | |
|     case FP_NAN:
 | |
|     case FP_ZERO:
 | |
|     default:
 | |
|       // Category is enough for these.
 | |
|       break;
 | |
| 
 | |
|     case FP_NORMAL:
 | |
|     case FP_SUBNORMAL:
 | |
|       // We can't convert `value` directly to double because this would have
 | |
|       // undefined behavior if the value is out of range.
 | |
|       // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is
 | |
|       // guaranteed to be in range for `double`. The truncation is
 | |
|       // implementation defined, but that works as long as it is deterministic.
 | |
|       int exp;
 | |
|       auto mantissa = static_cast<double>(std::frexp(value, &exp));
 | |
|       hash_state = H::combine(std::move(hash_state), mantissa, exp);
 | |
|   }
 | |
| 
 | |
|   return H::combine(std::move(hash_state), category);
 | |
| }
 | |
| 
 | |
| // AbslHashValue() for hashing pointers
 | |
| template <typename H, typename T>
 | |
| H AbslHashValue(H hash_state, T* ptr) {
 | |
|   auto v = reinterpret_cast<uintptr_t>(ptr);
 | |
|   // Due to alignment, pointers tend to have low bits as zero, and the next few
 | |
|   // bits follow a pattern since they are also multiples of some base value.
 | |
|   // Mixing the pointer twice helps prevent stuck low bits for certain alignment
 | |
|   // values.
 | |
|   return H::combine(std::move(hash_state), v, v);
 | |
| }
 | |
| 
 | |
| // AbslHashValue() for hashing nullptr_t
 | |
| template <typename H>
 | |
| H AbslHashValue(H hash_state, std::nullptr_t) {
 | |
|   return H::combine(std::move(hash_state), static_cast<void*>(nullptr));
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // AbslHashValue for Composite Types
 | |
| // -----------------------------------------------------------------------------
 | |
| 
 | |
| // is_hashable()
 | |
| //
 | |
| // Trait class which returns true if T is hashable by the absl::Hash framework.
 | |
| // Used for the AbslHashValue implementations for composite types below.
 | |
| template <typename T>
 | |
| struct is_hashable;
 | |
| 
 | |
| // AbslHashValue() for hashing pairs
 | |
| template <typename H, typename T1, typename T2>
 | |
| typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value,
 | |
|                         H>::type
 | |
| AbslHashValue(H hash_state, const std::pair<T1, T2>& p) {
 | |
|   return H::combine(std::move(hash_state), p.first, p.second);
 | |
| }
 | |
| 
 | |
| // hash_tuple()
 | |
| //
 | |
| // Helper function for hashing a tuple. The third argument should
 | |
| // be an index_sequence running from 0 to tuple_size<Tuple> - 1.
 | |
| template <typename H, typename Tuple, size_t... Is>
 | |
| H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) {
 | |
|   return H::combine(std::move(hash_state), std::get<Is>(t)...);
 | |
| }
 | |
| 
 | |
| // AbslHashValue for hashing tuples
 | |
| template <typename H, typename... Ts>
 | |
| #if defined(_MSC_VER)
 | |
| // This SFINAE gets MSVC confused under some conditions. Let's just disable it
 | |
| // for now.
 | |
| H
 | |
| #else  // _MSC_VER
 | |
| typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type
 | |
| #endif  // _MSC_VER
 | |
| AbslHashValue(H hash_state, const std::tuple<Ts...>& t) {
 | |
|   return hash_internal::hash_tuple(std::move(hash_state), t,
 | |
|                                    absl::make_index_sequence<sizeof...(Ts)>());
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // AbslHashValue for Pointers
 | |
| // -----------------------------------------------------------------------------
 | |
| 
 | |
| // AbslHashValue for hashing unique_ptr
 | |
| template <typename H, typename T, typename D>
 | |
| H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) {
 | |
|   return H::combine(std::move(hash_state), ptr.get());
 | |
| }
 | |
| 
 | |
| // AbslHashValue for hashing shared_ptr
 | |
| template <typename H, typename T>
 | |
| H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) {
 | |
|   return H::combine(std::move(hash_state), ptr.get());
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // AbslHashValue for String-Like Types
 | |
| // -----------------------------------------------------------------------------
 | |
| 
 | |
| // AbslHashValue for hashing strings
 | |
| //
 | |
| // All the string-like types supported here provide the same hash expansion for
 | |
| // the same character sequence. These types are:
 | |
| //
 | |
| //  - `absl::Cord`
 | |
| //  - `std::string` (and std::basic_string<char, std::char_traits<char>, A> for
 | |
| //      any allocator A)
 | |
| //  - `absl::string_view` and `std::string_view`
 | |
| //
 | |
| // For simplicity, we currently support only `char` strings. This support may
 | |
| // be broadened, if necessary, but with some caution - this overload would
 | |
| // misbehave in cases where the traits' `eq()` member isn't equivalent to `==`
 | |
| // on the underlying character type.
