git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			89 lines
		
	
	
	
		
			3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
	
		
			3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #ifndef ABSL_RANDOM_INTERNAL_CHI_SQUARE_H_
 | |
| #define ABSL_RANDOM_INTERNAL_CHI_SQUARE_H_
 | |
| 
 | |
| // The chi-square statistic.
 | |
| //
 | |
| // Useful for evaluating if `D` independent random variables are behaving as
 | |
| // expected, or if two distributions are similar.  (`D` is the degrees of
 | |
| // freedom).
 | |
| //
 | |
| // Each bucket should have an expected count of 10 or more for the chi square to
 | |
| // be meaningful.
 | |
| 
 | |
| #include <cassert>
 | |
| 
 | |
| #include "absl/base/config.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| namespace random_internal {
 | |
| 
 | |
| constexpr const char kChiSquared[] = "chi-squared";
 | |
| 
 | |
| // Returns the measured chi square value, using a single expected value.  This
 | |
| // assumes that the values in [begin, end) are uniformly distributed.
 | |
| template <typename Iterator>
 | |
| double ChiSquareWithExpected(Iterator begin, Iterator end, double expected) {
 | |
|   // Compute the sum and the number of buckets.
 | |
|   assert(expected >= 10);  // require at least 10 samples per bucket.
 | |
|   double chi_square = 0;
 | |
|   for (auto it = begin; it != end; it++) {
 | |
|     double d = static_cast<double>(*it) - expected;
 | |
|     chi_square += d * d;
 | |
|   }
 | |
|   chi_square = chi_square / expected;
 | |
|   return chi_square;
 | |
| }
 | |
| 
 | |
| // Returns the measured chi square value, taking the actual value of each bucket
 | |
| // from the first set of iterators, and the expected value of each bucket from
 | |
| // the second set of iterators.
 | |
| template <typename Iterator, typename Expected>
 | |
| double ChiSquare(Iterator it, Iterator end, Expected eit, Expected eend) {
 | |
|   double chi_square = 0;
 | |
|   for (; it != end && eit != eend; ++it, ++eit) {
 | |
|     if (*it > 0) {
 | |
|       assert(*eit > 0);
 | |
|     }
 | |
|     double e = static_cast<double>(*eit);
 | |
|     double d = static_cast<double>(*it - *eit);
 | |
|     if (d != 0) {
 | |
|       assert(e > 0);
 | |
|       chi_square += (d * d) / e;
 | |
|     }
 | |
|   }
 | |
|   assert(it == end && eit == eend);
 | |
|   return chi_square;
 | |
| }
 | |
| 
 | |
| // ======================================================================
 | |
| // The following methods can be used for an arbitrary significance level.
 | |
| //
 | |
| 
 | |
| // Calculates critical chi-square values to produce the given p-value using a
 | |
| // bisection search for a value within epsilon, relying on the monotonicity of
 | |
| // ChiSquarePValue().
 | |
| double ChiSquareValue(int dof, double p);
 | |
| 
 | |
| // Calculates the p-value (probability) of a given chi-square value.
 | |
| double ChiSquarePValue(double chi_square, int dof);
 | |
| 
 | |
| }  // namespace random_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // ABSL_RANDOM_INTERNAL_CHI_SQUARE_H_
 |