 | |
| template <typename H>
 | |
| H AbslHashValue(H hash_state, absl::string_view str) {
 | |
|   return H::combine(
 | |
|       H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
 | |
|       str.size());
 | |
| }
 | |
| 
 | |
| // Support std::wstring, std::u16string and std::u32string.
 | |
| template <typename Char, typename Alloc, typename H,
 | |
|           typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
 | |
|                                        std::is_same<Char, char16_t>::value ||
 | |
|                                        std::is_same<Char, char32_t>::value>>
 | |
| H AbslHashValue(
 | |
|     H hash_state,
 | |
|     const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) {
 | |
|   return H::combine(
 | |
|       H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
 | |
|       str.size());
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // AbslHashValue for Sequence Containers
 | |
| // -----------------------------------------------------------------------------
 | |
| 
 | |
| // AbslHashValue for hashing std::array
 | |
| template <typename H, typename T, size_t N>
 | |
| typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
 | |
|     H hash_state, const std::array<T, N>& array) {
 | |
|   return H::combine_contiguous(std::move(hash_state), array.data(),
 | |
|                                array.size());
 | |
| }
 | |
| 
 | |
| // AbslHashValue for hashing std::deque
 | |
| template <typename H, typename T, typename Allocator>
 | |
| typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
 | |
|     H hash_state, const std::deque<T, Allocator>& deque) {
 | |
|   // TODO(gromer): investigate a more efficient implementation taking
 | |
|   // advantage of the chunk structure.
 | |
|   for (const auto& t : deque) {
 | |
|     hash_state = H::combine(std::move(hash_state), t);
 | |
|   }
 | |
|   return H::combine(std::move(hash_state), deque.size());
 | |
| }
 | |
| 
 | |
| // AbslHashValue for hashing std::forward_list
 | |
| template <typename H, typename T, typename Allocator>
 | |
| typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
 | |
|     H hash_state, const std::forward_list<T, Allocator>& list) {
 | |
|   size_t size = 0;
 | |
|   for (const T& t : list) {
 | |
|     hash_state = H::combine(std::move(hash_state), t);
 | |
|     ++size;
 | |
|   }
 | |
|   return H::combine(std::move(hash_state), size);
 | |
| }
 | |
| 
 | |
| // AbslHashValue for hashing std::list
 | |
| template <typename H, typename T, typename Allocator>
 | |
| typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
 | |
|     H hash_state, const std::list<T, Allocator>& list) {
 | |
|   for (const auto& t : list) {
 | |
|     hash_state = H::combine(std::move(hash_state), t);
 | |
|   }
 | |
|   return H::combine(std::move(hash_state), list.size());
 | |
| }
 | |
| 
 | |
| // AbslHashValue for hashing std::vector
 | |
| //
 | |
| // Do not use this for vector<bool>. It does not have a .data(), and a fallback
 | |
| // for std::hash<> is most likely faster.
 | |
| template <typename H, typename T, typename Allocator>
 | |
| typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value,
 | |
|                         H>::type
 | |
| AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
 | |
|   return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(),
 | |
|                                           vector.size()),
 | |
|                     vector.size());
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // AbslHashValue for Ordered Associative Containers
 | |
| // -----------------------------------------------------------------------------
 | |
| 
 | |
| // AbslHashValue for hashing std::map
 | |
| template <typename H, typename Key, typename T, typename Compare,
 | |
|           typename Allocator>
 | |
| typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
 | |
|                         H>::type
 | |
| AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) {
 | |
|   for (const auto& t : map) {
 | |
|     hash_state = H::combine(std::move(hash_state), t);
 | |
|   }
 | |
|   return H::combine(std::move(hash_state), map.size());
 | |
| }
 | |
| 
 | |
| // AbslHashValue for hashing std::multimap
 | |
| template <typename H, typename Key, typename T, typename Compare,
 | |
|           typename Allocator>
 | |
| typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
 | |
|                         H>::type
 | |
| AbslHashValue(H hash_state,
 | |
|               const std::multimap<Key, T, Compare, Allocator>& map) {
 | |
|   for (const auto& t : map) {
 | |
|     hash_state = H::combine(std::move(hash_state), t);
 | |
|   }
 | |
|   return H::combine(std::move(hash_state), map.size());
 | |
| }
 | |
| 
 | |
| // AbslHashValue for hashing std::set
 | |
| template <typename H, typename Key, typename Compare, typename Allocator>
 | |
| typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
 | |
|     H hash_state, const std::set<Key, Compare, Allocator>& set) {
 | |
|   for (const auto& t : set) {
 | |
|     hash_state = H::combine(std::move(hash_state), t);
 | |
|   }
 | |
|   return H::combine(std::move(hash_state), set.size());
 | |
| }
 | |
| 
 | |
| // AbslHashValue for hashing std::multiset
 | |
| template <typename H, typename Key, typename Compare, typename Allocator>
 | |
| typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
 | |
|     H hash_state, const std::multiset<Key, Compare, Allocator>& set) {
 | |
|   for (const auto& t : set) {
 | |
|     hash_state = H::combine(std::move(hash_state), t);
 | |
|   }
 | |
|   return H::combine(std::move(hash_state), set.size());
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // AbslHashValue for Wrapper Types
 | |
| // -----------------------------------------------------------------------------
 | |
| 
 | |
| // AbslHashValue for hashing std::reference_wrapper
 | |
| template <typename H, typename T>
 | |
| typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
 | |
|     H hash_state, std::reference_wrapper<T> opt) {
 | |
|   return H::combine(std::move(hash_state), opt.get());
 | |
| }
 | |
| 
 | |
| // AbslHashValue for hashing absl::optional
 | |
| template <typename H, typename T>
 | |
| typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
 | |
|     H hash_state, const absl::optional<T>& opt) {
 | |
|   if (opt) hash_state = H::combine(std::move(hash_state), *opt);
 | |
|   return H::combine(std::move(hash_state), opt.has_value());
 | |
| }
 | |
| 
 | |
| // VariantVisitor
 | |
| template <typename H>
 | |
| struct VariantVisitor {
 | |
|   H&& hash_state;
 | |
|   template <typename T>
 | |
|   H operator()(const T& t) const {
 | |
|     return H::combine(std::move(hash_state), t);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // AbslHashValue for hashing absl::variant
 | |
| template <typename H, typename... T>
 | |
| typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type
 | |
| AbslHashValue(H hash_state, const absl::variant<T...>& v) {
 | |
|   if (!v.valueless_by_exception()) {
 | |
|     hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v);
 | |
|   }
 | |
|   return H::combine(std::move(hash_state), v.index());
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // AbslHashValue for Other Types
 | |
| // -----------------------------------------------------------------------------
 | |
| 
 | |
| // AbslHashValue for hashing std::bitset is not defined, for the same reason as
 | |
| // for vector<bool> (see std::vector above): It does not expose the raw bytes,
 | |
| // and a fallback to std::hash<> is most likely faster.
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| 
 | |
| // hash_range_or_bytes()
 | |
| //
 | |
| // Mixes all values in the range [data, data+size) into the hash state.
 | |
| // This overload accepts only uniquely-represented types, and hashes them by
 | |
| // hashing the entire range of bytes.
 | |
| template <typename H, typename T>
 | |
| typename std::enable_if<is_uniquely_represented<T>::value, H>::type
 | |
| hash_range_or_bytes(H hash_state, const T* data, size_t size) {
 | |
|   const auto* bytes = reinterpret_cast<const unsigned char*>(data);
 | |
|   return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size);
 | |
| }
 | |
| 
 | |
| // hash_range_or_bytes()
 | |
| template <typename H, typename T>
 | |
| typename std::enable_if<!is_uniquely_represented<T>::value, H>::type
 | |
| hash_range_or_bytes(H hash_state, const T* data, size_t size) {
 | |
|   for (const auto end = data + size; data < end; ++data) {
 | |
|     hash_state = H::combine(std::move(hash_state), *data);
 | |
|   }
 | |
|   return hash_state;
 | |
| }
 | |
| 
 | |
| #if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \
 | |
|     ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
 | |
| #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1
 | |
| #else
 | |
| #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0
 | |
| #endif
 | |
| 
 | |
| // HashSelect
 | |
| //
 | |
| // Type trait to select the appropriate hash implementation to use.
 | |
| // HashSelect::type<T> will give the proper hash implementation, to be invoked
 | |
| // as:
 | |
| //   HashSelect::type<T>::Invoke(state, value)
 | |
| // Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a
 | |
| // valid `Invoke` function. Types that are not hashable will have a ::value of
 | |
| // `false`.
 | |
| struct HashSelect {
 | |
|  private:
 | |
|   struct State : HashStateBase<State> {
 | |
|     static State combine_contiguous(State hash_state, const unsigned char*,
 | |
|                                     size_t);
 | |
|     using State::HashStateBase::combine_contiguous;
 | |
|   };
 | |
| 
 | |
|   struct UniquelyRepresentedProbe {
 | |
|     template <typename H, typename T>
 | |
|     static auto Invoke(H state, const T& value)
 | |
|         -> absl::enable_if_t<is_uniquely_represented<T>::value, H> {
 | |
|       return hash_internal::hash_bytes(std::move(state), value);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   struct HashValueProbe {
 | |
|     template <typename H, typename T>
 | |
|     static auto Invoke(H state, const T& value) -> absl::enable_if_t<
 | |
|         std::is_same<H,
 | |
|                      decltype(AbslHashValue(std::move(state), value))>::value,
 | |
|         H> {
 | |
|       return AbslHashValue(std::move(state), value);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   struct LegacyHashProbe {
 | |
| #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
 | |
|     template <typename H, typename T>
 | |
|     static auto Invoke(H state, const T& value) -> absl::enable_if_t<
 | |
|         std::is_convertible<
 | |
|             decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)),
 | |
|             size_t>::value,
 | |
|         H> {
 | |
|       return hash_internal::hash_bytes(
 | |
|           std::move(state),
 | |
|           ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value));
 | |
|     }
 | |
| #endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
 | |
|   };
 | |
| 
 | |
|   struct StdHashProbe {
 | |
|     template <typename H, typename T>
 | |
|     static auto Invoke(H state, const T& value)
 | |
|         -> absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> {
 | |
|       return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value));
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template <typename Hash, typename T>
 | |
|   struct Probe : Hash {
 | |
|    private:
 | |
|     template <typename H, typename = decltype(H::Invoke(
 | |
|                               std::declval<State>(), std::declval<const T&>()))>
 | |
|     static std::true_type Test(int);
 | |
|     template <typename U>
 | |
|     static std::false_type Test(char);
 | |
| 
 | |
|    public:
 | |
|     static constexpr bool value = decltype(Test<Hash>(0))::value;
 | |
|   };
 | |
| 
 | |
|  public:
 | |
|   // Probe each implementation in order.
 | |
|   // disjunction provides short circuiting wrt instantiation.
 | |
|   template <typename T>
 | |
|   using Apply = absl::disjunction<         //
 | |
|       Probe<UniquelyRepresentedProbe, T>,  //
 | |
|       Probe<HashValueProbe, T>,            //
 | |
|       Probe<LegacyHashProbe, T>,           //
 | |
|       Probe<StdHashProbe, T>,              //
 | |
|       std::false_type>;
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct is_hashable
 | |
|     : std::integral_constant<bool, HashSelect::template Apply<T>::value> {};
 | |
| 
 | |
| // CityHashState
 | |
| class ABSL_DLL CityHashState
 | |
|     : public HashStateBase<CityHashState> {
 | |
|   // absl::uint128 is not an alias or a thin wrapper around the intrinsic.
 | |
|   // We use the intrinsic when available to improve performance.
 | |
| #ifdef ABSL_HAVE_INTRINSIC_INT128
 | |
|   using uint128 = __uint128_t;
 | |
| #else   // ABSL_HAVE_INTRINSIC_INT128
 | |
|   using uint128 = absl::uint128;
 | |
| #endif  // ABSL_HAVE_INTRINSIC_INT128
 | |
| 
 | |
|   static constexpr uint64_t kMul =
 | |
|       sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51}
 | |
|                           : uint64_t{0x9ddfea08eb382d69};
 | |
| 
 | |
|   template <typename T>
 | |
|   using IntegralFastPath =
 | |
|       conjunction<std::is_integral<T>, is_uniquely_represented<T>>;
 | |
| 
 | |
|  public:
 | |
|   // Move only
 | |
|   CityHashState(CityHashState&&) = default;
 | |
|   CityHashState& operator=(CityHashState&&) = default;
 | |
| 
 | |
|   // CityHashState::combine_contiguous()
 | |
|   //
 | |
|   // Fundamental base case for hash recursion: mixes the given range of bytes
 | |
|   // into the hash state.
 | |
|   static CityHashState combine_contiguous(CityHashState hash_state,
 | |
|                                           const unsigned char* first,
 | |
|                                           size_t size) {
 | |
|     return CityHashState(
 | |
|         CombineContiguousImpl(hash_state.state_, first, size,
 | |
|                               std::integral_constant<int, sizeof(size_t)>{}));
 | |
|   }
 | |
|   using CityHashState::HashStateBase::combine_contiguous;
 | |
| 
 | |
|   // CityHashState::hash()
 | |
|   //
 | |
|   // For performance reasons in non-opt mode, we specialize this for
 | |
|   // integral types.
 | |
|   // Otherwise we would be instantiating and calling dozens of functions for
 | |
|   // something that is just one multiplication and a couple xor's.
 | |
|   // The result should be the same as running the whole algorithm, but faster.
 | |
|   template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0>
 | |
|   static size_t hash(T value) {
 | |
|     return static_cast<size_t>(Mix(Seed(), static_cast<uint64_t>(value)));
 | |
|   }
 | |
| 
 | |
|   // Overload of CityHashState::hash()
 | |
|   template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0>
 | |
|   static size_t hash(const T& value) {
 | |
|     return static_cast<size_t>(combine(CityHashState{}, value).state_);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // Invoked only once for a given argument; that plus the fact that this is
 | |
|   // move-only ensures that there is only one non-moved-from object.
 | |
|   CityHashState() : state_(Seed()) {}
 | |
| 
 | |
|   // Workaround for MSVC bug.
 | |
|   // We make the type copyable to fix the calling convention, even though we
 | |
|   // never actually copy it. Keep it private to not affect the public API of the
 | |
|   // type.
 | |
|   CityHashState(const CityHashState&) = default;
 | |
| 
 | |
|   explicit CityHashState(uint64_t state) : state_(state) {}
 | |
| 
 | |
|   // Implementation of the base case for combine_contiguous where we actually
 | |
|   // mix the bytes into the state.
 | |
|   // Dispatch to different implementations of the combine_contiguous depending
 | |
|   // on the value of `sizeof(size_t)`.
 | |
|   static uint64_t CombineContiguousImpl(uint64_t state,
 | |
|                                         const unsigned char* first, size_t len,
 | |
|                                         std::integral_constant<int, 4>
 | |
|                                         /* sizeof_size_t */);
 | |
|   static uint64_t CombineContiguousImpl(uint64_t state,
 | |
|                                         const unsigned char* first, size_t len,
 | |
|                                         std::integral_constant<int, 8>
 | |
|                                         /* sizeof_size_t*/);
 | |
| 
 | |
|   // Slow dispatch path for calls to CombineContiguousImpl with a size argument
 | |
|   // larger than PiecewiseChunkSize().  Has the same effect as calling
 | |
|   // CombineContiguousImpl() repeatedly with the chunk stride size.
 | |
|   static uint64_t CombineLargeContiguousImpl32(uint64_t state,
 | |
|                                                const unsigned char* first,
 | |
|                                                size_t len);
 | |
|   static uint64_t CombineLargeContiguousImpl64(uint64_t state,
 | |
|                                                const unsigned char* first,
 | |
|                                                size_t len);
 | |
| 
 | |
|   // Reads 9 to 16 bytes from p.
 | |
|   // The first 8 bytes are in .first, the rest (zero padded) bytes are in
 | |
|   // .second.
 | |
|   static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p,
 | |
|                                                  size_t len) {
 | |
|     uint64_t high = little_endian::Load64(p + len - 8);
 | |
|     return {little_endian::Load64(p), high >> (128 - len * 8)};
 | |
|   }
 | |
| 
 | |
|   // Reads 4 to 8 bytes from p. Zero pads to fill uint64_t.
 | |
|   static uint64_t Read4To8(const unsigned char* p, size_t len) {
 | |
|     return (static_cast<uint64_t>(little_endian::Load32(p + len - 4))
 | |
|             << (len - 4) * 8) |
 | |
|            little_endian::Load32(p);
 | |
|   }
 | |
| 
 | |
|   // Reads 1 to 3 bytes from p. Zero pads to fill uint32_t.
 | |
|   static uint32_t Read1To3(const unsigned char* p, size_t len) {
 | |
|     return static_cast<uint32_t>((p[0]) |                         //
 | |
|                                  (p[len / 2] << (len / 2 * 8)) |  //
 | |
|                                  (p[len - 1] << ((len - 1) * 8)));
 | |
|   }
 | |
| 
 | |
|   ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) {
 | |
|     using MultType =
 | |
|         absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>;
 | |
|     // We do the addition in 64-bit space to make sure the 128-bit
 | |
|     // multiplication is fast. If we were to do it as MultType the compiler has
 | |
|     // to assume that the high word is non-zero and needs to perform 2
 | |
|     // multiplications instead of one.
 | |
|     MultType m = state + v;
 | |
|     m *= kMul;
 | |
|     return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2)));
 | |
|   }
 | |
| 
 | |
|   // Seed()
 | |
|   //
 | |
|   // A non-deterministic seed.
 | |
|   //
 | |
|   // The current purpose of this seed is to generate non-deterministic results
 | |
|   // and prevent having users depend on the particular hash values.
 | |
|   // It is not meant as a security feature right now, but it leaves the door
 | |
|   // open to upgrade it to a true per-process random seed. A true random seed
 | |
|   // costs more and we don't need to pay for that right now.
 | |
|   //
 | |
|   // On platforms with ASLR, we take advantage of it to make a per-process
 | |
|   // random value.
 | |
|   // See https://en.wikipedia.org/wiki/Address_space_layout_randomization
 | |
|   //
 | |
|   // On other platforms this is still going to be non-deterministic but most
 | |
|   // probably per-build and not per-process.
 | |
|   ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() {
 | |
| #if (!defined(__clang__) || __clang_major__ > 11) && \
 | |
|     !defined(__apple_build_version__)
 | |
|     return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(&kSeed));
 | |
| #else
 | |
|     // Workaround the absence of
 | |
|     // https://github.com/llvm/llvm-project/commit/bc15bf66dcca76cc06fe71fca35b74dc4d521021.
 | |
|     return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed));
 | |
| #endif
 | |
|   }
 | |
|   static const void* const kSeed;
 | |
| 
 | |
|   uint64_t state_;
 | |
| };
 | |
| 
 | |
| // CityHashState::CombineContiguousImpl()
 | |
| inline uint64_t CityHashState::CombineContiguousImpl(
 | |
|     uint64_t state, const unsigned char* first, size_t len,
 | |
|     std::integral_constant<int, 4> /* sizeof_size_t */) {
 | |
|   // For large values we use CityHash, for small ones we just use a
 | |
|   // multiplicative hash.
 | |
|   uint64_t v;
 | |
|   if (len > 8) {
 | |
|     if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
 | |
|       return CombineLargeContiguousImpl32(state, first, len);
 | |
|     }
 | |
|     v = absl::hash_internal::CityHash32(reinterpret_cast<const char*>(first), len);
 | |
|   } else if (len >= 4) {
 | |
|     v = Read4To8(first, len);
 | |
|   } else if (len > 0) {
 | |
|     v = Read1To3(first, len);
 | |
|   } else {
 | |
|     // Empty ranges have no effect.
 | |
|     return state;
 | |
|   }
 | |
|   return Mix(state, v);
 | |
| }
 | |
| 
 | |
| // Overload of CityHashState::CombineContiguousImpl()
 | |
| inline uint64_t CityHashState::CombineContiguousImpl(
 | |
|     uint64_t state, const unsigned char* first, size_t len,
 | |
|     std::integral_constant<int, 8> /* sizeof_size_t */) {
 | |
|   // For large values we use CityHash, for small ones we just use a
 | |
|   // multiplicative hash.
 | |
|   uint64_t v;
 | |
|   if (len > 16) {
 | |
|     if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
 | |
|       return CombineLargeContiguousImpl64(state, first, len);
 | |
|     }
 | |
|     v = absl::hash_internal::CityHash64(reinterpret_cast<const char*>(first), len);
 | |
|   } else if (len > 8) {
 | |
|     auto p = Read9To16(first, len);
 | |
|     state = Mix(state, p.first);
 | |
|     v = p.second;
 | |
|   } else if (len >= 4) {
 | |
|     v = Read4To8(first, len);
 | |
|   } else if (len > 0) {
 | |
|     v = Read1To3(first, len);
 | |
|   } else {
 | |
|     // Empty ranges have no effect.
 | |
|     return state;
 | |
|   }
 | |
|   return Mix(state, v);
 | |
| }
 | |
| 
 | |
| struct AggregateBarrier {};
 | |
| 
 | |
| // HashImpl
 | |
| 
 | |
| // Add a private base class to make sure this type is not an aggregate.
 | |
| // Aggregates can be aggregate initialized even if the default constructor is
 | |
| // deleted.
 | |
| struct PoisonedHash : private AggregateBarrier {
 | |
|   PoisonedHash() = delete;
 | |
|   PoisonedHash(const PoisonedHash&) = delete;
 | |
|   PoisonedHash& operator=(const PoisonedHash&) = delete;
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct HashImpl {
 | |
|   size_t operator()(const T& value) const { return CityHashState::hash(value); }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct Hash
 | |
|     : absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {};
 | |
| 
 | |
| template <typename H>
 | |
| template <typename T, typename... Ts>
 | |
| H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
 | |
|   return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke(
 | |
|                         std::move(state), value),
 | |
|                     values...);
 | |
| }
 | |
| 
 | |
| // HashStateBase::combine_contiguous()
 | |
| template <typename H>
 | |
| template <typename T>
 | |
| H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) {
 | |
|   return hash_internal::hash_range_or_bytes(std::move(state), data, size);
 | |
| }
 | |
| 
 | |
| // HashStateBase::PiecewiseCombiner::add_buffer()
 | |
| template <typename H>
 | |
| H PiecewiseCombiner::add_buffer(H state, const unsigned char* data,
 | |
|                                 size_t size) {
 | |
|   if (position_ + size < PiecewiseChunkSize()) {
 | |
|     // This partial chunk does not fill our existing buffer
 | |
|     memcpy(buf_ + position_, data, size);
 | |
|     position_ += size;
 | |
|     return state;
 | |
|   }
 | |
| 
 | |
|   // If the buffer is partially filled we need to complete the buffer
 | |
|   // and hash it.
 | |
|   if (position_ != 0) {
 | |
|     const size_t bytes_needed = PiecewiseChunkSize() - position_;
 | |
|     memcpy(buf_ + position_, data, bytes_needed);
 | |
|     state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize());
 | |
|     data += bytes_needed;
 | |
|     size -= bytes_needed;
 | |
|   }
 | |
| 
 | |
|   // Hash whatever chunks we can without copying
 | |
|   while (size >= PiecewiseChunkSize()) {
 | |
|     state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize());
 | |
|     data += PiecewiseChunkSize();
 | |
|     size -= PiecewiseChunkSize();
 | |
|   }
 | |
|   // Fill the buffer with the remainder
 | |
|   memcpy(buf_, data, size);
 | |
|   position_ = size;
 | |
|   return state;
 | |
| }
 | |
| 
 | |
| // HashStateBase::PiecewiseCombiner::finalize()
 | |
| template <typename H>
 | |
| H PiecewiseCombiner::finalize(H state) {
 | |
|   // Hash the remainder left in the buffer, which may be empty
 | |
|   return H::combine_contiguous(std::move(state), buf_, position_);
 | |
| }
 | |
| 
 | |
| }  // namespace hash_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // ABSL_HASH_INTERNAL_HASH_H_
 |